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ABSTRACT. Let a be an irrational real number; the behaviour of the sum
Sy () := (=D 4+ (=1)22] 4 ... 4 (—1)[Ne] depends on the continued fraction
expansion of a/2. Since the continued fraction expansion of \/5/2 has bounded
partial quotients, Sy (v2) = O(log(N)) and this bound is best possible.

The partial quotients of the continued fraction expansion of e grow slowly and
2

thus Sy (2e) = O(lolgolgo(%), again best possible. The partial quotients of the

continued fraction expansion of e/2 behave similarly as those of e. Surprisingly

enough Sy (e) = O(%)'

Communicated by Yann Bugeaud

1. Introduction

Let a be an irrational real number; we are interested in the asymptotic be-
haiour of the sum

Sn(a) i= (=Dl 4 (—1)2e oy (—pyIVel,

The origin of this question seems to go back to [12], where it is remarked that
Sn(v/2) = O(log N). More accurate estimates for Sy (v/2) are available in [5]
and were already implicit in [9], where the authors gave an unexpected explicit
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formulall for Sy (v/2) in terms of the continued fraction expansion?y/2 = [1;2].

The behaiour of Sy () is closely related to the uniform distribution mod 1
of the sequence (na/2),en. Indeed, [na] is even if and only if the fractional part

{na/2} is in [0,1/2). Thus,
Sn(a)=[{n=1,...,N | [na] even }| = [{n=1,...,N | [na] odd }|
=2{n=1,...,N|{na/2} €[0,1/2)} - N (1)
— 2Dy (a/2,1/2).
Here Dy is the local discrepancy:
Dy(e,z)=|{n=1,...,N|{na} € [O,x)}‘ —

for « € R and x € [0,1]. A lazy way to bound Dy () is to put in the picture
the global discrepancyﬁ

Dy(a):= sup “{n_l N|{na}€[w,y)}’fN(y—x)‘.
0<z<y<1
Thus |Dy(«, 1/2)| < Dy(«). For an irrational «, the sequence (na) is uniform
distribution mod 1 by a well known theorem attributed ([3], p. 21) independently
to Bohl, Sierpiniski and Weyl. This means that Dy (a) = o(IN). More precise
estimates for Dy depend on the diophantine approximation properties of a.
We recall that the irrationality exponent u(a) of an irrational o € R is the
infimum (possibly 4+00) of the set of positive real numbers p such that for every
€ > 0 there exists C. > 0 such that for all p, ¢ € Z with ¢ > 0 we have
o-2>

;H-s

It is well known that pu(a) > 2 with equality for almost all a. It is also well
known that y is invariant by integral Mobius transformations o — “"‘IZ
(a, b, ¢, d € Z, ad — bc # 0).

Froml] [3, Theorem 3.2, p.123] Dy (a) = O,(N?) for any v > 1 — W
In particular, if u(o) = 2 we have Dy (o) = O,(N7) for any v > 0. A more
precise result holds for irrational numbers o whose continued fraction expansion

has bounded partial quotients (and hence irrationality measure 2). In this case
we have (see [3, Theorem 3.4, p.125]) Dy () = O(log N).

Lwhich can be viewed as an equality between non absolutely convergent Fourier series.
2Here and below, a1, ..., ar Means @i, ..., 0, Q1,---, 0k, .-

3Note that some authors, as [3], divide by N in the definition of Dy.

4The authors state this result in terms of the type of o which is equal to p(a) — 1.
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This last estimate cannot be improved. Indeed the global discrepancy Dy
of every infinite sequence (uy,), il Q(log N) (see [13, Theorem 1, p. 45]).

Nevertheless, we can construct irrational a such that [Dy(«, 1/2)| is as small
as we wish. Our first result is:

THEOREM 1.1. Let §: N — RT be a function which tends to infinity. Then there
exists an irrational number o such that

Dy (a,1/2) = O(8(N)).
Equivalently, we can find an irrational o such thatfd Sp(a) = O(é(N)).

By [2, Theorem 8, p. 237], for any irrational « there exists a positive constant
A = A(a) such that | 2N, f(na)| > AN, where f(t) = {t} — 1/2. By Theo-
rem (L)) we cannot replace in this statement {t} —1/2 with (—1)[), even taking
instead of N any function §(N) which tends to infinity. See also [10] for a related
question.

We then show that for some classical number the local discrepancy Dy (o, 1/2)
can be substantially smaller than Dy («) and even o(log V).

THEOREM 1.2.

— loglog N S|
1 —— = =
N—1>I£ooDN(e/2)< log N > 8 )
and
S loglog N 3
1 1 —— =
S Dx(e/2,1/2) 20 = (3)

Let’s come back to the sum in the title. The question of providing good bound
for Sy (e) goes back to H. Pépin [7], who, in the nice self-contained treatement
of this matter [§], already get Sn(e) = O((log N)?). Equations () and (2)) show
that Sy (e) is smaller than what one would expect:

Sn(e) = (=) + (=) 4 +(=1)1") = O(log(N)/ loglog(N)).  (4)
Note that
Sw(2e) = (1) 4 (<1)8) o4 (= )2V = O((1og(N) / 1og log(N)?)
is best possible, by () and by (B) of Theorem I3 below.

5Here 2 is the Landau symbol: if f, g are two functions with g > 0, then f = Q(g), means
f#o(g)-

SNote that for any irrational a we have Iim | Sy, (a)| = 400 (|7, Theorem 1]).
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Bounds for Sy («) are useful to study the convergence of sums of the shape
Zn(fl)["a]un. Let Au, = upy1 — u,. By partial sommation (as in the so-
lution to [6] proposed by R. Tauraso [14]) we see that such a sum converges

if Sy(a)uy — 0 and )5 Sn(a)Auy converges. By (@) both conditions are
loglog(n+1)
log(n+1)2
results, it might be suitable to make a second partial summation, since the

arithmetic mean of Sy («) behave more regularly.

satisfied when o = e and u, = . To get more precise and general

loglog N
log N
structure of the continued expansion of e/2. Let us give a short explication.
Both estimates ([2) and (@) for the global and local discrepancy of (ne/2) de-
pend on the partial quotients {ay, },>1 of the continued fraction expansion of e/2.
This sequence is unbounded. But in the estimate (3)) only the a, with n # 2
mod 3 come in. The corresponding sequence is now bounded. This phenomenon

does not occurr if we replace e/2 by e, as the following theorem shows.

The gain of the factor in @) heavily depends on the particular

THEOREM 1.3.

. loglog N 1
1 D = -
N—1>I—Ii-1c>o () < log N ) 4 (5)
and )
— loglog N 1
1 D 1/2)| | —=—— ) = -.
w1 e /)‘< log N > 4 (©)

Relations (B]) and (@) show that the order of growth of o — Dy (e, 1/2) is not
invariant with respect to Mébius transformations, contrary to what happen for
the global discrepancy.

Although our theorems are straightforward applications of known results ([I]
and [11]), it seems that they deserve to be remarked.

2. Computations

Proof of Theorem [[J The proof is an easy application of [T1, Example,
p.1497]. Let f: N — N be a function taking odd values and which increases
to infinity sufficiently fast. We choose

o =afp = [0;131>f(1)31>13f<2>>"']'

Let a; and g¢,, be the partial quotients and the denominators of the convergents
of a. For N € N we define m(N) € N by the property

Im(N) SN < gmv) + 1.
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Put
n {aj if ;1 is even and j is odd;
0, otherwise
and
_ {aj if gj_1 and j are even;
0, otherwise.

m
S+ 1 1 +
= — iyl = — a,; a 1= a.
m 4 E : 7+ 4 z : j+1 m 4 § : Jj+ 4 § : j+1°
2[j<m j:O 2tj<m

2{q; 2{q;

Then from [11), Example, p.1497] we have (as in the deduction of Corollary 1.2
from Theorem 1.1 in [I]):

hm DN(e/2 1/2)/S* (N) = hm Dn(e/2,1/2)/S () = L. (7)

+o0

From the usual recursive definition of ¢,, we easily see thatl gj—1 is even if and
only if j =0 mod 3. Thus

{a;_}]él = {1,0,0}, {a }iz1 ={0,1,0}

and

Moreover, from the recursive definition of g, we have

[m/3]

> H 6

Thus, if f grows sufficiently fast, for N € N we have qia5v)) = N and,
by definition, m(N) < [126(N)]. By (@) and (8) we have Dy (c,1/2) = O(3(N))
as desired. O

7 To check this property we can of course reduce modulo 2 all the partial coefficients,
thus reduce ourselves to compute the well-known convergents of the golden ratio.
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Proof of of Theorem [[2I To prove () we follow the proof of [I, Theorem
3.2(2), p.286] taking now (cf. (@) ai,az,... be the partial quotients of the
continued fraction expansion] of e/2.

e/2=1[1;2,1,3,1,1,1,3,3,3,1,3,1,3,5,3,1,5,1,3,7,3,1,7,1,3,..].  (9)
We easily find

[m/6]
Za’+1N2Z (2k—1) N—m
and (m/6]
logaj;q1 ~ 2 log(2k — 1 N—mlom
; gai+1 ; g( ) 3 g

Thus

loglog N 2 % 1
lim Dy(e/2 =18 =
N3 hse n(e/2) ( log N > 432 8

To prove (@) we apply again the formula in [11, Example, p.1497]. Let a;
and ¢, be the partial quotients and the denominators of the convergents of (9.
Let m(N), aj-E and SZ be as in the the proof of Theorem [T Then

hm DN(e/2 1/2)/S ) = —hm DN(e/2 1/2)/S, ny =1 (10)

From (@) and from the usual recursive definition of ¢, we see (cf. notem) that
gj—1 is even iff j =2 mod 3. Thus

{a;r}jzl =1{2,0,3,0,0,0,3}, {a }i>1=1{2,0,0,1,0,1,0}

and [m/6] . | Im/6) .
o~z ~ = — o~ 1+1)~ —m.
Sho~ g 2 B3~ m S~y (1)~ om
k=1 k=1
Moreover (cf. ([QI))
[m/6]
1
log g, ~ loga; ~ 2 lo 2k—1~2—lo m = —mlogm
gq 21 g ;; g ) ~ 2 logm = Zmlog

which, by definition of m(N), easily implies m(N) ~ 3101;{% fgv ~- Replacing these

estimates in (I2)) we get

S Div(e/2,1/2)/ (i) =~ im Di(e/2,1/2)/ (i) =1
+

Equation (3]) follows. O

8which can be easily computed from the well-known Euler continued fraction of e, for example,
by known algorithms [4].
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Proof of of Theorem [[3 Equation (@) is a special case of [I, Theorem
3.2(2), p.286]. The deduction of (@) follows the same lines as that of (). Let a;
and ¢, be the partial quotients and the denominators of the convergents of the
continued fraction expansion of e

e=[21,2,1,1,4,1,1,6,1,1,8,...]. (11)

Let m(N), aji and S as in the the proof of Theorem [[LIl From [I1, Example,
p. 1497):

lim Dy(e,1/2)/S (N):—hm Dn(e,1/2)/5,,n) =1 (12)

N—+o00

From (II]) and from the usual recursive definition of ¢, we easily see that ¢;_;
is even iff 7 = 0,4 mod 6. Thus (cf. (II])

{af}j>1 =1{1.0.1,0,4,0,1,0,1,0,8,0,1,0,1,0,12,0,...};

{a; }j>1 = {0,2,0,0,0.0.0,6,0,0,0,0,0,10,0,0,0,0,...}

and
1 " 1 1 " 1
= 1+ 4k) 2 =) (4k —2) ~ o=m?.
" g MR TR " ; )
Moreover (cf. again (ITI))
[m/3]
log G ~ Zlogaz ~ Z log(2k) ~ —mlogm
i=1 k=1
which implies m(N) ~ 3102’5) gN. Replacing these estimates in (I2]) we get
T log N \2 log N
NEIEOODN(e,l/D/(%(IOgigN) )= —hm DN(e 1/2)/ (3 (petew)’) = 1.
Equation (6]) follows. O
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