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ABSTRACT. Let α be an irrational real number; the behaviour of the sum

SN (α) := (−1)[α] + (−1)[2α] + · · ·+ (−1)[Nα] depends on the continued fraction

expansion of α/2. Since the continued fraction expansion of
√
2/2 has bounded

partial quotients, SN (
√
2) = O

(
log(N)

)
and this bound is best possible.

The partial quotients of the continued fraction expansion of e grow slowly and

thus SN (2e) = O
(

log(N)2

log log(N)2

)
, again best possible. The partial quotients of the

continued fraction expansion of e/2 behave similarly as those of e. Surprisingly

enough SN (e) = O
(

log(N)
log log(N)

)
.

Communicated by Yann Bugeaud

1. Introduction

Let α be an irrational real number; we are interested in the asymptotic be-
haiour of the sum

SN (α) := (−1)[α] + (−1)[2α] + · · ·+ (−1)[Nα].

The origin of this question seems to go back to [12], where it is remarked that

SN (
√
2) = O(logN). More accurate estimates for SN (

√
2) are available in [5]

and were already implicit in [9], where the authors gave an unexpected explicit
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formula1 for SN (
√
2) in terms of the continued fraction expansion2

√
2 = [1; 2].

The behaiour of SN (α) is closely related to the uniform distribution mod 1
of the sequence (nα/2)n∈N. Indeed, [nα] is even if and only if the fractional part
{nα/2} is in [0, 1/2). Thus,

SN (α) =
∣∣{n = 1, . . . , N | [nα] even }∣∣− ∣∣{n = 1, . . . , N | [nα] odd }∣∣

= 2
∣∣{n = 1, . . . , N | {nα/2} ∈ [0, 1/2)}∣∣−N

= 2DN (α/2, 1/2).

(1)

Here DN is the local discrepancy:

DN (α, x) =
∣∣{n = 1, . . . , N | {nα} ∈ [0, x)

}∣∣−Nx

for α ∈ R and x ∈ [0, 1]. A lazy way to bound DN (α) is to put in the picture
the global discrepancy3

DN (α) := sup
0≤x<y≤1

∣∣∣∣∣{n = 1, . . . , N | {nα} ∈ [x, y)
}∣∣−N(y − x)

∣∣∣.
Thus |DN (α, 1/2)| ≤ DN (α). For an irrational α, the sequence (nα) is uniform
distribution mod 1 by a well known theorem attributed ([3], p. 21) independently
to Bohl, Sierpiński and Weyl. This means that DN (α) = o(N). More precise
estimates for DN depend on the diophantine approximation properties of α.
We recall that the irrationality exponent μ(α) of an irrational α ∈ R is the
infimum (possibly +∞) of the set of positive real numbers μ such that for every
ε > 0 there exists Cε > 0 such that for all p, q ∈ Z with q > 0 we have∣∣∣α− p

q

∣∣∣ > Cε

qμ+ε
.

It is well known that μ(α) ≥ 2 with equality for almost all α. It is also well
known that μ is invariant by integral Möbius transformations α �→ aα+b

cα+d

(a, b, c, d ∈ Z, ad− bc 	= 0).

From4 [3, Theorem 3.2, p. 123] DN (α) = Oγ(N
γ) for any γ > 1 − 1

μ(α)−1 .

In particular, if μ(α) = 2 we have DN (α) = Oγ(N
γ) for any γ > 0. A more

precise result holds for irrational numbers α whose continued fraction expansion
has bounded partial quotients (and hence irrationality measure 2). In this case
we have (see [3, Theorem 3.4, p. 125]) DN (α) = O(logN).

1which can be viewed as an equality between non absolutely convergent Fourier series.
2Here and below, a1, . . . , ak means a1, . . . , ak, a1, . . . , ak , . . .
3Note that some authors, as [3], divide by N in the definition of DN .
4The authors state this result in terms of the type of α which is equal to μ(α)− 1.
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This last estimate cannot be improved. Indeed the global discrepancy DN

of every infinite sequence (un)n is5 Ω(logN) (see [13, Theorem 1, p. 45]).

Nevertheless, we can construct irrational α such that |DN (α, 1/2)| is as small
as we wish. Our first result is:

������� 1.1� Let δ : N → R
+ be a function which tends to infinity. Then there

exists an irrational number α such that

DN (α, 1/2) = O
(
δ(N)

)
.

Equivalently, we can find an irrational α such that 6 Sn(α) = O
(
δ(N)

)
.

By [2, Theorem 8, p. 237], for any irrational α there exists a positive constant

A = A(α) such that |∑N
n=1 f(nα)| ≥ AN , where f(t) = {t} − 1/2. By Theo-

rem (1.1) we cannot replace in this statement {t}−1/2 with (−1)[t], even taking
instead of N any function δ(N) which tends to infinity. See also [10] for a related
question.

We then show that for some classical number the local discrepancyDN (α, 1/2)
can be substantially smaller than DN (α) and even o(logN).

������� 1.2�

lim
N→+∞

DN (e/2)

(
log logN

logN

)2

=
1

8
(2)

and

lim
N→+∞

|DN (e/2, 1/2)| log logN
logN

=
3

2
. (3)

Let’s come back to the sum in the title. The question of providing good bound
for SN (e) goes back to H. Pépin [7], who, in the nice self-contained treatement
of this matter [8], already get SN (e) = O

(
(logN)2

)
. Equations (1) and (2) show

that SN (e) is smaller than what one would expect:

SN (e) = (−1)[e] + (−1)[2e] + · · ·+(−1)[ne] = O
(
log(N)/ log log(N)

)
. (4)

Note that

SN (2e) = (−1)[2e] + (−1)[4e] + · · ·+(−1)[2Ne] = O
((
log(N)/ log log(N)

)2)
is best possible, by (1) and by (6) of Theorem 1.3 below.

5Here Ω is the Landau symbol: if f , g are two functions with g > 0, then f = Ω(g), means

f �= o(g).
6Note that for any irrational α we have lim |Sn(α)| = +∞ ([7, Theorem 1]).
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Bounds for SN (α) are useful to study the convergence of sums of the shape∑
n(−1)[nα]un. Let Δun = un+1 − un. By partial sommation (as in the so-

lution to [6] proposed by R. Tauraso [14]) we see that such a sum converges
if SN (α)uN → 0 and

∑
N SN (α)ΔuN converges. By (4) both conditions are

satisfied when α = e and un = log log(n+1)
log(n+1)2 . To get more precise and general

results, it might be suitable to make a second partial summation, since the
arithmetic mean of SN (α) behave more regularly.

The gain of the factor log logN
logN in (3) heavily depends on the particular

structure of the continued expansion of e/2. Let us give a short explication.
Both estimates (2) and (3) for the global and local discrepancy of (ne/2) de-
pend on the partial quotients {an}n≥1 of the continued fraction expansion of e/2.
This sequence is unbounded. But in the estimate (3) only the an with n 	≡ 2
mod 3 come in. The corresponding sequence is now bounded. This phenomenon
does not occurr if we replace e/2 by e, as the following theorem shows.

������� 1.3�

lim
N→+∞

DN (e)

(
log logN

logN

)2

=
1

4
(5)

and

lim
N→+∞

|DN (e, 1/2)|
(
log logN

logN

)2

=
1

4
. (6)

Relations (3) and (6) show that the order of growth of α �→ DN (α, 1/2) is not
invariant with respect to Möbius transformations, contrary to what happen for
the global discrepancy.

Although our theorems are straightforward applications of known results ([1]
and [11]), it seems that they deserve to be remarked.

2. Computations

P r o o f o f T h e o r e m 1.1. The proof is an easy application of [11, Example,
p. 1497]. Let f : N → N be a function taking odd values and which increases
to infinity sufficiently fast. We choose

α = αf = [0; 1, 1, f(1), 1, 1, f(2), . . . ].

Let aj and qm be the partial quotients and the denominators of the convergents
of α. For N ∈ N we define m(N) ∈ N by the property

qm(N) ≤ N < qm(N) + 1.
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Put

a+j =

{
aj if qj−1 is even and j is odd;

0, otherwise

and

a−j =

{
aj if qj−1 and j are even;

0, otherwise.

Define the following sums:

S+
m =

1

4

∑
2|j≤m
2�qj

aj+1 =
1

4

m∑
j=0

a+j+1, S−
m =

1

4

∑
2�j≤m
2�qj

aj+1 =
1

4

m∑
j=0

a−j+1.

Then from [11, Example, p. 1497] we have (as in the deduction of Corollary 1.2
from Theorem 1.1 in [1]):

lim
N→+∞

DN (e/2, 1/2)/S+
m(N) = − lim

N→+∞
DN (e/2, 1/2)/S−

m(N) = 1. (7)

From the usual recursive definition of qm we easily see that7 qj−1 is even if and
only if j ≡ 0 mod 3. Thus

{a+j }j≥1 = {1, 0, 0}, {a−j }j≥1 = {0, 1, 0}
and

S+
m ∼ S−

m ∼ 1

4

[m/3]∑
k=1

1 ∼ m

12
. (8)

Moreover, from the recursive definition of qm we have

qm ≥
[m/3]∏
j=1

f(j).

Thus, if f grows sufficiently fast, for N ∈ N we have q12[δ(N)] ≥ N and,

by definition, m(N) ≤ [12δ(N)]. By (7) and (8) we have DN (α, 1/2) = O
(
δ(N)

)
as desired. �

7 To check this property we can of course reduce modulo 2 all the partial coefficients,
thus reduce ourselves to compute the well-known convergents of the golden ratio.
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P r o o f o f o f T h e o r e m 1.2. To prove (2) we follow the proof of [1, Theorem
3.2(2), p. 286] taking now (cf. (9)) a1, a2, . . . be the partial quotients of the
continued fraction expansion8 of e/2.

e/2 = [1; 2, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 5, 3, 1, 5, 1, 3, 7, 3, 1, 7, 1, 3, . . .] . (9)

We easily find
m∑
i=0

ai+1 ∼ 2

[m/6]∑
k=1

(2k − 1) ∼ 1

18
m2

and
m∑
i=0

log ai+1 ∼ 2

[m/6]∑
k=1

log(2k − 1) ∼ 1

3
m logm.

Thus

lim
N→+∞

DN (e/2)

(
log logN

logN

)2

=
1
18

4(13 )
2
=

1

8
.

To prove (3) we apply again the formula in [11, Example, p. 1497]. Let aj
and qm be the partial quotients and the denominators of the convergents of (9).
Let m(N), a±j and S±

m be as in the the proof of Theorem 1.1. Then

lim
N→+∞

DN (e/2, 1/2)/S+
m(N) = − lim

N→+∞
DN (e/2, 1/2)/S−

m(N) = 1. (10)

From (9) and from the usual recursive definition of qm we see (cf. note7) that
qj−1 is even iff j ≡ 2 mod 3. Thus

{a+j }j≥1 = {2, 0, 3, 0, 0, 0, 3}, {a−j }j≥1 = {2, 0, 0, 1, 0, 1, 0}
and

S+
m ∼ 1

4

[m/6]∑
k=1

(3 + 3) ∼ 1

4
m, S−

m ∼ 1

4

[m/6]∑
k=1

(1 + 1) ∼ 1

12
m.

Moreover (cf. (9))

log qm ∼
m∑
i=1

log ai ∼ 2

[m/6]∑
k=1

log(2k − 1) ∼ 2
m

6
logm =

1

3
m logm

which, by definition of m(N), easily implies m(N) ∼ 3 logN
log logN . Replacing these

estimates in (12) we get

lim
N→+∞

DN (e/2, 1/2)/(3
4

logN
log logN

) = − lim
N→+∞

DN (e/2, 1/2)/( 3
12

logN
log logN

) = 1.

Equation (3) follows. �
8which can be easily computed from the well-known Euler continued fraction of e, for example,
by known algorithms [4].
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P r o o f o f o f T h e o r e m 1.3. Equation (5) is a special case of [1, Theorem
3.2(2), p. 286]. The deduction of (6) follows the same lines as that of (3). Let aj
and qm be the partial quotients and the denominators of the convergents of the
continued fraction expansion of e

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]. (11)

Let m(N), a±j and S±
m as in the the proof of Theorem 1.1. From [11, Example,

p. 1497]:

lim
N→+∞

DN (e, 1/2)/S+
m(N) = − lim

N→+∞
DN (e, 1/2)/S−

m(N) = 1. (12)

From (11) and from the usual recursive definition of qm we easily see that qj−1

is even iff j ≡ 0, 4 mod 6. Thus (cf. (11))

{a+j }j≥1 = {1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 8, 0, 1, 0, 1, 0, 12, 0, . . .};
{a−j }j≥1 = {0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, . . .}

and

S+
m ∼ 1

4

[m/6]∑
k=1

(1 + 1 + 4k) ∼ 1

72
m2, S−

m ∼ 1

4

[m/6]∑
k=1

(4k − 2) ∼ 1

72
m2.

Moreover (cf. again (11))

log qm ∼
m∑
i=1

log ai ∼
[m/3]∑
k=1

log(2k) ∼ 1

3
m logm

which implies m(N) ∼ 3 logN
log logN . Replacing these estimates in (12) we get

lim
N→+∞

DN (e, 1/2)/
(
1
8 (

logN
log logN )2

)
= − lim

N→+∞
DN (e, 1/2)/

(
1
8 (

logN
log logN )2

)
= 1.

Equation (6) follows. �
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1989, 229–232.

[9] PERELLI, A.—ZANNIER, U.: On the parity of [n
√
2]. Boll. Un. Mat. Ital. A (6), 2

(1983), no. 1, 77–83.
[10] PERELLI, A.—ZANNIER, U.: textitAn Ω result in uniform distribution theory, Quart.

J. Math. Oxford Ser. (2) 38 (1987), no. 149, 95–102.
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