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ABSTRACT. The basic goal of quantization for probability distribution is
to reduce the number of values, which is typically uncountable, describing a prob-
ability distribution to some finite set and thus approximation of a continuous
probability distribution by a discrete distribution. Mixtures of probability distri-

butions, also known as mixed distributions, are an exciting new area for optimal
quantization. In this paper, we investigate the optimal quantization for three
different mixed distributions generated by uniform distributions associated with
probability vectors.

Communicated by Manfred Kühleitner

1. Introduction

Continuous-valued signals can take any real value either in the entire range
of real numbers or in a range limited by some system constraints. In either
of the two cases, an uncountably infinite set of values is required to represent
the signal values. If a signal has to be processed or stored digitally, each of its
values must be representable by a finite number of bits. Thus, all values together
have to form a finite countable set. A signal consisting only of such discrete values
is said to be quantized. The process of transformation of a continuous-valued
signal into a discrete-valued one is called ‘quantization’. It has broad application
in engineering and technology (see [GG,GN, Z]). For mathematical treatment
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of quantization one is referred to Graf-Luschgy’s book (see [GL1]). Let Rd denote
the d-dimensional Euclidean space equipped with the Euclidean norm ‖ · ‖, and
let P be a Borel probability measure on R

d. Then, the nth quantization error
for P, with respect to the squared Euclidean distance, is defined by

Vn := Vn(P ) = inf
{
V (P ;α) : α ⊂ R

d, card(α) ≤ n
}
,

where V (P ;α) :=

∫
min
a∈α

‖x− a‖2 dP (x)

represents the distortion error for P due to the set α. A set α ⊂ R
d is called an

optimal set of n-means for P if Vn(P ) = V (P ;α). It is known that for a con-
tinuous Borel probability measure an optimal set of n-means always has ex-
actly n-elements (see [GL1]). Optimal sets of n-means for different probabil-
ity distributions were calculated by several authors, for example, one can see
[CR,DR1,DR2,GL2,RR1,L1,R1–R5]. The number

lim
n→∞

2 logn

− log Vn(P )
,

if it exists, is called the quantization dimension of the probability measure P,
and is denoted by D(P ); on the other hand, for any s ∈ (0,+∞), the number

lim
n→∞n

2
s Vn(P ), if it exists, is called the s-dimensional quantization coefficient

for P (see [GL1,P]).

Let us now state the following proposition (see [GG,GL1]):

����������� 1.1	 Let α be an optimal set of n-means for P, and a ∈ α. Then,

(i) P
(
M (a|α)) > 0, (ii) P

(
∂M (a|α)) = 0, (iii) a = E

(
X : X ∈ M (a|α)), where

M (a|α) is the Voronoi region of a ∈ α, i.e., M (a|α) is the set of all elements x
in R

d which are closest to a among all the elements in α.

Proposition 1.1 says that if α is an optimal set and a ∈ α, then a is the
conditional expectation of the random variable X given that X takes values
in the Voronoi region of a. The following theorem is known.


����� 1.2 (see [RR2])	 Let P be a uniform distribution on the closed in-
terval [a, b]. Then, the optimal set n-means is given by αn := {a+ 2i−1

2n (b− a) :

1 ≤ i ≤ n}, and the corresponding quantization error is Vn := Vn(P ) = (a−b)2

12n2 .


����� 1.3	 Let αn be an optimal set of n-means for a uniform distribution
on the unit circular arc S given by

S := {(cos θ, sin θ) : α ≤ θ ≤ β}, where 0 ≤ α < β ≤ 2π.
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Then,

αn :=

{
2n

β − α
sin

(β − α

2n

)(
cos

(
α+ (2j − 1)

β − α

2n

)
,

sin

(
α+ (2j − 1)

β − α

2n

))
: j = 1, 2, . . . , n

}

forms an optimal set of n-means, and the corresponding quantization error is
given by

Vn =
(α− β)2 − 2n2 + 2n2 cos α−β

n

(α− β)2
.

P r o o f. Notice that S is an arc of the unit circle x2
1 + x2

2 = 1 which subtends
a central angle of β − α radian, and the probability distribution is uniform on
S. Hence, the density function is given by f(x1, x2) =

1
β−α if (x1, x2) ∈ S, and

zero, otherwise. Thus, the proof follows in the similar way as the proof in the
similar theorem in [RR2]. �

Mixed distributions are an exciting new area for optimal quantization. For any
two Borel probability measures P1 and P2, and p ∈ (0, 1), if P := pP1+(1−p)P2,
then the probability measure P is called the mixture or the mixed distribution
generated by the probability measures (P1, P2) associated with the probability
vector (p, 1− p). Such kind of problems has rigorous applications in many areas
including signal processing. For example, while driving long distances, we have
seen sometimes cellular signals get cut off. This happens because of being far
away from the tower, or there is no tower nearby to catch the signal. In optimal
quantization for mixed distributions one of our goals is to find the exact locations
of the towers by giving different weights, also called importance, to different
portions of a path.

The following theorem about the quantization dimension for the mixed dis-
tributions is well-known. For some more details please see [L, Theorem 2.1].


����� 1.4	 Let P1 and P2 be any two Borel probability measures on R
d such

that both D(P1) and D(P2) exist. If P = pP1 + (1 − p)P2, where 0 < p < 1,
then D(P ) = max{D(P1), D(P2)}.

In this paper, in Section 2, we have considered a mixed distribution generated
by two uniform distributions on a circle and on one of its diameters associated
with the probability vector (12 ,

1
2 ). For this mixed distribution, in Theorem 2.10,

we have explicitly determined the optimal sets of n-means and the nth quanti-
zation errors for all positive integers n ≥ 2. In Proposition 2.12, we have proved
that the quantization dimension D(P ) of the mixed distribution is one, which
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supports Theorem 1.4 because D(P1) = D(P2) = 1, and the quantization coef-
ficient exists as a finite positive number which equals 3

8

(
4 + π2

)
. Optimal sets

of n-means and the nth quantization errors are calculated, in Section 3, for the
mixture of two uniform distributions on two disconnected line segments [0, 12 ]

and [34 , 1] associated with the probability vector (34 ,
1
4 ), and in Section 4, for the

mixture of two uniform distributions on two connected line segments [0, 1
2 ] and

[12 , 1] associated with the probability vector (34 ,
1
4 ). We would like to mention

that in these two sections, to determine the optimal sets of n-means and the nth
quantization errors for the mixed distributions we need to take the help of two
different sequences {a(n)}∞n=1 given by Definition 3.8, and Definition 4.6. If the

probability vector (34 ,
1
4 ) is replaced by some other probability vector (p, 1− p),

where 0 < p < 1, what will be the two such sequences are not known yet.
In fact, optimal sets of n-means and the nth quantization errors are not known
yet for a more general mixed distribution.

2. Quantization for a mixed distribution on the circles
including a diameter

Let i and j be the unit vectors in the positive directions of the x1- and
x2-axes, respectively. By the position vector a of a point A, it is meant that−→
OA = a. We will identify the position vector of a point (a1, a2) by (a1, a2) :=
a1i+ a2j, and apologize for any abuse in notation. For any two position vectors
a := (a1, a2) and b := (b1, b2), we write ρ(a, b) := ‖(a1, b1) − (a2, b2)‖2 = (a1 −
a2)

2 + (b1 − b2)
2, which gives the squared Euclidean distance between the two

points (a1, a2) and (b1, b2). Let P and Q belong to an optimal set of n-means for
some positive integer n, and let D be a point on the boundary of the Voronoi
regions of the points P and Q. Since the boundary of the Voronoi regions of any
two points is the perpendicular bisector of the line segment joining the points,

we have |−−→DP | = |−−→DQ|, i.e., (
−−→
DP )2 = (

−−→
DQ)2 implying (p− d)2=(q − d)2, i.e.,

ρ(d, p)− ρ(d, q)=0. We call such an equation a canonical equation. By E(X)
and V := V (X), we represent the expectation and the variance of a random
variable X with respect to the probability distribution under consideration.

Let P1 be the uniform distribution defined on the circle x2
1+x2

2 = 1 with cen-
ter O(0, 0), and P2 be the uniform distribution on one of its diameters. Let us
denote the diameter by L1 and the circle by L2. Without any loss of generality,
we can assume that the diameter is horizontal, i.e., the diameter is represented by

L1 := {(x1, 0) : −1 ≤ x1 ≤ 1}
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which intersects the circle at the two points A(−1, 0) and B(0, 1). Let L be the
path formed by the circle and the diameter AB. Thus, we have

L = L1 ∪ L2,
where

L1 = {(t, 0) : −1 ≤ t ≤ 1}, and L2 = {(cos θ, sin θ) : 0 ≤ θ ≤ 2π}.
Let s represent the distance of any point on L from the origin tracing along the
boundary L in the positive direction of the x1-axis, and in the counterclockwise
direction. Thus, s = 1 represents the point B(1, 0), s = 1 + π

2 represents the
point (0,−1), and so on. Take the mixed distribution P as

P :=
1

2
P1 +

1

2
P2,

i.e., P is generated by (P1, P2) associated with the probability vector (12 ,
1
2 ).

For this mixed distribution P in this section, we determine the optimal sets
of n-means and the nth quantization errors for all n ∈ N. The probability density
function (pdf) f(x1, x2) for the mixed distribution P is given by

f(x1, x2) =

{
1
4 if (x1, x2) ∈ L1,

1
4π if (x1, x2) ∈ L2.

On L1 we have ds =
√

(dx1

dt )
2 + (dx2

dt )
2 dt = dt yielding dP (s) = P ( ds) =

f(x1, x2) ds = 1
4 dt. Similarly, on L2, we have ds = dθ yielding dP (s) =

P ( ds) = f(x1, x2) ds =
1
4π dθ.

��� 2.1	 Let X be a continuous random variable with mixed distribution
taking values on L. Then,

E(X) = (0, 0) and V := V (X) =
2

3
.

P r o o f. We have,

E(X) =

∫
L

(x1i+ x2j) dP =
1

4

∫
L1

(t, 0) dt+
1

4π

∫
L2

(cos θ, sin θ) dθ = (0, 0).

To calculate the variance, we know that V (X) = E‖X −E(X)‖2, which implies

V (X) =
1

4

∫
L1

ρ
(
(t, 0), (0, 0)

)
dt+

1

4π

∫
L2

ρ
(
(cos θ, sin θ), (0, 0)

)
dθ =

2

3
.

Thus, the lemma is yielded. �

109



MRINAL KANTI ROYCHOWDHURY — WASIELA SALINAS

(i)

p1 p2

(ii)

p1

p2 p3

(iii)

Figure 1.

����� 2.2	 Using the standard theory of probability, for any (a, b) ∈ R
2,

we have

E‖X − (a, b)‖2 =

∫
L

‖(x1, x2)− (a, b)‖2 dP = V (X) + ‖(a, b)− (0, 0)‖2,

which is minimum if (a, b) = (0, 0), and the minimum value is V (X). Thus, we
see that the optimal set of one-mean is the set {(0, 0)}, and the correspond-
ing quantization error is the variance V := V (X) of the random variable X
(see Figure 1 (i)).

����������� 2.3	 The set
{(−1

4 − 1
π , 0

)
,
(
1
4 + 1

π , 0
)}

forms the optimal set
of two-means, and the corresponding quantization error is given by V2=0.343691.

P r o o f. Since P is a mixed distribution giving the equal weights to both the
component probabilities P1 and P2, and the path L is symmetric with respect
to the x2-axis, without going into much calculation, we can assume that the
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boundary of the Voronoi regions of the two points in an optimal set of two-means
lies along the x2-axis. Thus, the optimal set of two-means is given by {p1, p2}
(see Figure 1 (ii)), where

p1 = E
(
X : X ∈ AO ∪ (left half of the circle)

)

=

1
4

∫ 0

−1
(x, 0) dx+ 1

4π

∫ 3π
2

π
2

(cos θ, sin θ) dθ

1
4

∫ 0

−1
dx+ 1

4π

∫ 3π
2

π
2

dθ

=
(
−1

4
− 1

π
, 0
)
,

and similarly, p2 =
(
1
4 +

1
π , 0

)
. The quantization error for two-means is given by

V2 = 2

(
1

4

∫ 0

−1

ρ
(
(x, 0), p1

)
dx+

1

4π

∫ 3π
2

π
2

ρ
(
(cos θ, sin θ), p1

)
dθ

)
= 0.343691.

Thus, the proposition is yielded. �

The following proposition gives the optimal set of three-means (see Fig-
ure 1 (iii)). The proof follows in the similar way as Proposition 2.5 which is
given later.

����������� 2.4	 The set

{(0, 0.877439), (−0.593906,−0.14179), (0.593906,−0.14179)}
forms an optimal set of three-means, and the corresponding quantization error
is given by V3 = 0.2386.

����������� 2.5	 The set

{(0, 0.90407), (−0.633881, 0), (0,−0.90407), (0.633881, 0)}
forms an optimal set of four-means, and the corresponding quantization error is
given by V4 = 0.163013.

P r o o f. Let α := {p1, p2, p3, p4} be an optimal set of four-means. The following
cases can arise:

Case 1. α contains one point from L1, the Voronoi region of which does not
contain any point from L2.

In this case, we can assume that p1, p2, p3, p4 can be located as shown
in Figure 2 (i). Let the boundary of the Voronoi regions of p1 and p2 intersect L2

at the point d1 given by the parametric value θ = π − b, where 0 < b < π
2 , and
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the boundary of the Voronoi regions of p2 and p3 intersect L1 at the point d2
given by x1 = −a, where 0 < a < 1. Thus, due to symmetry, we have

p1 =

∫ π−b

b
(cos θ, sin θ) dθ∫ π−b

b
dθ

=

(
0,

2 cos b

π − 2b

)
,

p2 =
1
4

∫ −a

−1
(x, 0) dx+ 1

4π

∫ 3π
2

π−b
(cos θ, sin θ) dθ

1
4

∫ −a

−1
dx+ 1

4π

∫ 3π
2

π−b
dθ

=

(−πa2 + 2 sin b+ π + 2

π(2a− 3)− 2b
,− 2 cos b

−2πa+ 2b+ 3π

)
,

p3 = (0, 0), d1 = (− cos b, sin b), and d2 = (−a, 0).

Thus, solving the canonical equations ρ(d1, p1) − ρ(d1, p2) = 0, and ρ(d2, p2) −
ρ(d2, p3) = 0, we have a = 0.377997, b = 0.678642. Hence, putting the val-
ues of a and b we have, p1 = (0, 0.872524), p2 = (−0.707525,−0.185184), and
p3 = (0, 0), and so, due to symmetry, p4 = (0.707525,−0.185184). The corre-
sponding distortion error is given by

V (P ;α) =
1

4π

∫ π−b

b

ρ
(
(cos θ, sin θ), p2

)
dθ +

2

(
1

4

∫ −a

−1

ρ((x, 0), p2) dx+
1

4π

∫ 3π
2

π−b

ρ
(
(cos θ, sin θ), p2

)
dθ

)
+

1

4

∫ a

−a

ρ((x, 0), p3) dx = 0.21596.

Case 2. α does not contain any point from L1, the Voronoi region of which does
not contain any point from L2.

In this case, we can assume that p1, p2, p3, p4 can be located as shown
in Figure 2 (ii). Let the boundary of the Voronoi regions of p1 and p2 intersect
L2 at the point d1 given by the parametric value θ = π − b, where 0 < b < π

2 .
Thus, due to symmetry, we have

p1 =

∫ π−b

b
(cos θ, sin θ) dθ∫ π−b

b
dθ

=

(
0,

2 cos b

π − 2b

)
,

p2 =
1
4

∫ 0

−1
(x, 0) dx+ 1

4π

∫ π+b

π−b
(cos θ, sin θ) dθ

1
4

∫ 0

−1
dx+ 1

4π

∫ π+b

π−b
dθ

=

(
−4 sin b+ π

4b+ 2π
, 0

)
,

and
d1 = (− cos b, sin b).
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p1

p2

p3
p4

d1

d2

(i)

p1

p2

p3

p4

d1

(ii)

Figure 2.

Thus, solving the canonical equations ρ(d1, p1) − ρ(d1, p2) = 0, we have b =
0.800791. Hence, putting the values of b, we have, p1 = (0, 0.90407), p2 =
(−0.633881, 0), and so, due to symmetry, we have p3 = (0.633881, 0), and
p4 = (0,−0.90407). The corresponding distortion error is given by

V (P ;α) = 2

(
1

4π

∫ π−b

b

ρ
(
(cos θ, sin θ), p2

)
dθ +

1

4

∫ 0

−1

ρ
(
(x, 0), p2

)
dx

+
1

4π

∫ π+b

π−b

ρ
(
(cos θ, sin θ), p2

)
dθ

)
= 0.163013.

Comparing Case 1 and Case 2, we see that if α contains only one point
from L1, the Voronoi regions of which does not contain any point from L2,
then the distortion error is larger than the distortion error obtained in Case 2.
Similarly, we can show that if α contains more than one point from L1, the
Voronoi regions of which do not contain any point from L2, then the distor-
tion error is larger than the distortion error obtained in Case 2. Considering
all the above cases, we see that the distortion error in Case 2 is the smallest.
Hence, the points in α obtained in Case 2 form an optimal set of four-means, and
the corresponding quantization error is given by V4 = 0.163013. Thus, the proof
of the proposition is complete. �

����������� 2.6	 An optimal set of five-means is given by

{(0, 0.903584), (−0.788308, 0), (0, 0), (0,−0.903584), (0.788308, 0)}
and the corresponding quantization error is V5 = 0.119779.
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P r o o f. Let α := {p1, p2, p3, p4, p5} be an optimal set of five-means. The follow-
ing cases can arise:

Case 1. α contains two points from L1, the Voronoi regions of which do not
contain any point from L2.

In this case, we can assume that p1, p2, . . . , p5 can be located as shown
in Figure 3 (i). Let the boundary of the Voronoi regions of p1 and p2 intersect
L2 at the point d1 given by the parametric value θ = π − b, where 0 < b < π

2 ,
and the boundary of the Voronoi regions of p2 and p3 intersect L1 at the point
d2 given by x1 = −a, where 0 < a < 1. Thus, due to symmetry, we have

p1 =

∫ π−b

b
(cos θ, sin θ) dθ∫ π−b

b
dθ

=

(
0,

2 cos b

π − 2b

)
,

p2 =
1
4

∫ −a

−1
(x, 0) dx+ 1

4π

∫ 3π
2

π−b
(cos θ, sin θ) dθ

1
4

∫ −a

−1
dx+ 1

4π

∫ 3π
2

π−b
dθ

=

(−πa2 + 2 sin b+ π + 2

π(2a− 3)− 2b
,− 2 cos b

−2πa+ 2b+ 3π

)
,

p3 = (−a

2
, 0), d1 = (− cos b, sin b), and d2 = (−a, 0).

Thus, solving the canonical equations ρ(d1, p1) − ρ(d1, p2) = 0, and ρ(d2, p2) −
ρ(d2, p3) = 0, we have a = 0.567815, b = 0.656426. Hence, putting the val-
ues of a and b we have, p1 = (0, 0.866365), p2 = (−0.74607,−0.220972), and
p3 = (−0.283907, 0), and so, due to symmetry, p4 = (0.283907, 0), and p5 =
(0.74607,−0.220972). The corresponding distortion error is given by

V (P ;α) =
1

4π

∫ π−b

b

ρ
(
(cos θ, sin θ), p2

)
dθ+

2

(
1

4

∫ −a

−1

ρ((x, 0), p2) dx+
1

4π

∫ 3π
2

π−b

ρ
(
(cos θ, sin θ), p2

)
dθ+

1

4

∫ 0

−a

ρ
(
(x, 0), p3

)
dx

)
= 0.18911.

Case 2. α contains only one point from L1, the Voronoi region of which does
not contain any point from L2.

In this case, we can assume that p1, p2, . . . , p5 can be located as shown
in Figure 3 (ii). Let the boundary of the Voronoi regions of p1 and p2 inter-
sect L2 at the point d1 given by the parametric value θ = π−b, where 0 < b < π

2 ,
the boundary of the Vonoroi regions of p2 and p3 intersect L1 at the point d2
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given by x1 = −a, where 0 < a < 1. Thus, due to symmetry, we have

p1 =

∫ π−b

b
(cos θ, sin θ) dθ∫ π−b

b
dθ

=

(
0,

2 cos b

π − 2b

)
,

p2 =
1
4

∫ −a

−1
(x, 0) dx+ 1

4π

∫ π+b

π−b
(cos θ, sin θ) dθ

1
4

∫ −a

−1
dx+ 1

4π

∫ π+b

π−b
dθ

=

(
−−πa2 + 4 sin b+ π

−2πa+ 4b+ 2π
, 0

)
,

p3 = (0, 0), d1 = (− cos b, sin b), d2 = (−a, 0).

Thus, solving the canonical equations ρ (d1, p1) − ρ (d1, p2) = 0, ρ (d2, p2) −
ρ (d2, p3) = 0, we have a = 0.394154, and b = 0.798783. Hence, putting
the values of a, and b, we have, p1 = (0, 0.903584), p2 = (−0.788308, 0), and
p3=(0, 0), and so, due to symmetry, p4=(0,−0.903584), and p5=(0.788308, 0).
The corresponding distortion error is given by

V (P ;α) = 2

(
1

4π

∫ π−b

b

ρ
(
(cos θ, sin θ), p2

)
dθ+

1

4

∫ −a

−1

ρ
(
(x, 0), p2

)
dx+

1

4π

∫ π+b

π−b

ρ
(
(cos θ, sin θ), p2

)
dθ

)
+

1

4

∫ a

−a

ρ
(
(x, 0), p3

)
dx = 0.119779.

Case 3. α does not contain any point from L1, the Voronoi region of which does
not contain any point from L2.

In this case, we can assume that p1, p2, . . . , p5 can be located as shown
in Figure 3 (iii). Let the boundary of the Voronoi regions of p1 and p2 intersect
L2 at the point d1 given by the parametric value θ = π − b, where 0 < b < π

2 ,
and the boundary of the Voronoi regions of p2 and p3 intersect L2 as the point
d2 given by the parametric value θ = π + c, where 0 < c < π

2
. Thus, due

to symmetry, we have

p1 =

∫ π−b
π
2

(cos θ, sin θ) dθ∫ π−b
π
2

dθ
=

(
2(sin b− 1)

π − 2b
,
2 cos b

π − 2b

)
,

p2 =
1
4

∫ 0

−1
(x, 0) dx+ 1

4π

∫ π+c

π−b
(cos θ, sin θ) dθ

1
4

∫ 0

−1
dx+ 1

4π

∫ π+c

π−b
dθ

=

(
−2 sin b+ 2 sin c + π

2(b+ c+ π)
,
cos c − cos b

b+ c+ π

)
,
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p3 =

∫ 2π−c

π+c
(cos θ, sin θ) dθ∫ 2π−c

π+c
dθ

=

(
0,− 2 cos c

π − 2c

)
,

d1 = (− cos b, sin b), and d2 = (− cos c,− sin c).

Thus, solving the canonical equations ρ(d1, p1) − ρ(d1, p2) = 0, and ρ(d2, p2) −
ρ(d2, p3) = 0, we have b = 0.426473, and c = 0.837847. Hence, putting the values
of b, and c, we have, p1 = (−0.512388, 0.795606), p2 = (−0.619091,−0.0547824),
p3 = (0,−0.912839), and so, due to symmetry, p4 = (0.619091,−0.0547824), and
p5 = (0.512388, 0.795606). The corresponding distortion error is given by

V (P ;α)

= 2

(
1

4π

∫ π−b

π
2

ρ
(
(cos θ, sin θ), p2

)
dθ

)
+

1

4

∫ 0

−1

ρ
(
(x, 0), p2

)
dx

+
1

4π

∫ π+c

π−b

ρ
(
(cos θ, sin θ), p2

)
dθ

)
+

1

4π

∫ 2π−c

π+c

ρ
(
(cos θ, sin θ), p3

)
dθ

= 0.1355.

Comparing Case 1 and Case 2, we see that if α contains two points from L1, the
Voronoi regions of which do not contain any point from L2, then the distortion
error is larger than the distortion error obtained in Case 2. Similarly, we can show
that if α contains more than two points from L1, the Voronoi regions of which
do not contain any point from L2, then the distortion error is larger than the
distortion error obtained in Case 2. Comparing Case 2 and Case 3, we see that
Case 3 can not happen as the distortion error is larger in Case 3. Considering
all the above cases, we see that the distortion error in Case 2 is the smallest.
Hence, the points in α obtained in Case 2 form an optimal set of five-means,
and the corresponding quantization error is given by V5 = 0.119779. Thus, the
proof of the proposition is complete. �

����������� 2.7	 An optimal set of six-means is

{(−0.497577, 0.809422),(−0.786245,−0.0706781), (0, 0), (0,−0.913921),

(0.786245,−0.0706781), (0.497577, 0.809422)}
and the corresponding quantization error for six-means is given by V6 = 0.093342.

P r o o f. Let α := {p1, p2, p3, p4, p5, p6} be an optimal set of six-means. As in
Proposition 2.6, here also we consider three different cases as shown in Figure 4.
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p1

p2

p3

p4

p5

d1

d2

(iii)

Figure 3.

In each case, we calculate the distortion errors. Then, comparing the distortion
errors, we see that the points given by the proposition give the smallest distortion
error for six points, and hence they form an optimal set of six-means, which is
shown by Figure 4 (ii). Thus, the proof of the proposition is deduced. �

Proceeding in the similar way as Proposition 2.6 and Proposition 2.7, we can
deduce that the following proposition is also true.

����������� 2.8	 Let αn be an optimal set of n-means, and let Vn be the
corresponding quantization error. Then,

α7 = {(−0.476891, 0.827476), (−0.788772, 0), (0, 0), (−0.476891,−0.827476),

(0.476891,−0.827476), (0.788772, 0), (0.476891, 0.827476)}
with V7 = 0.070674, see Figure 5 (i);
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Figure 4.

α8 = {(−0.475258, 0.828843), (−0.860649, 0),

(−0.286883, 0), (−0.475258,−0.828843), (0.475258,−0.828843),

(0.860649, 0), (0.286883, 0), (0.475258, 0.828843)}
with V8 = 0.0577852, see Figure 5 (ii);

α9 = {−0.463928, 0.838108), (−0.857223, 0.0396484), (−0.286659, 0),

(−0.704114,−0.671446), (0,−0.972943), (0.704114,−0.671446),

(0.286659, 0), (0.857223, 0.0396484), (0.463928, 0.838108)}
with V9 = 0.04803, see Figure 5 (iii);

α10 = {(0, 0.974386), (−0.690161, 0.687826), (−0.854308, 0), (−0.284769, 0),

(−0.690161,−0.687826), (0,−0.974386), (0.690161,−0.687826),

(0.854308, 0), (0.284769, 0), (0.690161, 0.687826)},
with V10 = 0.039046, see Figure 5 (iv).
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Figure 5.

The following proposition plays an important role in the paper.

����������� 2.9	 Let αn be an optimal set of n-means for P, and n ≥ 5.
Then, αn contains at least one point from L1, the Voronoi region of which does
not contain any point from L2; and at least one point from L2, the Voronoi
region of which does not contain any point from L1.

P r o o f. Let Vn denote the nth quantization error for any positive integer n.
By the previous propositions, the lemma is true for 5 ≤ n ≤ 10. Let n ≥ 11.
Then, Vn ≤ V11 < V10 = 0.039046. For the sake of contradiction, assume that
for n ≥ 11, the set αn does not contain any point from L1, the Voronoi region
of which does not contain any point from L2. Then,

Vn >

∫
L1

min
a∈{(− 1

2 ,0),(0,
1
2 )}

ρ
(
(x, 0), a

)
dP

=
1

4

∫ 0

−1

ρ

(
(t, 0),

(
−1

2
, 0
))

dt+
1

4

∫ 1

0

ρ

(
(t, 0),

(1
2
, 0
))

dt =
1

24
,
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implying Vn > 1
24 = 0.0416667 > V10, which leads to a contradiction. Hence, αn

contains at least one point from L1, the Voronoi region of which does not contain
any point from L2. Similarly, we can prove the other part of the proposition.
Thus, the proof of the proposition is complete. �

We now state and prove the following theorem, which is the main theorem
of this section. Notice that we are saying the theorem as the main theorem of this
section, because as mentioned in Remark 2.11, this theorem helps us to calculate
all the optimal sets of n-means, and so, the nth quantization errors for all n ≥ 5
for the mixed distribution P.


����� 2.10	 Let n ≥ 5 be a positive integer, and let αn be an optimal set
of n-means for P. Let 3k+2 ≤ n ≤ 3k+4 for some positive integer k. Then, αn

contains k elements from L1, the Voronoi regions of which do not contain any
point from L2.

P r o o f. By Proposition 2.9, for n ≥ 5, the set αn always contains points
from L1, the Voronoi regions of which do not contain any point from L2, and
points from L2, the Voronoi regions of which do not contain any point from L1.
Since the Voronoi region of a point in an optimal set covers maximum area
within a shortest distance P -almost surely, the set αn, given in the theorem,
must contain the two points, the Voronoi regions of which contain points from
both L1 and L2, in other words, the Voronoi regions of these two points contain
points around the two intersections of L1 and L2. Each of the remaining n − 2
points occurs due to the uniform distribution on L1, or L2, the Voronoi region
of which contains points only from L1, or from L2, respectively.

Let n = n1 + n2 + k + 2 be such that αn contains k elements from L1,
the Voronoi regions of which do not contain any point from L2; n1 elements
from above the x1-axis, the Voronoi regions of which do not contain any point
from L1, and n2 elements from below the x1-axis, the Voronoi regions of which do
not contain any point from L1. Then, there exist three real numbers a, b, and c,
where −1 < a < 1, 0 < b < π

2 , and 0 < c < π
2 , such that the following occur:

(i) The k elements that αn contains from L1 occur due to the uniform distribu-
tion on [−a, a], and as mentioned in Theorem 1.2, are given by the set{

−a+
2i− 1

k
a : 1 ≤ i ≤ k

}
,

with distortion error given by
k
(
distortion error due to the point − a+ a

k in the interval
[−a,−a+ 2a

k

])
=

k

4

∫ −a+ 2a
k

−a

(
t−

(
−a+

a

k

))2

dt =
a3

6k2
.
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(ii) The n1 elements that αn contains from above the x1-axis, the Voronoi regions
of which do not contain any point from L1, occur due to the uniform distribution
on the circular arc {(cos θ, sin θ) : b ≤ θ ≤ π− b}, and by Theorem 1.3, are given
by the set{

2n1

π − 2b
sin

π − 2b

2n1

(
cos

(
b+ (2j − 1)

π − 2b

2n1

)
, sin

(
b+ (2j − 1)

π − 2b

2n1

))

: 1 ≤ j ≤ n1

}
,

with distortion error

n1

(
1

4π

∫ b+π−2b
n1

b

ρ

(
(cos θ, sin θ),

2n1

π − 2b
sin

(π − 2b

2n1

)
(
cos

(
b+

π − 2b

2n1

)
, sin

(
b+

π − 2b

2n1

)))
dθ

)

=
(π − 2b)2 − 2n2

1 + 2n2
1 cos(

2b−π
n1

)

4π(π − 2b)
,

and we denote it by Dn1
.

(iii) The n2 elements that αn contains from below the x1-axis, the Voronoi re-
gions of which do not contain any point from L1, occur due to the uniform
distribution on the circular arc {(cos θ, sin θ) : π+ c ≤ θ ≤ 2π− c}, and by The-
orem 1.3, are given by the set{

2n2

π − 2c
sin

π − 2c

2n2

(
cos

(
π+c+(2j−1)π −2c

2n2

)
, sin

(
π+c+(2j−1)π −2c

2n2

))

: 1 ≤ j ≤ n2

}
,

with distortion error

n2

(
1

4π

∫ π+c+π−2c
n2

π+c

ρ

(
(cos θ, sin θ),

2n2

π − 2c
sin

(π − 2c

2n2

)
(
cos

(
π + c+

π − 2c

2n2

)
, sin

(
π + c+

π − 2c

2n2

)))
dθ

)

=
(π − 2c)2 − 2n2

2 + 2n2
2 cos(

2c−π
n2

)

4π(π − 2c)
,

and we denote it by Dn2
.

121



MRINAL KANTI ROYCHOWDHURY — WASIELA SALINAS

(iv) The two points in αn, the Voronoi regions of which contain points from both
L1 and L2, are given by the set {(−r, s), (r, s)}, where

(−r, s) =
1
4

∫ −a

−1
(t, 0) dt+ 1

4π

∫ π+c

π−b
(cos θ, sin θ) dθ

1
4

∫ −a

−1
dt+ 1

4π

∫ π+c

π−b
dθ

=
(
−−πa2 + 2 sin b+ 2 sin c+ π

2(−πa+ b+ c+ π)
,

cos c− cos b

−πa+ b+ c+ π

)
,

i.e.,

r =
−πa2 + 2 sin b+ 2 sin c+ π

2(−πa+ b+ c + π)
, and s =

cos c− cos b

−πa+ b+ c+ π
,

and the distortion error for both the two points is given by

2

(
1

4

∫ −a

−1

ρ
(
(t, 0), (−r, s)

)
dt+

1

4π

∫ π+c

π−b

ρ
(
(cos θ, sin θ), (−r, s)

)
dθ

)

=
1

24π(−πa+ b+ c+ π)

(
π2a4 − 4πa3b− 4πa3c− 4π2a3

+ 12π(a2 − 1) sin b+ 12πa2 sin c+ 6π2a2

− 12πab− 12πac− 4π2a+ 12b2 + 24bc

+ 24 cos(b+ c) + 16πb+ 12c2 + 16πc− 12π sin c + π2 − 24
)
,

and we denote it by D(a, b, c).

Let V (n1, n2, k) denote the distortion error due to the all above n1+n2+k+2
elements in αn. Then, we have

V (n1, n2, k) =
a3

6k2
+Dn1

+Dn2
+D(a, b, c). (1)

Let n1, n2, and k be fixed. Then, using the partial derivatives we can obtain the
following equations

∂

∂a

(
V (n1, n2, k)

)
= 0,

∂

∂b

(
V (n1, n2, k)

)
= 0, and

∂

∂c

(
V (n1, n2, k)

)
= 0.

(2)
For a given set of values of n1, n2, and k, solving the equations in (2), we can
obtain the values of a, b, c. Putting the values of a, b, c in (1), we can obtain the
distortion error for the given set of values of n1, n2, k.

Now, to prove the theorem we use induction on k. If k = 1, and k = 2,
the theorem is true due to the previous propositions. Let us assume that
the theorem is true for k = m, i.e., when 3m + 2 ≤ n ≤ 3m + 4. We now
prove that the theorem is true for 3(m + 1) + 2 ≤ n ≤ 3(m + 1) + 4. By the
assumption, the theorem is true for n = 3m + 4, i.e., the set α3m+4 contains
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m points from L1, the Voronoi regions of which do not contain any point from
L2, and (2m+2) points occur due to the uniform distribution on L2, the Voronoi
region of which do not contain any point from L1. Again, due to the mixed dis-
tribution with equal weights to the component probabilities, and symmetry of
the circle with respect to the x1-axis, we can can assume that αn contains m+1
elements from above, and m + 1 elements from below. Now, to calculate αn+1,
we need to add one extra point either to L1, or L2 in an optimal way, i.e.,
the Voronoi regions of the new point will contain only the points from L1, or
from L2, and the overall distortion error due to n + 1 points becomes smallest.
First suppose that the extra point is added to L1, the Voronoi region of which
does not contain any point from L2. As described above using (1), we calcu-
late the distortion error V (m + 1,m + 1,m + 1). Next, suppose that the extra
point is added to L2, the Voronoi region of which does not contain any point
from L1, and using (1), we calculate the distortion error V (m+2,m+1,m), or
V (m+ 1,m+ 2,m). We see that the distortion error V (m+ 1,m+ 1,m+ 1) is
the smallest, which implies the fact that αn+1 contains m + 1 points from L1.
Once, αn+1 is known, similarly we can obtain αn+2, and αn+3 with distortion
errors, respectively, V (m + 1,m,m + 1) and V (m + 1,m + 1,m + 1). Thus,
we see that each of αn+1, αn+2, and αn+3 contains m + 1 points from L1,
the Voronoi regions of which do not contain any point from L2. Notice that
n + 1 = 3(m + 1) + 2, n + 2 = 3(m + 1) + 3, and n + 1 = 3(m + 1) + 4, i.e.,
for the positive integer n satisfying 3(m+1)+ 2 ≤ n ≤ 3(m+1)+ 4, the set αn

contains m + 1 elements from L1, the Voronoi regions of which do not contain
any point from L2. Thus, the theorem is true for k = m+1 if it is true for k = m.
Hence, by the principle of mathematical induction, the theorem is true for all
positive integers k, and thus, the proof of the theorem is complete. �
����� 2.11	 For n ≥ 5, let 3k + 2 ≤ n ≤ 3k + 4 for some positive integer k.
Then, by Theorem 2.10, we can say that if n− k− 2 is an even number, then an
optimal set of n-means contains 1

2 (n − k − 2) elements from either side of the
x1-axis, the Voronoi regions of which do not contain any point from L1; and if
n−k−2 is an odd number, then an optimal set of n-means contains 1

2

n−k−2�

elements from one side of the x1-axis, and
1
2
n − k − 2�+ 1 elements from the

other side of the x1-axis, the Voronoi regions of which do not contain any point
from L1. Thus, by Theorem 2.10, using Theorem 1.2, and Theorem 1.3, we can
easily determine the optimal sets of n-means and the nth quantization errors
for all n ≥ 5.

The following proposition gives the quantization dimension and the quanti-
zation coefficient for the mixed distribution.
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����������� 2.12	 Quantization dimension D(P ) of the mixed distribution P
is one, which is the dimension of the underlying space, and the quantization
coefficient exists as a finite positive number which equals 3

8

(
4 + π2

)
.

P r o o f. By Remark 2.11, we see that if n is of the form n = 3k + 2 for some
positive integer k, then αn contains k elements from L1, the Voronoi regions
of which do not contain any point from L2, and k elements from the above, and
k elements from below the x1-axis, the Voronoi region of which do not contain
any point from L1. For n ∈ N, n ≥ 5, let �(n) be the unique positive integer
such that 3�(n) + 2 ≤ n < 3(�(n) + 1) + 2. Then, V3(�(n)+1)+2 < Vn ≤ V3�(n)+2

implying
2 log(3�(n) + 2)

− logV3(�(n)+1)+2
<

2 logn

− logVn
<

2 log(3(�(n) + 1) + 2)

− logV3�(n)+2
. (3)

Notice that if n → ∞, then �(n) → ∞. Moreover, if n → ∞, they by (1) and (2),
we can see that a → 1, b → 0, and c → 0. Assume that n is sufficiently large,
in other words, assume that �(n) is sufficiently large, and then as a → 1, b → 0,
and c → 0, by (1) we have D(a, b, c) → 0, implying

V3�(n)+2 = V
(
�(n), �(n), �(n)

)
=

−6�(n)4 + 6�(n)4 cos π
�(n) + 3π2�(n)2 + π2

6π2�(n)2
,

yielding

lim
n→∞

2 log(3�(n) + 2)

− log V3(�(n)+1)+3

= lim
�(n)→∞

2 log(3�(n) + 2)

− log
(−6(�(n)+1)4+3π2(�(n)+1)2+6(�(n)+1)4 cos( π

�(n)+1
)+π2

6π2(�(n)+1)2

) = 1,

and

lim
n→∞

2 log(3(�(n) + 1) + 2)

− log V3�(n)+2

= lim
�(n)→∞

2 log(3(�(n) + 1) + 2)

− log
(−6�(n)4+6�(n)4 cos( π

�(n)
)+3π2�(n)2+π2

6π2�(n)2

) = 1

and hence, by (3),

lim
n→∞

2 logn

− log Vn
= 1,

which is the dimension of the underlying space.

Again, (
3�(n) + 2

)2
V3(�(n)+1)+2 < n2Vn <

(
3
(
�(n) + 1

)
+ 2

)2

V3�(n)+2. (4)
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We have

lim
n→∞

(
3�(n) + 2

)2
V3(�(n)+1)+2

= lim
�(n)→∞

(
3�(n) + 2

)2
−6(�(n) + 1)4 + 3π2(�(n) + 1)2 + 6(�(n) + 1)4 cos( π

�(n)+1 ) + π2

6π2(�(n) + 1)2

=
3

8

(
4 + π2

)
,

and

lim
n→∞

(
3
(
�(n) + 1

)
+ 2

)2

V3�(n)+2

= lim
�(n)→∞

(
3
(
�(n) + 1

)
+ 2

)2−6�(n)4 + 6�(n)4 cos( π
�(n) ) + 3π2�(n)2 + π2

6π2�(n)2

=
3

8

(
4 + π2

)
,

and hence, by (4) we have
lim
n→∞n2Vn =

3

8

(
4 + π2

)
,

i.e., the quantization coefficient exists as a finite positive number which equals
= 3

8

(
4 + π2

)
. Thus, the proof of the proposition is complete. �

3. Optimal quantization for the mixture of two uniform
distributions on two disconnected line segments

Let P1 and P2 be two uniform distributions, respectively, on the intervals
[0, 12 ] and [34 , 1]. Write

J1 :=
[
0,

1

2

]
, and J2 :=

[3
4
, 1
]
.

Let f1 and f2 be their respective density functions. Then, f1(x) = 2 if x ∈
[0, 12 ], and zero, otherwise; and f2(x) = 4 if x ∈ [34 , 1], and zero, otherwise.

Let P := 3
4P1 +

1
4P2. In the sequel, for the mixed distribution P, we determine

the optimal sets of n-means and the nth quantization errors for all positive
integers n. By E(P ) and V (P ), we mean the expectation and the variance
of a random variable with distribution P. By αn(μ), we denote an optimal set
of n-means with respect to a probability distribution μ, and Vn(μ) represents the
corresponding quantization error for n-means. If μ is the mixed distribution P,
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in the sequel, we sometimes denote it by αn instead of αn(P ), and the corre-
sponding quantization error is denoted by Vn instead of Vn(P ).

��� 3.1	 Let P be the mixed distribution defined by P = 3
4
P1 +

1
4
P2. Then,

E(P ) =
13

32
, and V (P ) =

277

3072
.

P r o o f. We have

E(P ) =

∫
x dP =

3

4

∫
x d

(
P1(x)

)
+
1

4

∫
x d

(
P2(x)

)
=

3

4

∫ 1
2

0

2x dx+
1

4

∫ 1

3
4

4x dx

yielding E(P ) = 13
32 , and

V (P )=

∫ (
x−E(P )

)2
dP =

3

4

∫ (
x−E(P )

)2
d
(
P1(x)

)
+
1

4

∫ (
x−E(P )

)2
d
(
P2(x)

)
,

implying V (P ) = 277
3072 , and thus, the lemma is yielded. �

����� 3.2	 The optimal set of one-mean is the set {13
32}, and the correspond-

ing quantization error is the variance V := V (P ) of a random variable with
distribution P.

��� 3.3	 The set α := {1
4 ,

7
8} is an optimal set of two-means, and the cor-

responding quantization error is given by V2 = 13
768 .

P r o o f. Consider the set of two points β given by β := {1
4 ,

7
8}. The distortion

error due to the set β is given by∫
min
a∈β

(x− a)2 dP =

∫
J1

(
x− 1

4

)2

dP +

∫
J2

(
x− 7

8

)2

dP

=
3

4

∫ 1
2

0

2
(
x− 1

4

)2

dx +
1

4

∫ 1

3
4

4
(
x− 7

8

)2

dx

=
13

768
= 0.0169271.

Since V2 is the quantization error for two-means, we have V2 ≤ 0.0169271.
Let α := {a1, a2} be an optimal set of two-means. Since the points in an optimal
set are the conditional expectations in their own Voronoi regions, without any
loss of generality, we can assume that 0 < a1 < a2 < 1. We now show that the
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Voronoi region of a1 does not contain any point from J2, and the Voronoi region
of a2 does not contain any point from J1. Suppose that 13

40 ≤ a1. Then,

V2 >

∫
[0, 1340 ]

(
x− 13

40

)2

dP =
2197

128000
= 0.0171641 > V2,

which is a contradiction, and so, we can assume that a1 < 13
40 < 1

2 .

Since a1 < 13
40 , the Voronoi region of a1 does not contain any points from J2.

If it contains points from J2, then
1
2 (a1 + a2) > 3

4 , implying a2 > 3
2 − a1 ≥

3
2 − 13

40 = 47
40 > 1, which is a contradiction. Hence, we can assume that

a1 ≤ E(X : X ∈ J1) =
1

4
, and a2 ≤ E(X : X ∈ J2) =

7

8
. (5)

Suppose that a2 < 5
8 . Then,

V2 >
1

4

∫ 1

3
4

4
(
x− 5

8

)2

dx =
13

768
= 0.0169271 ≥ V2,

which leads to a contradiction. So, we can assume that 5
8 ≤ a2. Thus, by (5),

we have 5
8 ≤ a2 ≤ 7

8 . Assume that 5
8 ≤ a2 ≤ 3

4 . Since a1 ≤ 1
4 , the following cases

can arise:

Case 1. 1
8 ≤ a1 ≤ 1

4 .

Then, notice that 13
32 < 1

2 (
1
4 + 5

8 ) =
7
16 < 1

2 , and so,∫
[0, 1332 ]

min
a∈{a1,a2}

(x− a)2 dP =
13

(
3072a21 − 1248a1 + 169

)
65536

,

the minimum value of which is 2197
262144 , and it occurs when a1 = 13

64 .
Notice that for a1 = 13

64
, we have

13

32
= 0.40625 <

1

2

(13
64

+
5

8

)
= 0.414063.

Thus, we have

V2 ≥ 2197

262144
+
3

4

∫ 7
16

13
32

2
(
x− 1

4

)2

dx+
3

4

∫ 1
2

7
16

2
(
x− 5

8

)2

dx+

1

4

∫ 1

3
4

4
(
x− 3

4

)2

dx =
13603

786432
,

yielding V2 ≥ 0.0172971 > V2, which is a contradiction.

Case 2. a1 < 1
8 .

Then, 1
2
(1
8
+ 5

8
) = 3

8
< 1

2
, and so
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V3 ≥ 3

4

∫ 3
8

1
8

2
(
x− 1

8

)2

dx+
3

4

∫ 1
2

3
8

2
(
x− 5

8

)2

dx+

1

4

∫ 1

3
4

4
(
x− 3

4

)2

dx =
61

3072
= 0.0198568 > V3,

which leads to a contradiction.

Hence, by Case 1 and Case 2, we can conclude that 3
4 ≤ a2 ≤ 7

8 . Suppose

that 3
4 ≤ a2 ≤ 13

16 . Then, the Voronoi region of a2 must contain points prom J1
implying 1

2 (a1 + a2) <
1
2 , which yields a1 < 1− a2 ≤ 1− 3

4 = 1
4 . Again,∫

J1

(x− a1)
2 dP =

1

16
(12a2 − 6a+ 1),

the minimum value of which is 1
64 when a1 = 1

4 . Thus, we have

V2 ≥
∫
J1

(
x− 1

4

)2

dP +

∫
J2

(
x− 13

16

)2

dP =
55

3072
= 0.0179036 > V2,

which gives a contradiction. Hence, we can assume that 13
16 < a2 ≤ 7

8 . Suppose

that the Voronoi region of a2 contains points from J1, i.e.,
1
2 (a1+a2) <

1
2 . Then,

a1 < 1− a2 ≤ 1− 13
16 = 3

16 . Notice that∫
J1

(x− a1)
2 dP =

1

16
(12a21 − 6a1 + 1),

the minimum value of which is 19
1024 when a1 = 3

16 . Thus, we have V2 ≥ 19
1024 =

0.0185547 > V2, which is a contradiction. Thus, we can assume that the Voronoi
region of a2 does not contain any point from J1. Previously, we have proved that
the Voronoi region of a1 does not contain any point from J2. Hence, we have

a1 = E(X : X ∈ J1) =
1

4
, and a2 = E(X : X ∈ J2) =

7

8
,

and the corresponding quantization error for two-means is given by V2 = 13
768 . �

��� 3.4	 The set
{
1
8 ,

3
8 ,

7
8

}
forms an optimal set of three-means with quan-

tization error V3 = 1
192 .

P r o o f. Consider the set of three points β, such that β :=
{
1
8 ,

3
8 ,

7
8

}
. The dis-

tortion error due to the set β is given by∫
min
a∈β

(x− a)2 dP = 2 · 3
4

∫ 1
4

0

2
(
x− 1

8

)2

dx+
1

4

∫ 1

3
4

4
(
x− 7

8

)2

dx =
1

192
.
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Since V3 is the quantization error for three-means, V3 ≤ 1
192 = 0.00520833.

Let α := {a1, a2, a3} be an optimal set of three-means. Since the points in an op-
timal set are the conditional expectations in their own Voronoi regions, without
any loss of generality, we can assume that 0 < a1 < a2 < a3 < 1. We now show
that a2 < 1

2 , and
3
4 < a3. If a3 < 3

4 , then

V3 >

∫
J2

(
x− 3

4

)2

dP =
1

4

∫ 1

3
4

4
(
x− 3

4

)2

dx =
1

192
= 0.00520833 ≥ V3,

which leads to a contradiction. Hence, we can assume that 3
4 < a3. Next, we

show that a2 < 1
2 . Suppose that 1

2 ≤ a2. Then,∫
J1

min
a∈{a1,

1
2}
(x− a)2 dP

=
3

4

∫ 1
2 (a1+

1
2 )

0

2(x− a1)
2 dx+

3

4

∫ 1
2

1
2 (a1+

1
2 )

2
(
x− 1

2

)2

dx

=
1

64
(24a31 + 12a21 − 6a1 + 1),

the minimum value of which is 1
144 , and it occurs when a1 = 1

6 . Thus, in this case,

we see that V3 ≥ 1
144 = 0.00694444 > V3, which leads to a contradiction. Hence,

we can assume that 0 < a1 < a2 < 1
2 . Suppose that the Voronoi region of a2

contains points from J2. Then,
1
2 (a2+a3) >

3
4 implying a3 > 3

2−a1 ≥ 3
2− 1

2 = 1,
which is a contradiction, as a3 < 1. Thus, we see that the Voronoi region of a2
does not contain any point from J2. Suppose that the Voronoi region of a3
contains points from J1. Then,

1
2 (a2+a3) <

1
2 implying a2 < 1−a3 ≤ 1− 3

4 = 1
4 ,

and so

V3 >
3

4

∫ 1
2

1
4

2
(
x− 1

4

)2

dx =
1

128
= 0.0078125 > V3,

which is a contradiction. So, we can assume that the Voronoi region of a3 does
not contain any point from J1. Thus, by Theorem 1.2, we can conclude that
a1 = 1

8 , a2 = 3
8 , and a3 = 7

8 , and

V3 =

∫
min
a∈α

(x− a)2 dP =
1

192
,

which completes the proof of the lemma. �
����� 3.5	 By Lemma 3.3, and Lemma 3.4, we see that α2 = α1(P1) ∪
α1(P2), and α3 = α2(P1) ∪ α1(P2). Using the similar technique, we can show
that α4 = α3(P1) ∪ α1(P2), α5 = α3(P1) ∪ α2(P2), α6 = α4(P1) ∪ α2(P2),
α7 = α5(P1) ∪ α2(P2), α8 = α6(P1) ∪ α2(P2), and α9 = α6(P1) ∪ α3(P2).
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We now prove the following propositions.

����������� 3.6	 Let αn be an optimal set of n-means for P for n ≥ 2. Then,

the set αn does not contain any point from the open interval
(

1
2 ,

3
4

)
.

P r o o f. By Remark 3.5, the proposition is true for 2 ≤ n ≤ 9. We now prove
that the proposition is true for any positive integer n ≥ 10. Take any n ≥ 10.
Since α9 = α6(P1) ∪ α3(P2), and the Voronoi region of any point in α9 ∩ J1
does not contain any point from J2, and the Voronoi region of any point in α9∩J2
does not contain any point from J1, we have

V9 =
3

4
V6(P1) +

1

4
V3(P2) =

1

1728
= 0.000578704.

Since Vn is the quantization error for n-means for n ≥ 10, we have Vn ≤ V9 =
0.000578704. Let αn := {a1, a2, . . . , an} be an optimal set of n-means for P such
that a1 < a2 < · · · < an. Let j = max{i : ai ≤ 1

2
}. Then, aj ≤ 1

2
< aj+1.

The proposition will be proved if we can show that aj+1 ∈ J2. For the sake
of contradiction, assume that aj+1 ∈ (

1
2 ,

3
4

)
. Then, the following two cases can

arise:

Case 1. 1
2 < aj+1 ≤ 5

8 .

In this case, the Voronoi region of aj+1 must contain points from J2, otherwise,
the quantization error can be strictly reduced my moving the point aj+1 to 1

2 .

Thus, 1
2 (aj+1 + aj+2) >

3
4 implying aj+2 >

3
2 − aj+1 ≥ 3

2 − 5
8 = 7

8 , which yields
the fact that

Vn ≥
∫
[ 34 ,

7
8 ]

(
x− 7

8

)2

dP =
1

4

∫ 7
8

3
4

4
(
x− 7

8

)2

dx = 0.000651042 > Vn,

which leads to a contradiction.

Case 2. 5
8 ≤ aj+1 <

3
4 .

In this case, we have 1
2 (aj + aj+1) <

1
2 implying aj < 1 − aj+1 ≤ 1 − 5

8 = 3
8 ,

which yields the fact that

Vn ≥
∫
[ 38 ,

1
2 ]

(
x− 3

8

)2

dP =
3

4

∫ 1
2

3
8

2
(
x− 3

8

)2

dx = 0.000976563 > Vn,

which is a contradiction.

In light of the above two cases, we can conclude that aj+1 /∈ (
1
2 ,

3
4

)
. Hence,

3
4
< aj+2, i.e., aj+2 ∈ J2. Thus, the proof of the proposition is complete. �
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����������� 3.7	 Let αn be an optimal set of n-means for P for n ≥ 2. Then,
for n ≥ 2, αn ∩ J1 = ∅, and αn ∩ J2 = ∅. Moreover, for n ≥ 2, any point
in αn ∩ J1 does not contain any point from J2, and any point in αn ∩ J2 does
not contain any point from J1,

P r o o f. As shown in the proof of Lemma 3.3, and Lemma 3.4, we see that
the proposition is true for n = 2, 3. By Lemma 3.4, we know V3 = 1

192 =
0.00520833. We now prove the proposition for n ≥ 4. Let n ≥ 4. Since Vn is
the quantization error for n-means for n ≥ 4, we have Vn ≤ V3 = 0.00520833.
Let αn := {a1, a2, . . . , an} be an optimal set of n-means for P such that
a1 < a2 < · · · < an. If αn ∩ J2 = ∅, then

Vn >
1

4

∫ 1

3
4

4
(
x− 3

4

)2

dx = 0.00520833,

which is a contradiction as Vn ≤ 0.00520833. On the other hand, if αn ∩ J1 = ∅,
then

Vn >
3

4

∫ 1
2

0

2
(
x− 1

4

)2

dx =
1

64
= 0.015625 > Vn,

which leads to a contradiction. Hence,

αn ∩ J1 = ∅, and αn ∩ J2 = ∅.
Let j = max{i : ai ≤ 1

2}. Then, aj ≤ 1
2 , and due to Proposition 3.6, we have

3
4 ≤ aj+1. If the Voronoi region of aj contains points from J2, then

1
2 (aj +

aj+1) > 3
4 implying aj+1 > 3

2 − aj ≥ 3
2 − 1

2 = 1, which is a contradiction.

If the Voronoi region of aj+1 contains points from J1, then
1
2 (aj + aj+1) < 1

2

implying aj < 1− aj+1 ≤ 1− 3
4 = 1

4 . Then,

Vn ≥
∫
[ 14 ,

1
2 ]

(
x− 1

4

)2

dP =
3

4

∫ 1
2

1
4

2
(
x− 1

4

)2

dx =
1

128

yielding Vn ≥ 0.0078125 > Vn, which leads to a contradiction. Thus, the proof
of the proposition is complete. �
���������� 3.8	 For n ∈ N, and n ≥ 2, define the function a(n) as follows:

a(n) = min{k ∈ N : H(n, k) > 0},
where H(n, k) = 1

n3 −∑∞
i=k

1
(i+1)4 .

����� 3.9	 Notice that
∑∞

i=k
1

(i+1)4 is a decreasing function of k ∈ N, and

so for a given n ≥ 2, H(n, k) is an increasing function of k, and thus the func-
tion a(n) is well defined. Moreover, { 1

n3 }n≥2 is a decreasing sequence, and so,
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the sequence {a(n)}∞n=2 is an increasing sequence. In fact,

{a(n)}∞n=2 = {1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10,
11, 12, 12, 13, 14, 15, 15, 16, 17, 17, 18, . . .}.

By 
x� it is meant the greatest integer not exceeding x. To find the value of a(n)
for any positive integer n, one can start checking by putting k = 
2n3 � in the
function H(n, k). If H(n, k) > 0, then find H(n, k− 1), H(n, k− 2), . . . until one
obtains some positive integer m, such that H(n,m) > 0, and H(n,m − 1) < 0,
and then a(n) = m. IfH(n, k) < 0, then find H(n, k+1), H(n, k+2), . . . until one
obtains some positive integer m, such that H(n,m) > 0, and H(n,m − 1) < 0,
and then a(n) = m.

����� 3.10	 For n ≥ 2 let αn be an optimal set of n-means for P. Due
to Proposition 3.6 and Proposition 3.7, we can conclude that if αn contains k
elements from J1, then αn contains n− k elements from J2. Thus, we have

Vn := Vn(P ) =

∫
min
a∈αn

(x− a)2 dP

=
3

4

∫
min

a∈αn∩J1

(x− a)2 dP1 +
1

4

∫
min

a∈αn∩J2

(x− a)2 dP2,

yielding

Vn(P ) =
3

4
Vk(P1) +

1

4
Vn−k(P2).

Let us now give the following theorem, which gives the optimal sets of n-means
and the nth quantization errors for the mixed distribution P for all positive
integers n ≥ 2.


����� 3.11	 For n ≥ 2, let αn be an optimal set of n-means for P. Then,
αn contains a(n) elements from J1, i.e.,

αn(P ) = αa(n)(P1) ∪ αn−a(n)(P2), and Vn(P ) =
3

4
Va(n)(P1) +

1

4
Vn−a(n)(P2).

P r o o f. Assume that αn contains k elements from J1. Let V (k, n − k) is the
corresponding distortion error. Then, as mentioned in Remark 3.10, we have

V (k, n− k) =
3

4
Vk(P1) +

1

4
Vn−k(P2).

Notice that if our assumption is correct, then we must have Vn = V (k, n− k).
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Let us now run the following algorithm:

(i) Write k := 
2n3 �.
(ii) If V

(
k− 1, n− (k− 1)

)
< V (k, n− k) replace k by k− 1 and return, else go

to step (iii).

(iii) If V
(
k + 1, n − (k + 1)

)
< V (k, n − k) replace k by k + 1 and return, else

step (iv).

(iv) End.

After running the above algorithm, we see that k = a(n), i.e., our assumption
is correct. Thus, the proof of the theorem is complete. �

����� 3.12	 If n = 14, then k = 
283 � = 9. By running the algorithm as
mentioned in the theorem, we obtain k = 10. Moreover, notice that a(14) = 10,
i.e., α14 contains a(14) elements from J1, and n − a(14) elements from J2, i.e.,
α14 = αa(14)(P1) ∪ α14−a(14)(P2). If n = 100, then k = 
2003 � = 66. By running
the algorithm as mentioned in the theorem, we obtain k = 69. Moreover, we
have a(100) = 69, i.e., α100 contains a(100) elements from J1, and n − a(100)
elements from J2, i.e., α100 = αa(100)(P1) ∪ α100−a(100)(P2).

4. Optimal quantization for the mixture of two uniform
distributions on two connected line segments

Let P1 and P2 be two uniform distributions, respectively, on the intervals
[0, 12 ] and [12 , 1]. Write

J1 :=

[
0,

1

2

]
, and J2 :=

[
1

2
, 1

]
.

Let f1 and f2 be their respective density functions. Then, f1(x) = 2 if x ∈ [0, 12 ],

and zero, otherwise; and f2(x) = 2 if x ∈ [12 , 1], and zero, otherwise.

Let P := 3
4P1 +

1
4P2. For such a mixed distribution, in this section, we investi-

gate the optimal sets of n-means and the nth quantization errors for all n ∈ N.
Notice that the density function of the mixed distribution P can be written as
follows:

f(x) =

⎧⎪⎨
⎪⎩

3
2 if x ∈ J1,
1
2 if x ∈ J2,

0, otherwise.

133



MRINAL KANTI ROYCHOWDHURY — WASIELA SALINAS

Let us now prove the following lemma.

��� 4.1	 Let P be the mixed distribution defined by P = 3
4P1 +

1
4P2. Then,

E(P ) = 3
8 , and V (P ) = 13

192 .

P r o o f. We have

E(P )=

∫
x dP =

3

4

∫
x d

(
P1(x)

)
+

1

4

∫
x d

(
P2(x)

)
=

3

4

∫ 1
2

0

2x dx+
1

4

∫ 1

1
2

2x dx

yielding E(P ) = 3
8 , and

V (P )=

∫ (
x−E(P )

)2
dP =

3

4

∫ (
x−E(P )

)2
d
(
P1(x)

)
+
1

4

∫ (
x−E(P )

)2
d
(
P2(x)

)
,

implying V (P ) = 13
192 , and thus, the lemma is yielded. �

����� 4.2	 The optimal set of one-mean is the set {3
8}, and the correspond-

ing quantization error is the variance V := V (P ) of a random variable with
distribution P.

����������� 4.3	 For n ≥ 2, let αn be an optimal set of n-means. Then,
αn ∩ J1 = ∅, and αn ∩ J2 = ∅.
P r o o f. Consider the set of two points β :=

{
1
4
, 3
4

}
. The distortion error due to

the set β is given by∫
min
b∈β

(x− b)2 dP =

∫
J1

(
x− 1

4

)2

dP +

∫
J2

(
x− 3

4

)2

dP

=
3

4

∫ 1
2

0

2
(
x− 1

4

)2

dx+
1

4

∫ 1

1
2

2
(
x− 3

4

)2

dx =
1

48
.

Since Vn is the quantization error for two-means, and n ≥ 2, we have Vn ≤ V2 ≤
1
48 = 0.0208333. For the sake of contradiction assume that αn ∩ J2 = ∅. Then,

Vn >

∫
J2

(
x− 1

2

)2

dP =
1

4

∫ 1

1
2

2
(
x− 1

2

)2

dx =
1

48
≥ Vn,

which is a contradiction. Hence, we can assume that α ∩ J2 = ∅. Similarly, we
can show that αn ∩ J1 = ∅. Thus, the proof of the proposition is complete. �
��� 4.4	 The set {1

4 ,
3
4} forms an optimal set of two-means with quantization

error V2 = 1
48 .
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P r o o f. Let α := {a1, a2} be an optimal set of two-means such that 0 < a1 <
a2 < 1. By Proposition 4.3, we have a1 < 1

2 < a2. The following two cases can
arise:

Case 1. 1
2 ≤ a1+a2

2 .

In this case, we have

a1 =

3
4

∫ 1
2

0
2x dx+ 1

4

∫ 1
2 (a1+a2)
1
2

2x dx

3
4

∫ 1
2

0
2 dx+ 1

4

∫ 1
2 (a1+a2)
1
2

2 dx
, and a2 =

1

2

(1
2
(a1 + a2) + 1

)
.

Solving the above two equations, we have a1 =
1
4 , and a2 =

3
4 , with distortion

error

V (P ;α) =
3

4

∫ 1
2

0

2(x− a1)
2 dx

+
1

4

∫ 1
2 (a1+a2)

1
2

2(x− a1)
2 dx+

1

4

∫ 1

1
2 (a1+a2)

2 (x− a2)
2 dx =

1

48
.

Case 2. a1+a2

2 < 1
2 .

Proceeding in the similar way as Case 1, we obtain two equations, and see
that there is no solution in this case.

Considering the above two cases, we see that the set {1
4 ,

3
4} forms an optimal

set of two-means with quantization error 1
48 , which is the lemma. �

��� 4.5	 The set{1

3

(1
8
(21−

√
3)− 2

)
,
1

8

(
21−

√
3
)− 2,

1

24

(
21−

√
3
)}

forms an optimal set of three-means with quantization error V3 = 0.00787482.

P r o o f. Consider the set of three points β := {u, v, w}, where
u =

1

3

(1
8

)
(21−

√
3)− 2, v =

1

8
(21−

√
3)− 2, and w =

1

24
(21−

√
3).

Since 0 < u < v < 1
2 < v+w

2 < w < 1, the distortion error due to the set β is
given by

V (P ; β) =
3

4

∫ u+v
2

0

2(x− u)2 dx+
3

4

∫ 1
2

u+v
2

2(x− v)2 dx

+
1

4

∫ v+w
2

1
2

2(x− v)2 dx+
1

4

∫ 1

v+w
2

2(x− w)2 dx
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yielding V (P ; β) = 0.00787482. Since V3 is the quantization error for three-
means we have V3 ≤ 0.00787482. Let α := {a, b, c} be an optimal set of three-
means. Without any loss of generality we can assume that 0 < a < b < c < 1.
By Proposition 4.3, we know a < 1

2 < c. We now show that b < 1
2 . Suppose that

9
16 < b. Then,

V3 ≥
∫
J1

min
r∈{a, 9

16}
(x− r)2 dP

=
3

4

∫ 1
2 (a+

9
16 )

0

2(x− a)2 dx+
3

4

∫ 1
2

1
2 (a+

9
16 )

2
(
x− 9

16

)2

dx

=
12288a3 + 6912a2 − 3888a+ 725

32768
,

the minimum value of which is 0.00976563 and it occurs when a = 3
16 , and

thus, we have V3 ≥ 0.00976563 > V3, which is a contradiction. So, we can
assume that b ≤ 9

16 . Next, assume that 1
2 ≤ b ≤ 9

16 . Notice that then
9
16 < c < 1.

Then, as before we have

V3 ≥
∫
J1

min
r∈{a, 12}

(x− r)2 dP +

∫ 1

9
16

min
s∈{ 9

16 ,c}
(x− r)2 dP

=
1

64
(24a3 + 12a2 − 6a+ 1) +

−12288c3 + 42240c2 − 45264c+ 15655

98304
,

the minimum value of which is 1
144

+ 343
221184

= 0.00849519, and it occurs when
a = 0.166667, and c = 0.854167. Thus, we have V3 ≥ 0.00849519 > V3, which
is a contradiction. Hence, we can assume that b < 1

2 . Then, the two cases can

arise: either 1
2 (b+ c) < 1

2 , or
1
2 ≤ 1

2 (b+ c). Proceeding as in Lemma 4.4, we can

see that 1
2 (b+ c) < 1

2 can not happen. Thus, we have 1
2 ≤ 1

2 (b+ c) implying

a =
a+ b

4
, b =

3
4

∫ 1
2
a+b
2

2x dx+ 1
4

∫ b+c
2

1
2

2x dx

3
4

∫ 1
2
a+b
2

2 dx+ 1
4

∫ b+c
2

1
2

2 dx
, and c =

∫ 1
b+c
2

2x dx

4
4

∫ 1
b+c
2

2 dx
.

Solving the above equations, we have

a =
1

3

(1
8
(21−

√
3)− 2

)
, b =

1

8
(21−

√
3)− 2, and c =

1

24
(21−

√
3),

and the corresponding quantization error is given by V3 = 0.00787482, and thus,
the proof of the lemma is complete. �
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���������� 4.6	 For n ∈ N, define the sequence {a(n)}∞n=1 as follows:

a(n) :=
⌊5(n+ 1)

8

⌋
,

i.e.,

{a(n)}∞n=1 = {1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10,
11, 11, 12, 13, 13, 14, 15, 15, 16, 16, . . .}.

Let us now state and prove the following two claims.

���� 4.7	 Let {a(n)} be the sequence defined by Definition 4.6. Take n = 8,
and then a(n) = 5. Assume that αn := {a1 < a2 < a3 < a4 < a5 < b1 < b2 < b3}
is an optimal set of eight-means for P. Then, 1

2 ≤ 1
2 (a5 + b1).

P r o o f. For the sake of contradiction, assume that 1
2 (a5 + b1) <

1
2 . Then,

a1 =
1

2

(
0 +

a1 + a2
2

)
, and a2 =

1

2

(a1 + a2
2

+
a2 + a3

2

)

implying a1 = 1
3a2, and a2 = 3

5a3. Similarly, a3 = 5
7a4, a4 = 7

9a5.

Again,
b2 =

1

2

(b1 + b2
2

+
b2 + b3

2

)
, and b3 =

1

2

(b2 + b3
2

+ 1
)

implying b2 = 3
5b1 +

2
5 , and b3 = 1

3b2 +
2
3 . Moreover,

a5 =
1

2

(a4 + a5
2

+
a5 + b1

2

)
=

1

2

( 7
9a5 + a5

2
+

a5 + b1
2

)
implying a5 = 9

11
b1, and

b1 = E
(
X : X ∈

[a5 + b1
2

,
1

2

]
∪
[1
2
,
b1 + b2

2
]
)

=
−6a5b1 − 3a25 − 2b21 + b22 + 2b1b2 + 2

−12a5 − 8b1 + 4b2 + 8
.

Next, putting the values of a5 and b2 in the expression of b1, we have

b1 =
−11128b21 + 1936b1 + 3267

14520− 23320b1
yielding b1 =

11
(
143± 5i

√
5
)

3048
,

which is not real. Thus, 1
2 (a5 + b1) < 1

2 leads to a contradiction. Hence,
1
2 ≤ 1

2 (a5 + b1). �
���� 4.8	 Let {a(n)} be the sequence defined by Definition 4.6. Take n = 9,
and then a(n) = 6. Assume that αn := {a1 < a2 < a3 < a4 < a5 < a6 < b1 <
b2 < b3} is an optimal set of nine-means for P. Then, 1

2 ≤ 1
2 (a6 + b1).
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P r o o f. For the sake of contradiction, assume that 1
2 (a6 + b1) <

1
2 . Then,

a1 =
1

2

(
0 +

a1 + a2
2

)
, and a2 =

1

2

(a1 + a2
2

+
a2 + a3

2

)
implying a1 = 1

3a2, and a2 = 3
5a3. Similarly, a3 = 5

7a4, a4 = 7
9a5, and a5 = 9

11a6.
Again,

b2 =
1

2

(b1 + b2
2

+
b2 + b3

2

)
, and b3 =

1

2

(b2 + b3
2

+ 1
)

implying b2 = 3
5b1 +

2
5 , and b3 = 1

3b2 +
2
3 . Moreover,

a6 =
1

2

(a5 + a6
2

+
a6 + b1

2

)
=

1

2

( 9
11a6 + a6

2
+

a6 + b1
2

)
implying a6 =

11

13
b1,

and

b1 = E
(
X : X ∈

[a6 + b1
2

,
1

2

]
∪ [

1

2
,
b1 + b2

2
]
)

=
−6a5b1 − 3a25 − 2b21 + b22 + 2b1b2 + 2

−12a5 − 8b1 + 4b2 + 8
.

Next, putting the values of a5 and b2 in the expression of b1, we have

b1 =
−16192b21 + 2704b1 + 4563

20280− 33280b1
yielding b1 =

13
(
169± 5i

√
11
)

4272
,

which is not real. Thus, 1
2 (a6 + b1) < 1

2 leads to a contradiction. Hence, 1
2 ≤

1
2 (a6 + b1). �
��� 4.9	 Let αn be an optimal set of n-means for P ň1, where n ≥ 2, and
{a(n)} be the sequence defined by Definition 4.6. Then, card(αn ∩ J1) = a(n),
and card(αn ∩ J2) = n− a(n).

P r o o f. We prove the lemma by induction. By Lemma 4.4 and Lemma 4.5,
the lemma is true for n = 2, 3. Assume that that the lemma is true for n = �,
i.e., card(α� ∩ J1) = a(�), and card(α� ∩ J2) = n − a(�). We need to show that
card(α�+1∩J1) = a(�+1). Assume that card(α�+1∩J1) = k, i.e., α�+1 contains
k elements from J1, and n− k elements from J2. Let

α�+1 ∩ J1 = {a1 < a2 < · · · < ak}, and α�+1 ∩ J2 = {b1 < b2 < · · · < bn−k}.
Then, either 1

2 (ak + b1) <
1
2 , or

1
2 < 1

2 (ak + b1). In each case, using the similar
techniques as in the proofs of Claim 4.7 and Claim 4.8, if the solution exists,
we solve for a1, a2,. . . , ak, b1, . . . , bn−1, and find the distortion errors.
Notice that at least one solution will exist. Let V (k, n − k) be the minimum
of the distortion errors if α�+1 contains k elements from J1, and n− k elements
from J2.
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Let us now run the following algorithm:

(i) Write k := a(�).

(ii) If V
(
k− 1, n− (k− 1)

)
< V (k, n− k) replace k by k− 1 and return, else go

to step (iii).

(iii) If V
(
k + 1, n − (k + 1)

)
< V (k, n − k) replace k by k + 1 and return, else

step (iv).

(iv) End.

After running the above algorithm, we see that the value of k obtained equals
a(� + 1), i.e., the lemma is true for n = � + 1 if it is true for n = �. Hence,
by the Induction Principle, we can say that the lemma is true for all positive
integers n ≥ 2, i.e., card(αn ∩ J1) = a(n) for any positive integer n ≥ 2. Since
card(αn ∩ J1)+ card(αn ∩ J2) = n, we have card(αn ∩ J2) = n− a(n). Thus, the
proof of the lemma is complete. �

Let us now state and prove the following theorem which is the main theorem
in this section.


����� 4.10	 Let αn be an optimal set of n-means for P, where n ≥ 2, and
{a(n)} be the sequence defined by Definition 4.6. Write k := a(n), m := n−a(n).
Then,

αn := {a1 < a2 < · · · < ak < b1 < b2 < · · · < bm},
where

aj =

⎧⎪⎪⎨
⎪⎪⎩

a1+a2

4 if j = 1,

1
2

(aj−1+aj

2 +
aj+aj+1

2

)
if 2 ≤ j ≤ k − 1,

E
(
X : X ∈ [

ak−1+ak

2 , 1
2 ] ∪ [12 ,

ak+b1
2 ]

)
if j = k,

and

bj =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
ak+b1

2
+ b1+b2

2

)
if j = 1,

1
2

( bj−1+bj
2 +

bj+bj+1

2

)
if 2 ≤ j ≤ m− 1,

1
2

( bm−1+bm
2 + 1

)
if j = m,

and the corresponding quantization error is given by

Vn =
1

48

(−3b21mak + 3b1ma2k − 3b21ak + 3b1a
2
k −ma3k + 21a31(k − 1)+

9a2a
2
1(k − 1)− 9a22a1(k − 1) + 3a32(k − 1)−

3a3k−1 − 14a3k − 9ak−1a
2
k + 24a2k + 9a2k−1ak − 12ak+

b32m− 3b1b
2
2m+ 3b21b2m+ b31 + 2

)
.
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P r o o f. By Lemma 4.9, the optimal set αn of n-means contains k elements
from J1, and m elements from J2, where k = a(n) and m = n − k.
Let αn := {a1 < a2 < · · · < ak < b1 < b2 < · · · < bm}. Recall Theorem 1.2, and
the fact that P1 is a uniform distribution on [0, 12 ], and P2 is a uniform distribu-

tion on [12 , 1]. Thus, we have

aj =

{ a1+a2

4 if j = 1,
1
2

(aj−1+aj

2
+

aj+aj+1

2

)
if 2 ≤ j ≤ k − 1,

and

bj =

{
1
2

( bj−1+bj
2 +

bj+bj+1

2

)
if 2 ≤ j ≤ m− 1,

1
2 (

bm−1+bm
2 + 1) if j = m.

The following two cases can arise:

Case 1. 1
2 ≤ 1

2 (ak + b1).

In this case, we have

ak=E
(
X :X∈[ak−1+ak

2 , 1
2

] ∪ [
1
2 ,

ak+b1
2

])
, and b1=

1
2

(
ak+b1

2 + b1+b2
2

)
.

Case 2. 1
2 (ak + b1) <

1
2 .

In this case, we have

ak=
1
2

(ak−1+ak

2 + ak+b1
2

)
, and b1=E

(
X :X∈[ak+b1

2 , 12
] ∪ [

1
2 ,

b1+b2
2

])
.

For any given positive integer, using the similar techniques as in the proofs
of Claim 4.7 and Claim 4.8, we see that in Case 2, the system of equations
to obtain a1, a2, . . . , ak, b1, . . . , bm does not have any solution. Hence Case 2
cannot happen.

Thus, we have 1
2 ≤ 1

2 (ak + b1), i.e., the system of equations to obtain the
elements a1, a2, . . . , ak, b1, . . . , bm as stated in the theorem are true, and hence,
the corresponding quantization error is given by

Vn =
3(k − 1)

4

∫ a1+a2
2

0

2(x− a1)
2dx+

3

4

∫ 1
2

ak−1+ak
2

2(x− ak)
2dx

+
1

4

∫ ak+b1
2

1
2

2(x− ak)
2dx

m

4

∫ b1+b2
2

ak+b1
2

2(x− b1)
2dx

=
1

48

(
− 3b21mak + 3b1ma2k − 3b21ak + 3b1a

2
k −ma3k + 21a31(k − 1)

+ 9a2a
2
1(k − 1)− 9a22a1(k − 1) + 3a32(k − 1)− 3a3k−1 − 14a3k − 9ak−1a

2
k

+ 24a2k + 9a2k−1ak − 12ak + b32m− 3b1b
2
2m+ 3b21b2m+ b31 + 2

)
.
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Thus, we complete the proof of the theorem. �

Now, we give the following example.

������ 4.11	 Take n = 16. Then, k = a(n) = 10, and so, m = 6. Thus,
by Theorem 4.10, we have

{a1 = 0.0255733, a2 = 0.0767199, a3 = 0.127866, a4 = 0.179013,
a5 = 0.23016, a6 = 0.281306, a7 = 0.332453, a8 = 0.383599,
a9 = 0.434746, a10 = 0.485893, b1 = 0.564986, b2 = 0.644079,
b3 = 0.723173, b4 = 0.802266, b5 = 0.88136, b6 = 0.960453, }

and the corresponding quantization error is given by

V16 =
1

48

(−21a10b
2
1 + 21a210b1 + 189a31 + 81a2a

2
1 − 81a22a1 +

27a32 − 3a39 − 20a310 − 9a9a
2
10 + 24a210 + 9a29a10 −

12a10 + b31 + 6b32 − 18b1b
2
2 + 18b21b2 + 2

)
= 0.000293827.
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