

DOI: 10.2478/udt-2020-0005 Unif. Distrib. Theory **15** (2020), no.1, 93-104

NOTES ON THE DISTRIBUTION OF ROOTS MODULO A PRIME OF A POLYNOMIAL III

Yoshiyuki Kitaoka

Author is retired, Asahi, JAPAN

ABSTRACT. Let f(x) be a monic polynomial with integer coefficients and integers r_1, \ldots, r_n with $0 \le r_1 \le \cdots \le r_n < p$ the *n* roots of $f(x) \equiv 0 \mod p$ for a prime *p*. We proposed conjectures on the distribution of the point $(r_1/p, \ldots, r_n/p)$ in the previous papers. One aim of this paper is to revise them for a reducible polynomial f(x), and the other is to show that they imply the one-dimensional equidistribution of $r_1/p, \ldots, r_n/p$ for an irreducible polynomial f(x) by a geometric way.

Communicated by Shigeki Akiyama

Throughout this paper, a polynomial means a monic one over the ring \mathbb{Z} of integers and the letter p denotes a prime number. Let

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_0$$

be a polynomial of degree n with complex roots $\alpha_1, \ldots, \alpha_n$. We fix the numbering of roots once and for all, and define a vector space LR over the rational number field \mathbb{Q} by

$$LR := \left\{ (l_1, \dots, l_{n+1}) \in \mathbb{Q}^{n+1} \middle| \sum_{i=1}^n l_i \alpha_i = l_{n+1} \right\},\$$

which depends on the numbering of roots α_i . The projection defined by

$$(l_1,\ldots,l_n,l_{n+1})\mapsto (l_1,\ldots,l_n)$$

from LR to

$$LR_0 := \left\{ (l_1, \dots, l_n) \in \mathbb{Q}^n \middle| \sum_{i=1}^n l_i \alpha_i \in \mathbb{Q} \right\}$$

^{© 2020} BOKU-University of Natural Resources and Life Sciences and Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 11K.

Keywords: Equidistribution, polynomial, roots modulo a prime.

Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

is an isomorphism, more strongly from $LR \cap \mathbb{Z}^{n+1}$ on $LR_0 \cap \mathbb{Z}^n$, since numbers α_i are algebraic integers. Since there is a trivial linear relation $\sum \alpha_i = -a_{n-1}$, the non-zero vector $(1, \ldots, 1, -a_{n-1})$ is always in LR, hence $t := \dim_{\mathbb{Q}} LR = \dim_{\mathbb{Q}} LR_0 \ge 1$ is clear. The inequality $t \le n$ is also clear and the condition t = n holds if and only if f(x) is a product of linear forms in $\mathbb{Q}[x]$. The vector $(1, \ldots, 1)$ is always in LR_0 , and a polynomial f(x) has a rational root if and only if a vector of the form $(0, \ldots, 0, 1, 0, \ldots, 0)$ is in LR_0 , and $\alpha_i - \alpha_j \in \mathbb{Q}$ holds for distinct i, j if and only if a vector of the form $(0, \ldots, 0, 1, 0, \ldots, 0, -1, 0, \ldots, 0)$ is in LR_0 .

We say that a polynomial f(x) has a non-trivial linear relation among roots if t > 1.

We take a Z-basis

$$\hat{m}_j := (m_{j,1}, \dots, m_{j,n}, m_j) \ (j = 1, \dots, t)$$

of $LR \cap \mathbb{Z}^{n+1}$, and put

$$m_j := (m_{j,1}, \ldots, m_{j,n}) \ (j = 1, \ldots, t).$$

By definition, the vector $\hat{\boldsymbol{m}}_j$ satisfies

$$\sum_{i=1}^{n} m_{j,i} \alpha_i = m_j \ (j = 1, \dots, t)$$

and the vectors $\boldsymbol{m}_1, \ldots, \boldsymbol{m}_t$ are a basis of $LR_0 \cap \mathbb{Z}^n$. We fix the basis $\hat{\boldsymbol{m}}_j$ $(j = 1, \ldots, t)$ together with roots α_i once and for all.

We introduce two permutation groups associated with them:

$$\hat{\boldsymbol{G}} := \{ \nu \in S_n \mid \langle \nu(\hat{\boldsymbol{m}}_1), \dots, \nu(\hat{\boldsymbol{m}}_t) \rangle_{\mathbb{Z}} = \langle \hat{\boldsymbol{m}}_1, \dots, \hat{\boldsymbol{m}}_t \rangle_{\mathbb{Z}} \}, \\ \boldsymbol{G} := \{ \nu \in S_n \mid \langle \nu(\boldsymbol{m}_1), \dots, \nu(\boldsymbol{m}_t) \rangle_{\mathbb{Z}} = \langle \boldsymbol{m}_1, \dots, \boldsymbol{m}_t \rangle_{\mathbb{Z}} \}.$$

Here,

$$\langle \boldsymbol{z}_1,\ldots,\boldsymbol{z}_k \rangle_{\mathbb{Z}} := \{a_1 \boldsymbol{z}_1 + \cdots + a_k \boldsymbol{z}_k \mid a_1,\ldots,a_k \in \mathbb{Z}\}$$

and we let, for $\boldsymbol{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $x \in \mathbb{R}$ and a permutation $\nu \in S_n$

$$\nu(\boldsymbol{x}) := (x_{\nu^{-1}(1)}, \dots, x_{\nu^{-1}(n)}), \ \nu((\boldsymbol{x}, x)) := (\nu(\boldsymbol{x}), x).$$

Note that

$$\hat{G} = \{ \nu \in S_n \mid \nu(LR) = LR \}, \ G = \{ \nu \in S_n \mid \nu(LR_0) = LR_0 \},\$$

hence, groups \hat{G} , G are independent of the choice of bases \hat{m}_i and \hat{G} is a subgroup of G. If f(x) is irreducible, then they are identical. However, they are not necessarily equal for a reducible polynomial.

We may take the vector $(1, \ldots, 1, -a_{n-1})$ as \hat{m}_1 , and if f(x) has no non-trivial linear relation among roots, then it is a basis of $LR \cap \mathbb{Z}^{n+1}$, hence $\hat{G} = G = S_n$.

DISTRIBUTION OF ROOTS MODULO A PRIME OF A POLYNOMIAL

Next, we put

 $\operatorname{Spl}_X(f) := \{ p \le X \mid f(x) \text{ is fully splitting modulo } p \}$

for a positive number X and $\operatorname{Spl}(f) := \operatorname{Spl}_{\infty}(f)$.

We require the following conditions on the local roots $r_1, \ldots, r_n (\in \mathbb{Z})$ of $f(x) \equiv 0 \mod p$ for a prime $p \in \text{Spl}(f)$:

$$f(x) \equiv \prod_{i=1}^{n} (x - r_i) \bmod p, \tag{1}$$

$$0 \le r_1 \le r_2 \le \dots \le r_n < p. \tag{2}$$

The condition (1) is nothing but the definition of $p \in \text{Spl}(f)$, and (2) determines local roots r_i uniquely. From now on, local roots r_i are supposed to satisfy two conditions (1) and (2). The global ordering (2) to local roots is a key.

We know that for a sufficiently large prime $p \in \text{Spl}(f)$, there is at least one permutation $\sigma \in S_n$ dependent on p such that

$$\sum_{i=1}^{n} m_{j,i} r_{\sigma(i)} \equiv m_j \mod p \quad \left(1 \le {}^{\forall} j \le t\right).$$
(3)

To state conjectures, we introduce the following notation corresponding to the condition (3)

$$\operatorname{Spl}_X(f,\sigma) := \{ p \in \operatorname{Spl}_X(f) \mid (3) \},\$$

which is independent of the choice of the basis \hat{m}_i , and we define the density by

$$Pr(f,\sigma) := \lim_{X \to \infty} \frac{\# \operatorname{Spl}_X(f,\sigma)}{\# \operatorname{Spl}_X(f)}.$$

We suppose that the limit exists. The existence of the limit is supported by computer experiment.

Next, we introduce geometric objects

$$\hat{\mathfrak{D}}_{n} := \left\{ \left(x_{1} \dots, x_{n}\right) \in [0, 1]^{n} \middle| 0 \le x_{1} \le \dots \le x_{n} \le 1, \sum_{i=1}^{n} x_{i} \in \mathbb{Z} \right\},\$$
$$\mathfrak{D}(f, \sigma) := \left\{ \left(x_{1} \dots, x_{n}\right) \in [0, 1]^{n} \middle| \begin{array}{l} 0 \le x_{1} \le \dots \le x_{n} \le 1,\\ \sum_{i=1}^{n} m_{j,i} x_{\sigma(i)} \in \mathbb{Z} \ \left(1 \le \forall j \le t\right) \end{array} \right\}\$$
$$= \left\{ \boldsymbol{x} \in \hat{\mathfrak{D}}_{n} \mid \left(\sigma(\boldsymbol{l}), \boldsymbol{x}\right) \in \mathbb{Z} \ \left(\forall \boldsymbol{l} \in LR_{0} \cap \mathbb{Z}^{n}\right) \right\}.$$

The dimension of $\hat{\mathfrak{D}}_n$ is n-1 and that of $\mathfrak{D}(f,\sigma)$ is less than or equal to n-t. In the following, the volume $\operatorname{vol}(\mathfrak{D}(f,\sigma))$ means that as an (n-t)-dimensional set, that is for a set S in $\boldsymbol{v} + \mathbb{R}[\boldsymbol{v}_1, \ldots, \boldsymbol{v}_{n-t}] (\subset \mathbb{R}^n)$ with orthonormal elements $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_{n-t} \in \mathbb{R}^n$, we identify $\boldsymbol{v} + \sum y_i \boldsymbol{v}_i \in S$ with a point $(y_1, \ldots, y_{n-t}) \in \mathbb{R}^{n-t}$. So, $\operatorname{vol}(\mathfrak{D}(f,\sigma)) = 0$ holds if dim $\mathfrak{D}(f,\sigma) < n-t$.

In case that f(x) is a product of linear forms, which is equivalent to t = n, dim $\mathfrak{D}(f, \sigma) = 0$ holds, hence the discussion about $\mathfrak{D}(f, \sigma)$ is almost meaningless.

If there is no non-trivial linear relation among roots, then $\mathfrak{D}(f,\sigma)$ is equal to $\hat{\mathfrak{D}}_n$ for every permutation σ .

The first conjecture is

CONJECTURE 1. For a permutation σ with $Pr(f, \sigma) > 0$, the ratio

$$c = \frac{\operatorname{vol}(\mathfrak{D}(f,\sigma))}{Pr(f,\sigma)} \tag{4}$$

is independent of σ . If $\mathbf{G} = \hat{\mathbf{G}}$ holds, then two conditions $Pr(f, \sigma) > 0$ and $\operatorname{vol}(\mathfrak{D}(f, \sigma)) > 0$ are equivalent.

If (i) f(x) is not a product of linear forms, (ii) $\alpha_i - \alpha_j \notin \mathbb{Q}$ for any distinct i, j, that is, $f(x) \neq F(x)g(x)g(x+a)$ for any $F(x), g(x) \in \mathbb{Q}[x], a \in \mathbb{Q}$ and (iii) $\operatorname{vol}(\mathfrak{D}(f,\sigma)) = cPr(f,\sigma)$ holds for every $\sigma \in S_n$, then

$$c = \sqrt{\det((\boldsymbol{m}_i, \boldsymbol{m}_j))} / \# \hat{\boldsymbol{G}}$$

is known (cf. [K4]), although it is not necessary here.

There is an example of a reducible polynomial f(x) such that $Pr(f, \sigma) = 0$ but $vol(\mathfrak{D}(f, \sigma)) > 0$ for some permutation σ as follows, and Expectation 1" in [K1], [K3] should be revised as above, not to exclude a reducible polynomial.

EXAMPLE. Let us consider the polynomial $f(x) = (x^2 - 2)((x - 1)^2 - 2)$ with roots $\alpha_1 = \sqrt{2}, \alpha_2 = 1 + \sqrt{2}, \alpha_3 = -\sqrt{2}, \alpha_4 = 1 - \sqrt{2}$. Then t = 3 and the matrix $(m_{j,i})$ and m_i are

$$\left(\begin{array}{rrrr}1 & 0 & 0 & 1\\1 & -1 & 0 & 0\\1 & 0 & 1 & 0\end{array}\right), \quad \left(\begin{array}{r}1\\-1\\0\end{array}\right),$$

and

$$\begin{split} \boldsymbol{G} &= \{ [1,2,3,4], [1,2,4,3], [2,1,3,4], [2,1,4,3], \\ & [3,4,1,2], [3,4,2,1], [4,3,1,2], [4,3,2,1] \} \end{split}$$

and

$\hat{\boldsymbol{G}} = \{ [1, 2, 3, 4], [3, 4, 1, 2] \},\$

where a permutation σ is identified with the vector $[\sigma(1), \ldots, \sigma(4)]$ of images.

Then we see that

$$\mathfrak{D}(f,\sigma) = \begin{cases} \{(x,x,1-x,1-x) \mid 0 \le x \le 1/2\} & \text{if } \sigma \in \mathbf{G}, \\ \{(1/2,1/2,1/2,1/2)\} & \text{otherwise} \end{cases}$$

Two conditions dim $\mathfrak{D}(f, \sigma) = 1$ (= n - t) and $\sigma \in G$ are equivalent. We find

$$Pr(f,\sigma) = \begin{cases} 1 & \text{if } \sigma \in \hat{G}, \\ 0 & \text{otherwise,} \end{cases}$$

since $p \in \text{Spl}(f, \sigma)$ means

$$r_{\sigma(1)} + r_{\sigma(4)} = p + 1, r_{\sigma(1)} - r_{\sigma(2)} = -1, r_{\sigma(1)} + r_{\sigma(3)} = p$$

for a sufficiently large p, which implies $\sigma \in \hat{G}$. This is an example such that $Pr(f, \sigma) = 0$ but $vol(\mathfrak{D}(f, \sigma)) > 0$ for $\sigma \in G \setminus \hat{G}$ by $\#G = 8, \#\hat{G} = 2$, and this supports Conjecture 1.

The revision with respect to Expectation 1' in [K4] for a reducible polynomial f(x) is

CONJECTURE 2. Suppose that $Pr(f, \sigma) > 0$, $vol(\mathfrak{D}(f, \sigma)) > 0$ for a permutation σ ; then for a set $D = \overline{D^{\circ}} \subset [0, 1)^n$, we have

$$Pr_D(f,\sigma) := \lim_{X \to \infty} \frac{\#\{p \in \operatorname{Spl}_X(f,\sigma) \mid (r_1/p, \dots, r_n/p) \in D\}}{\#\operatorname{Spl}_X(f,\sigma)}$$
$$= \frac{\operatorname{vol}(D \cap \mathfrak{D}(f,\sigma))}{\operatorname{vol}(\mathfrak{D}(f,\sigma))}.$$

The suppositions $Pr(f, \sigma) > 0$, $vol(\mathfrak{D}(f, \sigma)) > 0$ are added.

Next, we discuss the one-dimensional equidistribution of r_i/p $(1 \le i \le n, p \in Spl(f))$ for local roots r_i , that is, whether for $0 \le a < 1$,

$$\lim_{X \to \infty} \frac{\sum_{p \in \operatorname{Spl}_X(f)} \#\{i \mid r_i/p \le a, 1 \le i \le n\}}{n \cdot \#\operatorname{Spl}_X(f)} = a$$

is true or not. We note that if f(x) has a rational integral root r_0 , then $r = r_0$ or $r = p + r_0$ is a local root according to $r_0 \ge 0$ or $r_0 < 0$ for a large prime $p \in \operatorname{Spl}(f)$, hence r/p tends to 0 or 1, that is the one-dimensional equidistribution is false. So, we exclude a polynomial with a rational integral root. We showed that Conjectures above imply the one-dimensional equidistribution of roots r_i/p for a polynomial which has no non-trivial linear relation among roots by calculation (cf. [K2]). Here we show for a more general polynomial, e.g., an irreducible polynomial of degree larger than 1, that Conjectures 1, 2 imply the one-dimensional equidistribution of roots r_i/p not based on hard calculation.

Putting

$$D_{i,a} := \{ (x_1, \dots, x_n) \in [0,1)^n \mid x_i \le a \},\$$

it is easy to see

$$\sum_{p \in \operatorname{Spl}_X(f)} \#\{i \mid r_i/p \le a, 1 \le i \le n\}$$

= $\sum_{p \in \operatorname{Spl}_X(f)} \#\{i \mid (r_1/p, \dots, r_n/p) \in D_{i,a}\}$
= $\sum_{i=1}^n \#\{p \in \operatorname{Spl}_X(f) \mid (r_1/p, \dots, r_n/p) \in D_{i,a}\}$
= $\sum_{i=1}^n \sum_{\sigma \in S_n} \#\{p \in \operatorname{Spl}_X(f, \sigma) \mid (r_1/p, \dots, r_n/p) \in D_{i,a}\}/\#\hat{G} + O(1),$

since we know by Proposition 2 in [K3] that if a prime $p \in \text{Spl}(f)$ is sufficiently large, then there are exactly $\#\hat{G}$ permutations σ satisfying $p \in \text{Spl}(f, \sigma)$. Therefore we have

$$\lim_{X \to \infty} \frac{\sum_{p \in \operatorname{Spl}_X(f)} \#\{i \mid r_i/p \le a, 1 \le i \le n\}}{n \# \operatorname{Spl}_X(f)}$$

$$= \lim_{X \to \infty} \sum_{i=1}^n \frac{\sum_{\sigma \in S_n} \#\{p \in \operatorname{Spl}_X(f, \sigma) \mid (r_1/p, \dots, r_n/p) \in D_{i,a}\}}{n \cdot \#\hat{G} \cdot \# \operatorname{Spl}_X(f)}$$

$$= \lim_{X \to \infty} \sum_{i=1}^n \frac{\sum_{\sigma \in S'_n} \#\{p \in \operatorname{Spl}_X(f, \sigma) \mid (r_1/p, \dots, r_n/p) \in D_{i,a}\}}{\# \operatorname{Spl}_X(f, \sigma)}$$

$$\times \frac{\# \operatorname{Spl}_X(f, \sigma)}{n \cdot \#\hat{G} \cdot \# \operatorname{Spl}_X(f)}$$

where S_n' is a subset of S_n consisting of permutations satisfying $\Pr(f,\sigma)>0$

$$= \frac{1}{n\#\hat{G}} \sum_{i=1}^{n} \sum_{\sigma \in S'_{n}} Pr_{D_{i,a}}(f,\sigma) Pr(f,\sigma)$$

$$= \frac{1}{nc\#\hat{G}} \sum_{i=1}^{n} \sum_{\sigma \in S'_{n}} Pr_{D_{i,a}}(f,\sigma) \operatorname{vol}(\mathfrak{D}(f,\sigma)) \quad \text{(by Conjecture 1)}$$

$$= \frac{1}{nc\#\hat{G}} \sum_{i=1}^{n} \sum_{\sigma \in S'_{n}} \operatorname{vol}(D_{i,a} \cap \mathfrak{D}(f,\sigma)) \quad \text{(by Conjecture 2)}.$$

98

We note that the dimension of the set

$$D_{i,0} \cap \mathfrak{D}(f,\sigma) = \left\{ (x_1, \dots, x_n) \middle| 0 \le x_1 \le \dots \le x_n < 1, x_i = 0, \sum_{k=1}^n m_{j,k} x_{\sigma(k)} \in \mathbb{Z} \left({}^\forall j \right) \right\}$$

is less than n - t, since the condition $x_i = 0$ is independent of conditions $\sum_{k=1}^{n} m_{j,k} x_{\sigma(k)} \in \mathbb{Z}(\forall j)$ by the assumption that f(x) has no rational root. Therefore the above is equal to 0 at a = 0, and to 1 at a = 1 by

$$c = \frac{\sum_{Pr(f,\sigma)>0} \operatorname{vol}(\mathfrak{D}(f,\sigma))}{\sum Pr(f,\sigma)} = \sum_{Pr(f,\sigma)>0} \operatorname{vol}(\mathfrak{D}(f,\sigma)) / \# \hat{G},$$

using Corollary 2 in [K3]. Hence, once we have shown that it is a linear form in a, it is equal to a on [0,1), that is the distribution of r_i/p is uniform. The difference between the above sum restricted on S'_n and the full sum

$$\sum_{i=1}^{n} \sum_{\sigma \in S_n} \operatorname{vol}(D_{i,a} \cap \mathfrak{D}(f, \sigma))$$
(5)

is

$$\sum_{i=1}^{n} \sum_{Pr(f,\sigma)=0, \text{ vol}(\mathfrak{D}(f,\sigma))>0} \text{vol}(D_{i,a} \cap \mathfrak{D}(f,\sigma)).$$
(6)

From now on, the aim is to show that (5) is a linear form in a. Under the assumption that the conditions $Pr(f, \sigma) > 0$ and $vol(\mathfrak{D}(f, \sigma)) > 0$ are equivalent, it means that (6) vanishes and the distribution of r_i/p is uniform.

We assume still that a polynomial f(x) has no rational roots, and put

$$\begin{aligned} \mathbb{Q}(f) &:= \mathbb{Q}(\alpha_1, \dots, \alpha_n), \\ \beta_i &:= \alpha_i - tr_{\mathbb{Q}(f)/\mathbb{Q}}(\alpha_i) / [\mathbb{Q}(f) : \mathbb{Q}] \quad (\neq 0), \\ LR_0 &:= \left\{ (l_1, \dots, l_n) \in \mathbb{Q}^n \middle| \sum_{i=1}^n l_i \alpha_i \in \mathbb{Q} \right\} \\ &= \left\{ (l_1, \dots, l_n) \in \mathbb{Q}^n \middle| \sum_{i=1}^n l_i \beta_i = 0 \right\}, \\ \mathfrak{D}_f &:= \left\{ \boldsymbol{x} \in \mathbb{R}^n \middle| (\boldsymbol{l}, \boldsymbol{x}) \in \mathbb{Z} \quad for \quad \forall \boldsymbol{l} \in LR_0 \cap \mathbb{Z}^n \right\}. \end{aligned}$$

LEMMA 0.1. Suppose that $\alpha_i - \alpha_j \notin \mathbb{Q}$ for any distinct i, j. We have

$$\sum_{i=1}^{n} \sum_{\sigma \in S_n} \operatorname{vol}(D_{i,a} \cap \mathfrak{D}(f, \sigma)) = \sum_{i=1}^{n} \operatorname{vol}(\{\boldsymbol{x} \in [0, 1)^n \mid x_i \le a\} \cap \mathfrak{D}_f),$$

in particular,

$$\sum_{\sigma \in S_n} \operatorname{vol}(\mathfrak{D}(f, \sigma)) = \operatorname{vol}([0, 1)^n \cap \mathfrak{D}_f).$$

Proof. The equations

$$D_{i,a} \cap \mathfrak{D}(f,\sigma)$$

$$= \left\{ \boldsymbol{x} \in [0,1)^n \mid x_1 \leq \cdots \leq x_n, x_i \leq a, \left(\boldsymbol{l}, \sigma^{-1}(\boldsymbol{x})\right) \in \mathbb{Z} \quad \text{for } \forall \boldsymbol{l} \in LR_0 \cap \mathbb{Z}^n \right\}$$

$$= \left\{ \boldsymbol{x} \in [0,1)^n \mid x_1 \leq \cdots \leq x_n, x_i \leq a, \sigma^{-1}(\boldsymbol{x}) \in \mathfrak{D}_f \right\}$$

$$= \sigma \left(\left\{ \boldsymbol{y} \in [0,1)^n \mid y_{\sigma^{-1}(1)} \leq \cdots \leq y_{\sigma^{-1}(n)}, y_{\sigma^{-1}(i)} \leq a \right\} \cap \mathfrak{D}_f \right)$$

imply

$$\operatorname{vol}(D_{i,a} \cap \mathfrak{D}(f,\sigma)) = \operatorname{vol}(\{\boldsymbol{y} \in \mathbb{R}^n \mid 0 < y_{\sigma^{-1}(1)} < \dots < y_{\sigma^{-1}(n)} < 1, y_{\sigma^{-1}(i)} \leq a\} \cap \mathfrak{D}_f).$$

Here, we note that by the assumption, LR_0 contains no vector of the form $(0, \ldots, 0, 1, 0, \ldots, -1, 0, \ldots, 0)$ and \mathfrak{D}_f is defined by t linearly independent vectors \mathbf{m}_j and the volume vol is (n-t)-dimensional one, hence it is not necessary to care an additional equation $x_i = x_j$ for $i \neq j$. Let us define a mapping ϕ from

$$X(i) := \{ (\boldsymbol{x}, i) \mid \boldsymbol{x} \in (0, 1)^n, 1 \le i \le n, x_i \le a, x_j \ne x_l \quad \text{if } j \ne l \}$$

to the union of

$$Y(\sigma, k) := \{ (\boldsymbol{y}, \sigma, k) \mid \boldsymbol{y} \in (0, 1)^n, 0 < y_{\sigma(1)} < \dots < y_{\sigma(n)} < 1, y_{\sigma(k)} \le a \}$$

by $\phi((\boldsymbol{x}, i)) = (\boldsymbol{x}, \sigma, k)$, where σ, k are defined by

$$x_{\sigma(1)} < \dots < x_{\sigma(n)}, \ k = \sigma^{-1}(i),$$

hence

$$\phi(X(i)) = \bigcup_{\sigma,k:\sigma(k)=i} Y(\sigma,k) \text{ for } i = 1, \dots, n.$$

The mapping is clearly bijective for any fixed *i*, and if $(\boldsymbol{y}, \sigma, k) \in Y(\sigma, k)$ and $(\boldsymbol{y}, \sigma', k') \in Y(\sigma', k')$ occur with $\sigma(k) = \sigma'(k')$, then $\sigma = \sigma', k = k'$ hold. Hence, defining *pr* by $pr(\boldsymbol{y}, \sigma, k) = \boldsymbol{y}$, we have

$$pr(Y(\sigma,k)) \cap pr(Y(\sigma',k')) = \emptyset$$

if $\sigma(k) = \sigma'(k')$ and either $\sigma \neq \sigma'$ or $k \neq k'$, and so

$$\begin{split} \sum_{i=1}^{n} \sum_{\sigma} \operatorname{vol}(D_{i,a} \cap \mathfrak{D}(f, \sigma)) \\ &= \sum_{i=1}^{n} \sum_{\sigma} \operatorname{vol}(pr(Y(\sigma^{-1}, i)) \cap \mathfrak{D}_{f}) \\ &= \sum_{k=1}^{n} \sum_{\sigma} \operatorname{vol}(pr(Y(\sigma, k)) \cap \mathfrak{D}_{f}) \\ &= \sum_{i} \sum_{k, \sigma: \sigma(k) = i} \operatorname{vol}(pr(Y(\sigma, k)) \cap \mathfrak{D}_{f}) \\ &= \sum_{i} \operatorname{vol}(\bigcup_{k, \sigma: \sigma(k) = i} pr(Y(\sigma, k)) \cap \mathfrak{D}_{f}) \\ &= \sum_{i} \operatorname{vol}(pr(\bigcup_{k, \sigma: \sigma(k) = i} Y(\sigma, k)) \cap \mathfrak{D}_{f}) \\ &= \sum_{i} \operatorname{vol}(pr(X(i)) \cap \mathfrak{D}_{f}) \\ &= \sum_{i} \operatorname{vol}(\{x \in [0, 1)^{n} \mid x_{i} \leq a\} \cap \mathfrak{D}_{f}). \end{split}$$

Hence to show the equidistribution, we have only to see that each factor $\operatorname{vol}(\{\boldsymbol{x} \in [0,1)^n \mid x_i \leq a\} \cap \mathfrak{D}_f)$ is a linear form in a.

LEMMA 0.2. Suppose that β_1, \ldots, β_r are linearly independent over \mathbb{Q} and

$$(\beta_{r+1},\ldots,\beta_n) = (\beta_1,\ldots,\beta_r) T \text{ for } \exists T \in M_{r,n-r}(\mathbb{Q})$$

Then we have r = n - t,

$$LR_0 = \left\{ (l_1, \dots, l_n) \in \mathbb{Q}^n \middle| \begin{pmatrix} l_1 \\ \vdots \\ l_r \end{pmatrix} = -T \begin{pmatrix} l_{r+1} \\ \vdots \\ l_n \end{pmatrix} \right\}$$

and

$$\begin{pmatrix} \boldsymbol{m}_1 \\ \vdots \\ \boldsymbol{m}_t \end{pmatrix} = (S^t T, -S) \quad for \ \exists S \in GL_{n-r}(\mathbb{Q}) \cap M_{n-r}(\mathbb{Z}).$$

101

Proof. By

$$\sum_{i=1}^{n} x_i \beta_i = (\beta_1, \dots, \beta_r) \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} + T \begin{pmatrix} x_{r+1} \\ \vdots \\ x_n \end{pmatrix} \right\} \quad (x_i \in \mathbb{R}),$$

we see

$$LR_{0} = \left\{ (l_{1}, \dots, l_{n}) \in \mathbb{Q}^{n} \middle| \sum_{i=1}^{n} l_{i}\beta_{i} = 0 \right\}$$
$$= \left\{ (l_{1}, \dots, l_{n}) \in \mathbb{Q}^{n} \middle| \begin{pmatrix} l_{1} \\ \vdots \\ l_{r} \end{pmatrix} = -T \begin{pmatrix} l_{r+1} \\ \vdots \\ l_{n} \end{pmatrix} \right\},$$

which implies $t = \dim LR_0 = n - r$. On the other hand, the definition of T implies

$$({}^{t}T, -1_{n-r}) \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix} = 0^{(n-r,1)},$$

hence row vectors of the matrix $({}^{t}T, -1_{n-r})$ spann LR_0 by rank $({}^{t}T, -1_{n-r}) = \dim LR_0$ and so there is a matrix $S \in GL_{n-r}(\mathbb{Q})$ such that

$$\begin{pmatrix} \boldsymbol{m}_1 \\ \vdots \\ \boldsymbol{m}_t \end{pmatrix} = S(^tT, -1_{n-r}) = (S^tT, -S),$$

which implies that S is integral.

LEMMA 0.3. Supposing the assumption on β_i in Lemma 0.2, we have

$$\mathfrak{D}_f = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid (S^t T, -S)^t \boldsymbol{x} \in M_{t,1}(\mathbb{Z}) \right\}$$
$$= \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid (x_{r+1}, \dots, x_n) = (x_1, \dots, x_r)T + \boldsymbol{k}^t S^{-1} \left(\exists \boldsymbol{k} \in M_{1,t}(\mathbb{Z}) \right) \right\}.$$

For $(x_1, \ldots, x_r) \in [0, 1)^r$, there are exactly $|\det(S)|$ vectors $(x_{r+1}, \ldots, x_n) \in [0, 1)^{n-r}$ such that $(x_1, \ldots, x_n) \in \mathfrak{D}_f$.

102

Proof. We see that

$$\mathfrak{D}_{f} = \left\{ \boldsymbol{x} \in \mathbb{R}^{n} \middle| \begin{pmatrix} \boldsymbol{m}_{1} \\ \vdots \\ \boldsymbol{m}_{t} \end{pmatrix}^{t} \boldsymbol{x} \in M_{t,1}(\mathbb{Z}) \right\} = \left\{ \boldsymbol{x} \in \mathbb{R}^{n} \mid (S^{t}T, -S)^{t} \boldsymbol{x} \in M_{t,1}(\mathbb{Z}) \right\}$$
$$= \left\{ \boldsymbol{x} \in \mathbb{R}^{n} \mid ((x_{r+1}, \dots, x_{n}) - (x_{1}, \dots, x_{r})T)^{t}S \in M_{1,t}(\mathbb{Z}) \right\}$$
$$= \left\{ \boldsymbol{x} \in \mathbb{R}^{n} \mid (x_{r+1}, \dots, x_{n}) = (x_{1}, \dots, x_{r})T + \boldsymbol{k}^{t}S^{-1} (\stackrel{\exists}{=} \boldsymbol{k} \in M_{1,t}(\mathbb{Z})) \right\}.$$

Since $S \in GL_{n-r}(\mathbb{Q})$ is an integral regular matrix, the inclusion $\mathbb{Z}^{n-r} {}^{t}S^{-1} \supset \mathbb{Z}^{n-r}$ is clear. Hence, for $(x_1, \ldots, x_r) \in \mathbb{R}^r$, there is a vector $(x_{r+1}, \ldots, x_n) := (x_1, \ldots, x_r)T + \mathbf{k}^{t}S^{-1} \in [0, 1)^{n-r}$ for some integral vector \mathbf{k} . The number of such integral vectors is $|\det(S)|$ since S is integral.

Thus we see that, assuming that β_1, \ldots, β_r is linearly independent over \mathbb{Q} and $1 \leq i \leq r$ as above

$$\{ \boldsymbol{x} \in [0,1)^n \mid x_i \le a \} \cap \mathfrak{D}_f = \\ \{ \boldsymbol{x} \in [0,1)^n \mid x_i \le a, (x_{r+1}, \dots, x_n) = (x_1, \dots, x_r)T + \boldsymbol{k}^t S^{-1} \left({}^\exists \boldsymbol{k} \in M_{1,t}(\mathbb{Z}) \right) \},\$$

which is included in the union of sets parallel to the subspace

$$\left\{\boldsymbol{x}\in\mathbb{R}^n\mid (x_{r+1},\ldots,x_n)=(x_1,\ldots,x_r)T\right\},\$$

and the projection to $E_{i,a} := \{ \boldsymbol{x} \in [0,1)^r \mid x_i \leq a \}$ is exactly $|\det(S)|$ -fold independently on \boldsymbol{x} by the lemma above. Hence the volume of $\{ \boldsymbol{x} \in [0,1)^n \mid x_i \leq a \} \cap \mathfrak{D}_f$ as an r (= n - t)-dimensional set is proportional to $a = \operatorname{vol}(E_{i,a})$. In general, for given i, we have only to take a subset j_1, \ldots, j_r such that $\beta_{j_1}, \ldots, \beta_{j_r}$ are linearly independent over \mathbb{Q} and $j_k = i$ for some k. Thus, we have proved that

THEOREM 0.1. If a polynomial f(x) has no rational root, $\alpha_i - \alpha_j \notin \mathbb{Q}$ for any distinct i, j, and the conditions $Pr(f, \sigma) > 0$ and $vol(\mathfrak{D}(f, \sigma)) > 0$ are equivalent, then Conjectures 1, 2 imply the equidistribution of r_i/p for local roots r_i of the polynomial.

So, the equidistribution of r_i/p for local roots r_i is likely for an irreducible polynomial f(x) of deg f > 1. Although the polynomial

$$f(x) = (x^{2} - 2)((x - 1)^{2} - 2)$$

does not satisfy the assumption of the theorem, the equidistribution of local roots r_i/p is true by [DFI], [T].

Put, for an algebraic number field F containing $\mathbb{Q}(f)$

 $\operatorname{Spl}(f, F) := \{ p \in \operatorname{Spl}(f) \mid p \text{ is fully splitting at } F \}.$

If a subsequence of r_i/p for local roots r_i of f restricted on $p \in \text{Spl}(f, F)$ distributes uniformly for every irreducible polynomial f of deg f > 1 and every number field F, then the one-dimensional distribution of r_i/p for any reducible polynomial without rational root is true.

REMARK. Foo proves in [F] that the set $\{r_i/p \mid 1 \le i \le n, p \in \text{Spl}(f)\}$ is dense in the interval (0, 1) for an irreducible polynomial f(x) of degree > 1 under the Bouniakowsky conjecture.

REFERENCES

- [DFI] DUKE, W.—FRIEDLANDER, J. B.—IWANIEC, H.: Equidistribution of roots of a quadratic congruence to prime moduli, Ann. Math. 141 (1995), 423–441.
- [F] FOO, T.: The Bouniakowsky conjecture and the density of polynomial roots to prime moduli, Acta Arith. 144 (2010), 1–4.
- [K1] KITAOKA, Y.: Notes on the distribution of roots modulo a prime of a polynomial, Unif. Distrib. Theory 12 (2017), no. 2, 91–116.
- [K2] KITAOKA, Y.: Statistical distribution of roots of a polynomial modulo primes III, International Journal of Statistics and Probability 7 (2017), 115–124.
- [K3] KITAOKA, Y.: Notes on the distribution of roots modulo a prime of a polynomial II, Unif. Distrib. Theory 14 (2019), no. 1, 87–104.
- [K4] KITAOKA, Y.: Conjectures on the distribution of roots modulo a prime of a polynomial, arXiv: 1905.02364v7
- [T] TOTH, A.: Roots of quadratic congruences, Internat. Math. Res. Notices, (2000), 719–739.

Received February 14, 2020 Accepted April 21, 2020 Yoshiyuki Kitaoka (Author is retired) Asahi JAPAN E-mail: kitaoka@meijo-u.ac.jp