

DOI: 10.2478/udt-2020-0004 Unif. Distrib. Theory **15** (2020), no.1, 75-92

KUMMER THEORY FOR NUMBER FIELDS AND THE REDUCTIONS OF ALGEBRAIC NUMBERS II

Antonella Perucca—Pietro Sgobba

University of Luxembourg, LUXEMBOURG

ABSTRACT. Let K be a number field, and let G be a finitely generated and torsion-free subgroup of K^{\times} . For almost all primes \mathfrak{p} of K, we consider the order of the cyclic group $(G \mod \mathfrak{p})$, and ask whether this number lies in a given arithmetic progression. We prove that the density of primes for which the condition holds is, under some general assumptions, a computable rational number which is strictly positive. We have also discovered the following equidistribution property: if ℓ^e is a prime power and a is a multiple of ℓ (and a is a multiple of 4 if $\ell = 2$), then the density of primes \mathfrak{p} of K such that the order of $(G \mod \mathfrak{p})$ is congruent to a modulo ℓ^e only depends on a through its ℓ -adic valuation.

Communicated by Vladimír Baláž

1. Introduction

If we reduce the number 2 modulo every odd prime number p, then we have the sequence of natural numbers given by the multiplicative order of $(2 \mod p)$. This sequence is very mysterious, and for example it is not known unconditionally whether the order of $(2 \mod p)$ equals p - 1 for infinitely many primes p, see [3]. Now consider a non-zero integer z: the density of primes p for which the multiplicative order of $(z \mod p)$ lies in a given arithmetic progression has been studied in various papers by Chinen and Murata, and by Moree, see, e.g. [1,4].

 $[\]bigodot$ 2020 BOKU-University of Natural Resources and Life Sciences and Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: Primary: 11R44; Secondary: 11R45, 11R18, 11R21.

Keywords: Number field, reduction, multiplicative order, arithmetic progression, density. Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

More generally, consider a number field K and a multiplicative subgroup G of K^{\times} which is finitely generated. For positive integers x, y with $y \mid x$ we denote by $K_x := K(\zeta_x)$ the xth cyclotomic extension of K, and by $K_{x,y} := K_x(\sqrt[y]{G})$ the yth Kummer extension of G over K_x . If \mathfrak{p} is a prime of K, then we write $\operatorname{ord}_{\mathfrak{p}}(G)$ for the multiplicative order of $(G \mod \mathfrak{p})$, which we tacitly assume to be well-defined. As customary, given two integers x, y we write (x, y) for their greatest common divisor and [x, y] for their least common multiple. Finally, if we assume (GRH) we mean the extended Riemann hypothesis for the Dedekind zeta function of number fields.

In [8] we have generalised results by Ziegler [10] to higher rank and have proven in particular the following statement.

THEOREM 1 ([8, Theorem 1.3]). Let K be a number field, and let G be a finitely generated and torsion-free subgroup of K^{\times} of positive rank. Fix an integer $d \ge 2$, fix an integer a, and consider the following set of primes of K:

$$\mathcal{P} := \{\mathfrak{p} : \operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod d\}.$$

Let $\mathcal{P}(x)$ be the number of primes \mathfrak{p} in \mathcal{P} with norm up to x.

Assuming (GRH), for every $x \ge 1$ we have

$$\mathcal{P}(x) = \frac{x}{\log x} \sum_{n,t \ge 1} \frac{\mu(n)c(n, a, d, t)}{[K_{[d,n]t,nt} : K]} + O\left(\frac{x}{\log^{3/2} x}\right), \tag{1}$$

where $c(n, a, d, t) \in \{0, 1\}$, and where c(n, a, d, t) = 1 if and only if the following conditions hold:

- (i) (1 + at, d) = 1;
- (ii) $(d, n) \mid a;$
- (iii) the element of $\operatorname{Gal}(\mathbb{Q}(\zeta_{dt})/\mathbb{Q})$ mapping ζ_{dt} to ζ_{dt}^{1+at} is the identity on $\mathbb{Q}(\zeta_{dt}) \cap K_{nt,nt}$.

From this result it is not clear whether the natural density $\operatorname{dens}_K(G, a \mod d)$ of the set \mathcal{P} is a rational number, if it is strictly positive, or if it is possible to evaluate it. The main results of this paper are the following, where K, G, a, and d are as in Theorem 1:

THEOREM 2. Assume (GRH). Let $d = \ell^e$ for some prime number ℓ and for some $e \ge 1$. Suppose that $K = K_\ell$ if ℓ is odd, or that $K = K_4$ if $\ell = 2$. Then the density dens_K(G, a mod ℓ^e) depends on a only through its ℓ -adic valuation, and it is a computable strictly positive rational number. In particular, it is the same for all a coprime to ℓ .

Although the previous result has an assumption on the base field, we do not need that assumption in the following corollary.

COROLLARY 3 (Equidistribution property). Assume (GRH). Let K be any number field, and let $d = \ell^e$ for a prime number ℓ and $e \ge 1$. Suppose that $\ell \mid a$ if ℓ is odd, or that $4 \mid a$ and $e \ge 2$ if $\ell = 2$. Then the density dens_K(G, a mod ℓ^e) depends on a only through its ℓ -adic valuation, and it is a computable strictly positive rational number.

The following result concerns the case of composite modulus.

THEOREM 4. Assume (GRH). Let $d \ge 2$ and set $r := \prod_{\ell \mid d} \ell$ to be its radical. Suppose that $K = K_r$ if d is odd, or that $K = K_{2r}$ if d is even. Then, for a coprime to d, the density dens_K(G, a mod d) is a computable strictly positive rational number which does not depend on a.

The following result generalises the positivity assertion of Corollary 3.

THEOREM 5. Assume (GRH). The density dens_K(G, a mod d) is strictly positive for any number field K if d is a prime power or if a is coprime to d.

Theorem 2 is proven in Section 3.1 for ℓ odd, and in Section 3.2 for $\ell=2$, respectively. We prove Corollary 3 in Section 3.3. Theorem 4 is proven in Section 3.4, while Theorem 5 is proven in Section 3.5. Section 4 is devoted to removing from Theorem 1 the assumption that the group G is torsion-free. Finally, Section 5 contains examples of applications of the above theorems and some numerical data.

Notice that in this paper we rely on Theorem 1 and hence most of our results assume (GRH): if the density in Theorem 1 is known unconditionally, then our results would also be unconditional.

2. Preliminaries

Let K be a number field, and let G be a finitely generated and torsion-free subgroup of K^{\times} . In the whole paper we tacitly assume that the primes \mathfrak{p} of K that we consider are such that the reduction of G modulo \mathfrak{p} is a well-defined subgroup of the multiplicative group of the residue field at \mathfrak{p} . Notice that the results of this section are unconditional.

2.1. Prescribing valuations for the order

THEOREM 6. Let ℓ_1, \ldots, ℓ_n be distinct prime numbers and x_1, \ldots, x_n nonnegative integers. Then the density of primes \mathfrak{p} of K such that $v_{\ell_i}(\operatorname{ord}_{\mathfrak{p}}(G)) = x_i$ for all i is a strictly positive computable rational number.

Proof. The rationality of the density can be seen by neglecting the condition on the Frobenius in [5, Theorem 18]. For the positivity, apply [6, Proposition 12] to a basis g_1, \ldots, g_r of G consisting of \mathbb{Z} -independent points of the multiplicative group K^{\times} .

COROLLARY 7. Given an integer $d \ge 2$ and a positive divisor g of d, the sum of densities $\sum_{n=1}^{\infty} |a_n| = (C_{n-1} |a_n|)$

$$\sum_{\substack{0 \leq a < d \\ (a,d) = q}} \operatorname{dens}_K(G, a \bmod d) \tag{2}$$

is a strictly positive computable rational number.

Proof. We will express the sum (2) as a rational combination of densities as in Theorem 6. Write $g = \prod_{i=1}^{n} \ell_i^{f_i}$, and partition the index set as $\{1, \ldots, n\} = I \sqcup J$ such that $f_i < v_{\ell_i}(d)$ for $i \in I$, and $f_i = v_{\ell_i}(d)$ for $i \in J$. Then it is easy to check that

$$\sum_{\substack{0 \leq a < d \\ (a,d) = g}} \operatorname{dens}_{K}(G, a \bmod d) = \operatorname{dens}_{K} \left(\left\{ \mathfrak{p} : \begin{array}{c} v_{\ell_{i}} \left(\operatorname{ord}_{\mathfrak{p}}(G) \right) = f_{i}, \forall i \in I, \\ v_{\ell_{i}} \left(\operatorname{ord}_{\mathfrak{p}}(G) \right) \geqslant f_{i}, \forall i \in J \end{array} \right\} \right).$$
(3)

From this expression and Theorem 6 we deduce that (2) is strictly positive. The density on the right-hand side of (3) is given by (applying the inclusionexclusion principle for the primes up to x and then taking the limit to make the densities)

$$\sum_{s=0}^{|J|} (-1)^s \sum_{\substack{S \subseteq J \\ |S|=s}} \operatorname{dens}_K \left(\left\{ \mathfrak{p} : \begin{array}{c} v_{\ell_i} \left(\operatorname{ord}_{\mathfrak{p}}(G) \right) = f_i, \quad \forall i \in I, \\ v_{\ell_i} \left(\operatorname{ord}_{\mathfrak{p}}(G) \right) \leqslant f_i - 1, \forall i \in S \end{array} \right\} \right), \quad (4)$$

and each of the densities in (4) exists and equals

$$\operatorname{dens}_{K} \left(\left\{ \mathfrak{p}: \begin{array}{l} v_{\ell_{i}} \left(\operatorname{ord}_{\mathfrak{p}}(G^{h}) \right) = f_{i}, \forall i \in I, \\ \mathfrak{p}: \\ v_{\ell_{i}} \left(\operatorname{ord}_{\mathfrak{p}}(G^{h}) \right) = 0, \ \forall i \in S \end{array} \right\} \right),$$

where $h = \prod_{i \in S} \ell_i^{f_i - 1}$.

Such densities are computable rational numbers by Theorem 6. Hence the statement is proven. $\hfill \Box$

REMARK 8. Corollary 7 implies that the density $\operatorname{dens}_K(G, 0 \mod d)$ is known unconditionally to be a strictly positive computable rational number.

2.2. Simplifications by changing the modulus

We keep the notation of Theorem 1. By Remark 8 we may suppose that 0 < a < d. The following lemma allows us to reduce to residue classes coprime to d if d is a prime power.

LEMMA 9. Let $d = \ell^e$, where ℓ is a prime number and $e \ge 1$. Suppose that $a = \ell^x \cdot w$, where w is coprime to ℓ and 0 < x < e. Set $w_j := w + j\ell^{e-x}$ for $0 \le j < \ell$ (notice that w_j is also coprime to ℓ). Then the primes \mathfrak{p} of K such that $\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod d$ are exactly those such that

$$\operatorname{ord}_{\mathfrak{p}}(G^{\ell^x}) \equiv w \mod \ell^{e-x} \tag{5}$$

minus those such that

$$\operatorname{prd}_{\mathfrak{p}}(G^{\ell^{x-1}}) \equiv w_j \mod \ell^{e-x+1}$$
 (6)

for some $0 \leq j < \ell$. In particular, we have

 $\operatorname{dens}_K \left(G, \ a \bmod \ell^e \right) =$

$$\operatorname{dens}_{K}\left(G^{\ell^{x}}, \ w \bmod \ell^{e-x}\right) - \sum_{j=0}^{\ell-1} \operatorname{dens}_{K}\left(G^{\ell^{x-1}}, \ w_{j} \bmod \ell^{e-x+1}\right).$$

Proof. Notice that condition (6) for any j implies condition (5) because w_j is coprime to ℓ and hence we must have $\operatorname{ord}_{\mathfrak{p}}(G^{\ell^x}) = \operatorname{ord}_{\mathfrak{p}}(G^{\ell^{x-1}})$.

Let \mathfrak{p} be a prime of K such that $\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod d$. In particular, ℓ^x divides $\operatorname{ord}_{\mathfrak{p}}(G)$. Thus we have

$$\operatorname{ord}_{\mathfrak{p}}\left(G^{\ell^{x}}\right) = \frac{\operatorname{ord}_{\mathfrak{p}}(G)}{\ell^{x}} \quad \text{and} \quad \operatorname{ord}_{\mathfrak{p}}\left(G^{\ell^{x-1}}\right) = \frac{\operatorname{ord}_{\mathfrak{p}}(G)}{\ell^{x-1}}.$$

Dividing the congruence $\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod \ell^e$ by ℓ^x and ℓ^{x-1} , respectively, we obtain

$$\operatorname{ord}_{\mathfrak{p}}\left(G^{\ell^{x}}\right) \equiv w \mod \ell^{e-x} \quad \text{and} \quad \operatorname{ord}_{\mathfrak{p}}\left(G^{\ell^{x-1}}\right) \equiv w\ell \mod \ell^{e-x+1}$$

We have proven one containment because $w\ell$ is not congruent to any of the w_j modulo ℓ .

Now suppose that (5) holds, and that (6) does not hold for any j. In particular we must have $\operatorname{ord}_{\mathfrak{p}}(G^{\ell^{x-1}}) \neq \operatorname{ord}_{\mathfrak{p}}(G^{\ell^{x}})$. We deduce $\operatorname{ord}_{\mathfrak{p}}(G^{\ell^{x-1}}) = \ell \cdot \operatorname{ord}_{\mathfrak{p}}(G^{\ell^{x}})$, and therefore $\operatorname{ord}_{\mathfrak{p}}(G) = \ell^{x} \cdot \operatorname{ord}_{\mathfrak{p}}(G^{\ell^{x}})$. We may conclude because multiplying (5) by ℓ^{x} gives

$$\ell^x \cdot \operatorname{ord}_{\mathfrak{p}}\left(G^{\ell^x}\right) \equiv a \mod d.$$

REMARK 10. Consider the condition $\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod d$. Decompose (a, d) = sh where $s = \prod_{\ell \mid (a,d)} \ell$ is its radical, and write $a' = \frac{a}{h}, d' = \frac{d}{h}$. Notice that (a', d') = s is squarefree. We claim that the following equivalence holds:

 $\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod d \qquad \Longleftrightarrow \qquad \operatorname{ord}_{\mathfrak{p}}(G^h) \equiv a' \mod d'.$

If the first congruence is satisfied, then (a, d) divides $\operatorname{ord}_{\mathfrak{p}}(G)$, so in particular we have $\operatorname{ord}_{\mathfrak{p}}(G)$

$$\frac{\operatorname{ord}_{\mathfrak{p}}(G)}{h} \equiv a' \bmod d'.$$

Since h divides $\operatorname{ord}_{\mathfrak{p}}(G)$, we have $\frac{\operatorname{ord}_{\mathfrak{p}}(G)}{h} = \operatorname{ord}_{\mathfrak{p}}(G^{h})$ and the second congruence holds. Conversely, if the second congruence is satisfied, then s = (a', d') divides $\operatorname{ord}_{\mathfrak{p}}(G^{h})$. Since h introduces no new prime factors, we have

$$\operatorname{ord}_{\mathfrak{p}}(G^h) \cdot h = \operatorname{ord}_{\mathfrak{p}}(G)$$

and hence the congruence $\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod d$ holds.

2.3. A general result

We keep the notation from Theorem 1, and we denote by $\text{Dens}_K(G, d)$ the density of primes \mathfrak{p} of K such that $\text{ord}_{\mathfrak{p}}(G)$ is coprime to d.

REMARK 11. From the results in [2] and [7], under the assumptions of Theorems 2 and 4, the density $\text{Dens}_K(G, d)$ depends on G only through the d--parameters for the ℓ -divisibility of G for each $\ell \mid d$. As a consequence of the results of this paper, the same holds for the density $\text{dens}_K(G, a \mod d)$ considered in Theorems 2 and 4 and in Corollary 3.

THEOREM 12. Let ℓ be a prime number. Suppose that for every G and for every $e \ge 1$ we have

$$\operatorname{dens}_{K}\left(G, w \bmod \ell^{e}\right) = \operatorname{dens}_{K}\left(G, w' \bmod \ell^{e}\right)$$

as long as w, w' are coprime to ℓ . Then for every G and for every $e \ge 1$ the density $\operatorname{dens}_{K}(G, a \mod \ell^{e})$

depends on a only through its ℓ -adic valuation, and it is a computable rational number.

Proof. We know from [2, Theorem 3] that the quantity

 $Dens_K(G, \ell) = 1 - dens_K(G, 0 \mod \ell)$

is a computable rational number. Then for every a coprime to ℓ , by the assumption on the equidistribution, we have

dens_K(G, a mod
$$\ell^e$$
) = $\frac{1}{\varphi(\ell^e)}$ · Dens_K(G, ℓ),

so that dens_K($G, a \mod \ell^n$) is a computable rational number which does not depend on a.

For $0 < a < \ell^e$ not coprime to ℓ we apply Lemma 9, which allows us to compute the density dens_K($G, a \mod \ell^e$) as the difference of densities which we know to be computable rational numbers. More precisely, by the equidistribution condition the formula given in Lemma 9 becomes

 $\operatorname{dens}_K(G, a \mod \ell^e) =$

$$\operatorname{dens}_{K}\left(G^{\ell^{x}}, w \bmod \ell^{e-x}\right) - \ell \cdot \operatorname{dens}_{K}\left(G^{\ell^{x-1}}, w \bmod \ell^{e-x+1}\right),$$

where $a = w\ell^x$ and $x = v_\ell(a)$. In particular, this formula shows that what matters about a is only its ℓ -adic valuation.

Finally, the density for a = 0 is given as the complementary density of all the considered cases, and hence it is also a computable rational number.

REMARK 13. Notice that for $0 < a < \ell^e$ with some fixed valuation $v_\ell(a) = x$ where $0 \leq x < e$, the previous theorem says that we have the following density

$$\operatorname{dens}_{K}(G, a \bmod \ell^{e}) = \frac{1}{\varphi(\ell^{e-x})} \cdot \operatorname{dens}_{K}\left(\{\mathfrak{p} : v_{\ell}(\operatorname{ord}_{\mathfrak{p}}(G)) = x\}\right).$$
(7)

PROPOSITION 14. With the assumptions of Theorem 12, we have that the density $\operatorname{dens}_K(G, a \mod \ell^e)$ is strictly positive for every a.

Proof. For a = 0 we know this unconditionally by Remark 8. For $0 < a < \ell^e$, by Theorem 6 the densities (7) in Remark 13 are strictly positive.

We say that a prime \mathfrak{p} of K is of degree 1 if both its ramification index and its residue class degree over \mathbb{Q} are equal to 1.

LEMMA 15. Let K be a number field, and let G be a finitely generated and torsion-free subgroup of K^{\times} . Let a, d be integers with $d \ge 2$ and let $r := \prod_{\ell \mid d} \ell$ be the radical of d. Let m = r if d is odd, and m = 2r otherwise. Consider the following set of primes \mathfrak{p} of K:

$$\mathcal{S} := \{ \mathfrak{p} : \operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod d, \operatorname{N} \mathfrak{p} \equiv 1 \mod m \}.$$

Then the density of the set S exists and it is equal to

$$\frac{1}{[K_m:K]} \cdot \operatorname{dens}_{K_m}(G, a \bmod d) \,. \tag{8}$$

REMARK 16. Notice that, assuming (GRH), a formula for the density of the set S is given in [8, Corollary 5.2]. By Theorems 2 and 4 it follows that the density (8) is a computable strictly positive rational number if d is a prime power or if a is coprime to d. Moreover, if $d = \ell^e$ for a prime ℓ , then the density of S depends on a only through its ℓ -adic valuation, while if d is composite and (a, d) = 1, then it does not depend on a.

Proof of Lemma 15. We may assume that the primes \mathfrak{p} of S are of degree 1 and unramified in K_m . Hence for a prime \mathfrak{p} in S we have $N\mathfrak{p} \equiv 1 \mod m$ if and only if \mathfrak{p} splits completely in K_m . Therefore, the set of primes of K_m lying above the primes of S is the set

 $\{\mathfrak{P} \subseteq K_m \text{ of degree } 1 : \operatorname{ord}_{\mathfrak{P}}(G) \equiv a \mod d\},\$

which has density dens_{K_m}($G, a \mod d$). Thus we obtain that the density of the set S exists and it is equal to $1/[K_m : K]$ times dens_{K_m}($G, a \mod d$) (see, for instance, [7, Proposition 1]).

3. Proof of the results in the Introduction

We keep the notation of Theorem 1.

3.1. Proof of Theorem 2 for ℓ odd

LEMMA 17. Let ℓ be an odd prime number. Suppose that $K = K_{\ell}$. For every G and for every $e \ge 1$ we have

$$c(n, x, \ell^e, t) = c(n, x', \ell^e, t)$$

as long as x, x' are coprime to ℓ .

Proof. Let $d = \ell^e$. Let *a* vary among the integers strictly between 0 and *d* and coprime to ℓ . Since *a* is coprime to ℓ and $d = \ell^e$, the condition $(d, n) \mid a$ means $\ell \nmid n$ and it is independent of *a*. If c(n, a, d, t) is non-zero, then the integer *t* must be divisible by ℓ because $\zeta_{\ell} \in K$ and hence it must be fixed if raised to the power 1 + at (recall that *a* is coprime to ℓ). In particular, the condition (1 + at, d) = 1 holds independently of *a*.

We are left to check that Condition (iii) of Theorem 1 does not depend on a, provided that Conditions (i) and (ii) hold. Write $F := K_{nt,nt}$ and define $\tau := v_{\ell}(t)$. We thus have to show that the following is independent of a: the Galois group of $F_{\ell^{e+\tau}}/F$ contains the automorphism σ_{1+ta} satisfying $\zeta_{\ell^{e+\tau}} \mapsto \zeta_{\ell^{e+\tau}}^{1+at}$. Since $K = K_{\ell}$, we have some largest integer $x \ge \tau \ge 1$ such that F contains \mathbb{Q}_{ℓ^x} , and this integer determines the Galois group of $F_{\ell^{e+\tau}}/F$, which is a finite cyclic ℓ -group.

If $x \ge e + \tau$, then the field extension $F_{\ell^{e+\tau}}/F$ is trivial and the coefficient $c(n, a, \ell^e, t)$ is 0 independently of a. Now suppose that $\tau \le x < e + \tau$. The exponents for the action on $\zeta_{\ell^{e+\tau}}$ are those corresponding to the automorphisms of order dividing $\ell^{e+\tau-x}$. Since $v_{\ell}(at)$ does not depend on a, we have that

$$v_\ell ((1+at)^{\ell^n} - 1) = \tau + n$$

independently of a and we conclude.

Proof of Theorem 2 for ℓ odd. Lemma 17 implies that the conditions of Theorem 12 are satisfied if $K = K_{\ell}$ (compare with formula (1)). Thus the density dens_K($G, a \mod d$) depends on a only through its ℓ -adic valuation, and it is a computable rational number. By Proposition 14 this rational number must be strictly positive.

3.2. Proof of Theorem 2 for $\ell = 2$

LEMMA 18. Suppose $K = K_4$. For every G and for every $e \ge 1$ we have

$$c(n, x, 2^e, t) = c(n, x', 2^e, t)$$

as long as x, x' are odd.

Proof. Let $d = 2^e$. Notice that the claim is clear for e = 1, so suppose $e \ge 2$. Let *a* vary in the odd integers strictly between 0 and *d*. Similarly to the proof of Lemma 17, the condition $(n, d) \mid a$ means that $2 \nmid n$ and is independent of *a*. Moreover, *t* must be an even integer and hence the condition (1 + at, d) = 1 is satisfied independently of *a*. Now suppose that the above conditions are satisfied, and let us focus on Condition (iii) of Theorem 1.

Set $\tau := v_2(t)$, and call F the field $K_{nt,nt}$. Similarly to the proof of Lemma 17, we check that the following condition is independent of a: the Galois group of $F_{2^{e+\tau}}/F$ contains the automorphism σ_{1+ta} satisfying $\zeta_{2^{e+\tau}} \mapsto \zeta_{2^{e+\tau}}^{1+at}$.

Recall that $K = K_4$, and call $x \ge 2$ the largest integer such that F contains \mathbb{Q}_{2^x} (we clearly have $x \ge \tau$). We then need to investigate the cyclic group $\operatorname{Gal}(\mathbb{Q}_{2^{e+\tau}}/\mathbb{Q}_{2^x})$.

If $x \ge e+\tau$, then this field extension is trivial and we have $c(n, a, 2^e, t) = 0$ independently of a (where a is odd). If $x = \tau$, then $\operatorname{Gal}(\mathbb{Q}_{2^{e+\tau}}/\mathbb{Q}_{2^x})$ contains 2^e automorphisms acting distinctly on $\zeta_{2^{e+\tau}}$ and fixing $\zeta_{2^{\tau}}$: we deduce that $c(n, a, 2^e, t) = 1$ independently of a (where a is odd).

From now on, suppose $\tau < x < e + \tau$. We see $\operatorname{Gal}(\mathbb{Q}_{2^{e+\tau}}/\mathbb{Q}_{2^x})$ as a subgroup of the cyclic Galois group $\operatorname{Gal}(\mathbb{Q}_{2^{e+\tau}}/\mathbb{Q}_4)$. That subgroup contains the elements of order dividing $2^{e+\tau-x}$. The Galois automorphisms are determined by the image of $\zeta_{2^{e+\tau}}$, and they are determined by the exponent to which they raise this element.

If $\tau = 1$, then we do not have the automorphism σ_{1+ta} in $\operatorname{Gal}(\mathbb{Q}_{2^{e+\tau}}/\mathbb{Q}_4)$ (independently of *a*) because *a* is odd and hence $\zeta_4^{1+ta} \neq \zeta_4$. This means that in this case $c(n, a, 2^e, t) = 0$ independently of *a* (for *a* odd).

Finally, suppose $1 < \tau < x < e + \tau$. Since $\tau > 1$, the automorphism $\sigma_{1+ta} \in \operatorname{Gal}(\mathbb{Q}_{2^{e+\tau}}/\mathbb{Q}_4)$ is well-defined. We have to check whether σ_{1+ta} also belongs to $\operatorname{Gal}(\mathbb{Q}_{2^{e+\tau}}/\mathbb{Q}_{2^x})$ or not independently of a. It is then sufficient to show that the order of σ_{1+ta} does not depend on a. This order is a power of 2, namely the smallest power 2^n such that $v((1+at)^{2^n}-1) \ge e+\tau$. Since $v_2(at) \ge 2$, then for every $n \ge 1$ we have $v_2((1+at)^{2^n}-1) = \tau+n$ independently of a and hence the order of the automorphism σ_{1+ta} does not depend on a.

Proof of Theorem 2 for $\ell = 2$. Analogously to the proof for the odd case, it suffices to combine Lemma 18 with Theorem 12 and Proposition 14. \Box

3.3. Proof of Corollary 3

Proof of Corollary 3. Let $m = \ell$ if ℓ is odd, and m = 4 if $\ell = 2$. Let \mathfrak{p} be a prime of K of degree 1, and which does not ramify in K_m . In view of our hypothesis on a, we have that if \mathfrak{p} is such that $\operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod \ell^e$, then $N\mathfrak{p} \equiv 1 \mod m$. We deduce from Lemma 15 that

$$\operatorname{dens}_{K}(G, a \bmod \ell^{e}) = \frac{1}{[K_{m}:K]} \cdot \operatorname{dens}_{K_{m}}(G, a \mod \ell^{e}).$$

By Theorem 2 we conclude that $\operatorname{dens}_K(G, a \mod \ell^e)$ depends on a only through its ℓ -adic valuation and that it is a computable strictly positive rational number.

3.4. Proof of Theorem 4

LEMMA 19. Let $d \ge 2$ be an integer and write $d = \prod \ell^e$ for its prime decomposition. For the coefficients of Theorem 1, with respect to any fixed group G, we have

$$c(n, a, d, t) = \prod_{\ell \mid d} c(n, a, \ell^e, t) \,.$$

Proof. We prove that c(n, a, d, t) = 1 if and only if $c(n, a, \ell^e, t) = 1$ for every prime divisor ℓ of d. It is clear that (1 + at, d) = 1 and $(d, n) \mid a$ if and only if $(1 + at, \ell^e) = 1$ and $(\ell^e, n) \mid a$ for every ℓ . Now suppose that these conditions hold. Let σ be the element of $\operatorname{Gal}(\mathbb{Q}(\zeta_{dt})/\mathbb{Q})$ such that $\sigma(\zeta_{dt}) = \zeta_{dt}^{1+at}$, and let σ_ℓ be the element of $\operatorname{Gal}(\mathbb{Q}(\zeta_{\ell^e t})/\mathbb{Q})$ such that $\sigma_\ell(\zeta_{\ell^e t}) = \zeta_{\ell^e t}^{1+at}$. We are left to show that σ is the identity on $\mathbb{Q}(\zeta_{dt}) \cap K_{nt,nt}$ if and only if σ_ℓ is the identity on $\mathbb{Q}(\zeta_{\ell^e t}) \cap K_{nt,nt}$ for every ℓ . This follows from the fact that $\mathbb{Q}(\zeta_{dt})$ is the compositum of the fields $\mathbb{Q}(\zeta_{\ell^e t})$, and σ_ℓ is the restriction of σ to $\mathbb{Q}(\zeta_{\ell^e t})$ for each ℓ .

LEMMA 20. Let $d \ge 2$ be an integer and let $r := \prod_{\ell \mid d} \ell$ be its radical. Suppose that $K = K_r$ if d is odd, or that $K = K_{2r}$ if d is even. For the coefficients of Theorem 1, with respect to any fixed group G, we then have

$$c(n, x, d, t) = c(n, x', d, t)$$

as long as x, x' are coprime to d.

Proof. We have to show that, whenever a is coprime to d, the coefficient c(n, a, d, t) is independent of a. By Lemma 19 we may reduce to the case in which d is a prime power, and then we may conclude by Lemma 17 if d is odd, and Lemma 18 if d is even.

Proof of Theorem 4. By [7, Corollary 12] and [2, Theorem 3] the density $\text{Dens}_K(G, d)$ of primes \mathfrak{p} of K such that $\text{ord}_{\mathfrak{p}}(G)$ is coprime to d is an explicitly computable rational number. This density can be decomposed as the sum over a, with a coprime to d, of the densities $\text{dens}_K(G, a \mod d)$. Since $K_r = K$ if d is odd, and $K_{2r} = K$ if d is even, by Lemma 20 the above densities have equal value, so that for every a coprime to d we have

dens_K(G, a mod d) =
$$\frac{1}{\varphi(d)} \cdot \text{Dens}_K(G, d)$$
,

which is then a computable rational number. Moreover, this density is also strictly positive because by Theorem 6 the density $\text{Dens}_K(G,d)$ is strictly positive.

3.5. Proof of Theorem 5

Proof of Theorem 5. Let r be the radical of d, and let m = r if d is odd, and m = 2r otherwise. Consider the following set of primes \mathfrak{p} of K of degree 1, and unramified in K_m

$$\mathcal{S} := \{ \mathfrak{p} : \operatorname{ord}_{\mathfrak{p}}(G) \equiv a \mod d, \operatorname{N} \mathfrak{p} \equiv 1 \mod m \}.$$

By Lemma 15 the set S has density equal to

$$\frac{1}{[K_m:K]} \cdot \operatorname{dens}_{K_m}(G, a \bmod d) \,.$$

By Theorems 2 and 4, the density $\operatorname{dens}_{K_m}(G, a \mod d)$ is strictly positive if d is a prime power or if a is coprime to d, so the same holds for the density of S. Consequently, the density $\operatorname{dens}_K(G, a \mod d)$ is also strictly positive. \Box

4. Multiplicative groups with torsion

Stating Theorem 1 for a finite group is trivial (the given density is either 0 or 1). However it is not trivial to remove the assumption that the multiplicative group is torsion-free: this is what we achieve in this section. As a side remark, notice that our strategy also applies to the density considered in [8, Theorem 1.4], i.e. if we introduce a condition on the Frobenius conjugacy class with respect to a fixed finite Galois extension of the base field.

Let K be a number field, and let G' be a finitely generated (and not necessarily torsion-free) multiplicative subgroup of K^{\times} of positive rank. Then we can write G' as $G' = \langle \zeta \rangle \times G$, where ζ is a root of unity of K generating the torsion part of G' and G is torsion-free. Let us exclude finitely many primes \mathfrak{p} of K so that the reduction of G' is well-defined and we have $\operatorname{ord}_{\mathfrak{p}}(\zeta) = \operatorname{ord}(\zeta)$. The order of G' modulo \mathfrak{p} is then the least common multiple between the order of G modulo \mathfrak{p} and a fixed integer

$$\operatorname{ord}_{\mathfrak{p}}(G') = [\operatorname{ord}_{\mathfrak{p}}(G), \operatorname{ord}(\zeta)].$$

We may then reformulate the given problem.

REMARK 21. Let G be a finitely generated and torsion-free subgroup of K^{\times} , and fix some integer $n \ge 2$. Given two integers a and $d \ge 2$, we investigate the density of primes \mathfrak{p} of K for which

$$[\operatorname{ord}_{\mathfrak{p}}(G), n] \equiv a \mod d. \tag{9}$$

Assuming (GRH), the case n = 1 is known, and our aim is reducing to this case. Notice that our method also shows that the considered density exists. We denote this density by $\operatorname{dens}'_K(G, n; a \mod d)$.

Let ℓ be a prime divisor of n. The aim is finding a way to replace n with $\frac{n}{\ell}$ (or to conclude directly). We distinguish various cases.

CASE (i). If $\ell \mid d$ and $\ell \nmid a$, then we have $\operatorname{dens}'_K(G, n; a \mod d) = 0$ because ℓ divides $[\operatorname{ord}_p(G), n]$ and (9) cannot hold.

CASE (ii). If $\ell \mid d$ and $\ell \mid a$, then the congruence $[\operatorname{ord}_{\mathfrak{p}}(G), n] \equiv a \mod d$ is equivalent to

$$\left[\operatorname{ord}_{\mathfrak{p}}(G^{\ell}), \frac{n}{\ell}\right] \equiv \frac{a}{\ell} \mod \frac{d}{\ell},$$

so we have

$$\operatorname{dens}'_{K}(G, n; a \bmod d) = \operatorname{dens}'_{K}\left(G^{\ell}, \frac{n}{\ell}; \frac{a}{\ell} \bmod \frac{d}{\ell}\right) \,.$$

CASE (iii). Suppose that $\ell \nmid d$. Let $\tilde{\ell}$ be a multiplicative inverse for ℓ modulo d, and set $v := v_{\ell}(n)$. If $\ell^{v} \mid \operatorname{ord}_{\mathfrak{p}}(G)$, then we have

 $[\operatorname{ord}_{\mathfrak{p}}(G), n] \equiv a \mod d \iff \left[\operatorname{ord}_{\mathfrak{p}}(G), \frac{n}{\ell}\right] \equiv a \mod d.$ (10)

If $\ell^v \nmid \operatorname{ord}_{\mathfrak{p}}(G)$, then we have

 $[\operatorname{ord}_{\mathfrak{p}}(G), n] \equiv a \mod d \iff \left[\operatorname{ord}_{\mathfrak{p}}(G), \frac{n}{\ell}\right] \equiv a\tilde{\ell} \mod d.$ The condition $\ell^{v} \mid \operatorname{ord}_{\mathfrak{p}}(G)$ amounts to

$$\left[\operatorname{ord}_{\mathfrak{p}}(G), \frac{n}{\ell}\right] \equiv 0 \mod \ell^{\nu}$$

and hence (recalling that ℓ and d are coprime) we can easily combine this congruence and the congruence in (10) with the Chinese Remainder Theorem. The first subcase thus amounts to

$$\left[\operatorname{ord}_{\mathfrak{p}}(G), \frac{n}{\ell}\right] \equiv a\tilde{\ell}^{\nu}\ell^{\nu} \mod d\ell^{\nu}.$$

Similarly, the second subcase amounts to letting $\left[\operatorname{ord}_{\mathfrak{p}}(G), \frac{n}{\ell}\right]$ be in the difference of congruence classes

 $(a\tilde{\ell} \mod d) \setminus (a\tilde{\ell}^{v+1}\ell^v \mod d\ell^v).$

Notice that the congruence classes for the first and second subcase are distinct. Thus if $\ell \nmid d$ we can explicitly write

$$dens'_{K}(G, n; a \mod d) = dens'_{K}\left(G, \frac{n}{\ell}; a_{0} \mod d\ell^{v}\right) + dens'_{K}\left(G, \frac{n}{\ell}; a\tilde{\ell} \mod d\right) - dens'_{K}\left(G, \frac{n}{\ell}; a_{0}\tilde{\ell} \mod d\ell^{v}\right),$$

where we have set $a_0 := a \tilde{\ell}^v \ell^v \mod d\ell^v$.

We have thus proven the following result.

THEOREM 22. Assume (GRH). Let K be a number field, and let G' be a finitely generated subgroup of K^{\times} of positive rank. Let $n \ge 1$ be the order of the torsion of G', and let G be a torsion-free subgroup of G' such that $G' = G \times \langle \zeta_n \rangle$. Let a and $d \ge 2$ be fixed integers. The density of the set of primes \mathfrak{p} of K

$$\{\mathfrak{p}: \operatorname{ord}_{\mathfrak{p}}(G') \equiv a \mod d\}$$

exists and can be expressed as a finite sum of terms of the type

$$(-1)^k \cdot \operatorname{dens}_K(G^m, a' \mod d'),$$

where k, m, a', d' are integers and $m \mid n$.

5. Examples

In this last section we work out some examples and collect some numerical data to illustrate our results.

EXAMPLE 23. Let $K = \mathbb{Q}(\zeta_3)$ and consider the group $G = \langle 5, 7 \rangle \leq \mathbb{Q}(\zeta_3)^{\times}$. We compute the density

$$\operatorname{dens}_K(G, a \mod 9)$$
 for $0 \leq a < 9$.

Since $\zeta_3 \in K$, we can use [2, Theorem 2] to compute the density of primes \mathfrak{p} of K for which the order of $G \mod \mathfrak{p}$ is coprime to 3, and we have

$$\operatorname{Dens}_K(G,3) = \frac{1}{13}.$$

Then by Theorem 2 we have

dens_K(G, a mod 9) =
$$\frac{1}{78}$$
 for $a \in \{1, 2, 4, 5, 7, 8\}$.

For a = 3 or a = 6, by [2, Theorem 3] we have

$$\operatorname{Dens}_K(G^3,3) = \frac{9}{13}$$

and applying Lemma 9 we obtain by the equidistribution property

$$\operatorname{dens}_K(G, a \mod 9) = \operatorname{dens}_K(G^3, 1 \mod 3) - 3 \operatorname{dens}_K(G, 1 \mod 9)$$

$$=\frac{9}{2\cdot 13}-3\cdot\frac{1}{78}=\frac{4}{13}$$

For a = 0 we get the complementary density of $\text{Dens}_K(G^3, 3)$ and hence

$$\operatorname{dens}_K(G, 0 \bmod 9) = \frac{4}{13}.$$

EXAMPLE 24. Let $K = \mathbb{Q}(\zeta_4)$ and consider the group $G = \langle 3, 5 \rangle \leq \mathbb{Q}(\zeta_4)^{\times}$. We compute the density of primes $\operatorname{dens}_K(G, a \mod 8)$ for $0 \leq a < 8$. Since $\zeta_4 \in K$, by [2, Theorem 2] the density of primes \mathfrak{p} of K for which the order of $G \mod \mathfrak{p}$ is odd is given by

$$\operatorname{Dens}_K(G,2) = \frac{1}{28}$$

Then by Theorem 2 we have

dens_K(G, a mod 8) =
$$\frac{1}{112}$$
 for $a \in \{1, 3, 5, 7\}$.

For a = 2 or a = 6, by [2, Theorem 3] we have

$$\operatorname{Dens}_K(G^2,2) = \frac{1}{7},$$

and applying Lemma 9 we obtain by the equidistribution property

$$dens_K(G, a \mod 8) = dens_K(G^2, 1 \mod 4) - 2 dens_K(G, 1 \mod 8)$$
$$= \frac{1}{14} - 2 \cdot \frac{1}{112} = \frac{3}{56}.$$

For a = 4 we proceed similarly. By [2, Theorem 3] we have

$$\operatorname{Dens}_K(G^4, 2) = \frac{4}{7},$$

and then, by Lemma 9, we obtain by the equidistribution property

$$dens_K(G, 4 \mod 8) = dens_K(G^4, 1 \mod 2) - 2 dens_K(G^2, 1 \mod 4)$$
$$= \frac{4}{7} - \frac{1}{7} = \frac{3}{7}.$$

Finally, for a = 0 we obtain the complementary density

$$\operatorname{dens}_K(G, 0 \bmod 8) = \frac{3}{7}.$$

EXAMPLE 25. Let $K = \mathbb{Q}(\zeta_{12})$ and consider the group $G = \langle 7, 11 \rangle \leq \mathbb{Q}(\zeta_{12})^{\times}$. We compute the density of primes $\operatorname{dens}_K(G, a \mod 12)$ for $a \in \{1, 5, 7, 11\}$, which are all equal by Theorem 4 as $\zeta_{12} \in K$. By [7, Corollary 12] the density of primes \mathfrak{p} of K for which the order of $G \mod \mathfrak{p}$ is coprime to 12 can be computed as in the previous examples

$$\operatorname{Dens}_K(G, 12) = \operatorname{Dens}_K(G, 4) \cdot \operatorname{Dens}_K(G, 3) = \frac{1}{364}.$$

Hence we obtain by the equidistribution

$$\operatorname{dens}_K(G, a \mod 12) = \frac{1}{1456}.$$

In the following two examples we also compute with SageMath [9] approximated densities to support the validity of the equidistribution property of Corollary 3.

EXAMPLE 26. Consider the group $\langle 2 \rangle \leq \mathbb{Q}^{\times}$. Focusing on the set of primes up to 10⁶, we find with SageMath the following approximated values for the density dens_Q(2, *a* mod *d*)

$a \mod d$	$\operatorname{dens}_{\mathbb{Q}}(2, a \bmod d)$	primes up to 10^6
$4 \mod 16$	$1/6 \approx 0.1667$	0.1676
$12 \bmod 16$	$1/6 \approx 0.1667$	0.1652
$3 \mod 9$	1/8 = 0.125	0.1236
$6 \mod 9$	1/8 = 0.125	0.1266
$9 \mod 27$	$1/24 \approx 0.0417$	0.0422
$18 \bmod 27$	$1/24 \approx 0.0417$	0.0411
$3 \mod 27$	$1/24 \approx 0.0417$	0.0416
$6 \mod 27$	$1/24 \approx 0.0417$	0.0421
$15 \bmod 27$	$1/24 \approx 0.0417$	0.0420
$21 \bmod 27$	$1/24 \approx 0.0417$	0.0405

ANTONELLA PERUCCA-PIETRO SGOBBA

For instance, by Corollary 3, for $3 \mid a$ and d = 9 or d = 27 we have

$$\operatorname{dens}_{\mathbb{Q}}(2, a \bmod d) = \frac{1}{[\mathbb{Q}(\zeta_3) : \mathbb{Q}]} \cdot \operatorname{dens}_{\mathbb{Q}(\zeta_3)}(2, a \bmod d)$$

and similarly for $4 \mid a$ and d = 16. Thus we can compute these densities by following the same procedure as in the previous examples.

EXAMPLE 27. We consider the group $G = \langle 2, 3 \rangle \leq \mathbb{Q}^{\times}$ and compute the densities dens_Q($G, a \mod d$) using the methods of the previous examples. Again we study the set of primes up to 10^6 and find with SageMath the following approximated values for the considered densities:

$a \mod d$	$\operatorname{dens}_{\mathbb{Q}}(G, a \bmod d)$	primes up to 10^6
4 mod 16	$17/112 \approx 0.1518$	0.1522
$12 \mod 16$	$17/112\approx 0.1518$	0.1508
$3 \mod 9$	$2/13 \approx 0.1538$	0.1538
$6 \mod 9$	$2/13 \approx 0.1538$	0.1540
$9 \mod 27$	$2/39 \approx 0.0513$	0.0513
$18 \mod 27$	$2/39 \approx 0.0513$	0.0513
$3 \mod 27$	$2/39 \approx 0.0513$	0.0518
$6 \mod 27$	$2/39 \approx 0.0513$	0.0512
$15 \mod 27$	$2/39 \approx 0.0513$	0.0513
$21 \mod 27$	$2/39 \approx 0.0513$	0.0507

EXAMPLE 28. Let $K = \mathbb{Q}(\zeta_3)^{\times}$, and let G be a finitely generated and torsion-free subgroup of $\mathbb{Q}(\zeta_3)^{\times}$. Consider the group $G' = G \times \langle \zeta_6 \rangle$. We study the density of primes \mathfrak{p} of K such that $\operatorname{ord}_{\mathfrak{p}}(G') \equiv a \mod 10$, as considered in Section 4.

For a = 1, 3, 5, 7, 9, we have $\operatorname{dens}_{K}^{\prime}(G, 6; a \mod 10) = 0$. For a = 4 we have $\operatorname{dens}_{K}^{\prime}(G, 6; 4 \mod 10) = \operatorname{dens}_{K}^{\prime}(G, 2; 24 \mod 30) + \operatorname{dens}_{K}^{\prime}(G, 2; 8 \mod 10) - \operatorname{dens}_{K}^{\prime}(G, 2; 18 \mod 30)$ $= \operatorname{dens}_{K}(G^{2}, 12 \mod 15) + \operatorname{dens}_{K}(G^{2}, 4 \mod 5) - \operatorname{dens}_{K}(G^{2}, 9 \mod 15)$,

and also

$$dens'_{K}(G, 6; 4 \mod 10) = dens'_{K}(G^{2}, 3; 2 \mod 5)$$

= dens_{K}(G^{2}, 12 \mod 15) + dens_{K}(G^{2}, 4 \mod 5)
- dens_{K}(G^{2}, 9 \mod 15),

where the difference in the two calculations consists only in whether we consider the prime 2 or the prime 3 first for the method described in Section 4. For a = 2, 6, 8 we can make a similar computation. Finally, for a = 0 we have

 $\operatorname{dens}_{K}^{\prime}(G, 6; 0 \bmod 10) = \operatorname{dens}_{K}(G, 0 \bmod 5),$

as 2 always divides $\operatorname{ord}_{\mathfrak{p}}(G')$, and

 $\operatorname{ord}_{\mathfrak{p}}(G') \equiv 0 \mod 5$ if and only if $\operatorname{ord}_{\mathfrak{p}}(G) \equiv 0 \mod 5$.

REFERENCES

- CHINEN, K.—MURATA, L.: On a Distribution Property of the Residual Order of a (mod p) IV. In: Papers from the 3rd China-Japan Seminar on Number Teory, Xi'an, China, February 12–16, 2004. (Zhang, Wenpeng, et al. eds), Number Theory. Tradition and Modernization. Developments in Math. Vol. 15, Springer, New York, NY, 2006.
- [2] DEBRY, C.—PERUCCA, A.: Reductions of algebraic integers, J. Number Theory 167 (2016), 259–283.
- [3] MOREE, P.: Artin's primitive root conjecture-a survey, Integers 12 (2012), no. 6, 1305-1416.
- [4] MOREE, P.: On the distribution of the order and index of g (mod p) over residue classes III, J. Number Theory 120 (2006), no. 1, 132–160.
- [5] PERUCCA, A.: Multiplicative order and Frobenius symbol for the reductions of number fields, (J. S. Balakrishnan et al. eds.) In: Research Directions in Number Theory, Association for Women in Mathematics, Ser. 19 (2019), pp. 161–171.
- [6] PERUCCA, A.: Prescribing valuations of the order of a point in the reductions of abelian varieties and tori. J. Number Theory 129 (2009), no. 2, 469–476.
- [7] PERUCCA, A.: Reductions of algebraic integers II. (I. I. Bouw et al. eds.) In: Women in Numbers Europe II, Association for Women in Mathematics, Ser. 11 (2018), pp. 10–33.

- [8] PERUCCA, A.—SGOBBA, P.: Kummer theory for number fields and the reductions of algebraic numbers, Int. J. Number Theory, 15 (2019), no. 8, 1617–1633.
- [9] SageMath-the Sage Mathematics Software System (Version 8.9). The Sage Developers, 2019, https://www.sagemath.org.
- [10] ZIEGLER, V.: On the distribution of the order of number field elements modulo prime ideals, Unif. Distrib. Theory 1 (2006), no. 1, 65–85.

Received July 7, 2019 Accepted March 23, 2020

Antonella Perucca Pietro Sgobba

Department of Mathematics Faculty of Science, Technology and Medicine University of Luxembourg 6 av. de la Fonte Esch-sur-Alzette 4364 LUXEMBOURG E-mail: antonella.perucca@uni.lu

-mau: antonella.perucca@uni.lu pietro.sgobba@uni.lu