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ABSTRACT. Let K be a number field, and let G be a finitely generated and
torsion-free subgroup of K×. For almost all primes p of K, we consider the order
of the cyclic group (G mod p), and ask whether this number lies in a given arith-
metic progression. We prove that the density of primes for which the condition
holds is, under some general assumptions, a computable rational number which is

strictly positive. We have also discovered the following equidistribution property:
if �e is a prime power and a is a multiple of � (and a is a multiple of 4 if � = 2),
then the density of primes p of K such that the order of (G mod p) is congruent
to a modulo �e only depends on a through its �-adic valuation.

Communicated by Vladimı́r Baláž

1. Introduction

If we reduce the number 2 modulo every odd prime number p, then we have
the sequence of natural numbers given by the multiplicative order of (2 mod p).
This sequence is very mysterious, and for example it is not known uncondition-
ally whether the order of (2 mod p) equals p − 1 for infinitely many primes p,
see [3]. Now consider a non-zero integer z: the density of primes p for which the
multiplicative order of (z mod p) lies in a given arithmetic progression has been
studied in various papers by Chinen and Murata, and by Moree, see, e.g. [1,4].
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More generally, consider a number field K and a multiplicative subgroup G
of K× which is finitely generated. For positive integers x, y with y | x we denote

by Kx := K(ζx) the xth cyclotomic extension of K, and by Kx,y := Kx(
y
√
G) the

yth Kummer extension of G over Kx. If p is a prime of K, then we write ordp(G)
for the multiplicative order of (G mod p), which we tacitly assume to be well-
-defined. As customary, given two integers x, y we write (x, y) for their greatest
common divisor and [x, y] for their least common multiple. Finally, if we assume
(GRH) we mean the extended Riemann hypothesis for the Dedekind zeta function
of number fields.

In [8] we have generalised results by Ziegler [10] to higher rank and have
proven in particular the following statement.

������� 1 ([8, Theorem 1.3])� Let K be a number field, and let G be a finitely
generated and torsion-free subgroup of K× of positive rank. Fix an integer d � 2,
fix an integer a, and consider the following set of primes of K:

P := {p : ordp(G) ≡ a mod d} .
Let P(x) be the number of primes p in P with norm up to x.

Assuming (GRH), for every x � 1 we have

P(x) =
x

log x

∑
n,t�1

μ(n)c(n, a, d, t)

[K[d,n]t,nt : K]
+O

(
x

log3/2 x

)
, (1)

where c(n, a, d, t) ∈ {0, 1}, and where c(n, a, d, t) = 1 if and only if the following
conditions hold:

(i) (1 + at, d) = 1;

(ii) (d, n) | a;
(iii) the element of Gal

(
Q(ζdt)/Q

)
mapping ζdt to ζ1+at

dt is the identity on Q(ζdt)∩
Knt,nt.

From this result it is not clear whether the natural density densK(G, a mod d)
of the set P is a rational number, if it is strictly positive, or if it is possible to
evaluate it. The main results of this paper are the following, where K, G, a, and
d are as in Theorem 1:

������� 2� Assume (GRH). Let d = �e for some prime number � and for some
e � 1. Suppose that K = K� if � is odd, or that K = K4 if � = 2. Then the
density densK(G, a mod �e) depends on a only through its �-adic valuation, and
it is a computable strictly positive rational number. In particular, it is the same
for all a coprime to �.
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Although the previous result has an assumption on the base field, we do not
need that assumption in the following corollary.

����		
�� 3 (Equidistribution property)� Assume (GRH). Let K be any num-
ber field, and let d = �e for a prime number � and e � 1. Suppose that � | a if �
is odd, or that 4 | a and e � 2 if � = 2. Then the density densK(G, a mod �e)
depends on a only through its �-adic valuation, and it is a computable strictly
positive rational number.

The following result concerns the case of composite modulus.

������� 4� Assume (GRH). Let d � 2 and set r :=
∏

�|d � to be its radical.

Suppose that K = Kr if d is odd, or that K = K2r if d is even. Then, for a
coprime to d, the density densK(G, a mod d) is a computable strictly positive
rational number which does not depend on a.

The following result generalises the positivity assertion of Corollary 3.

������� 5� Assume (GRH). The density densK(G, a mod d) is strictly positive
for any number field K if d is a prime power or if a is coprime to d.

Theorem 2 is proven in Section 3.1 for � odd, and in Section 3.2 for �=2,
respectively. We prove Corollary 3 in Section 3.3. Theorem 4 is proven in Sec-
tion 3.4, while Theorem 5 is proven in Section 3.5. Section 4 is devoted to
removing from Theorem 1 the assumption that the group G is torsion-free.
Finally, Section 5 contains examples of applications of the above theorems and
some numerical data.

Notice that in this paper we rely on Theorem 1 and hence most of our results
assume (GRH): if the density in Theorem 1 is known unconditionally, then our
results would also be unconditional.

2. Preliminaries

Let K be a number field, and let G be a finitely generated and torsion-free
subgroup of K×. In the whole paper we tacitly assume that the primes p of K
that we consider are such that the reduction of G modulo p is a well-defined
subgroup of the multiplicative group of the residue field at p. Notice that the
results of this section are unconditional.
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2.1. Prescribing valuations for the order

������� 6� Let �1, . . . , �n be distinct prime numbers and x1, . . . , xn nonneg-
ative integers. Then the density of primes p of K such that v�i

(
ordp(G)

)
= xi

for all i is a strictly positive computable rational number.

P r o o f. The rationality of the density can be seen by neglecting the condition
on the Frobenius in [5, Theorem 18]. For the positivity, apply [6, Proposition 12]
to a basis g1, . . . , gr of G consisting of Z-independent points of the multiplicative
group K×. �

����		
�� 7� Given an integer d � 2 and a positive divisor g of d, the sum
of densities ∑

0�a<d
(a,d)=g

densK(G, a mod d) (2)

is a strictly positive computable rational number.

P r o o f. We will express the sum (2) as a rational combination of densities as in

Theorem 6. Write g =
∏n

i=1 �
fi
i , and partition the index set as {1, . . . , n} = I�J

such that fi < v�i(d) for i ∈ I, and fi = v�i(d) for i ∈ J . Then it is easy to check
that∑

0�a<d
(a,d)=g

densK(G, a mod d) = densK

({
p :

v�i
(
ordp(G)

)
= fi , ∀i ∈ I,

v�i
(
ordp(G)

)
� fi , ∀i ∈ J

})
. (3)

From this expression and Theorem 6 we deduce that (2) is strictly positive.
The density on the right-hand side of (3) is given by (applying the inclusion-
-exclusion principle for the primes up to x and then taking the limit to make
the densities)

|J |∑
s=0

(−1)s
∑
S⊆J
|S|=s

densK

({
p :

v�i
(
ordp(G)

)
= fi , ∀i ∈ I,

v�i
(
ordp(G)

)
� fi − 1 , ∀i ∈ S

})
, (4)

and each of the densities in (4) exists and equals

densK

({
p :

v�i
(
ordp(G

h)
)
= fi , ∀i ∈ I,

v�i
(
ordp(G

h)
)
= 0 , ∀i ∈ S

})
,

where h =
∏

i∈S �fi−1
i .

Such densities are computable rational numbers by Theorem 6. Hence the state-
ment is proven. �
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���
� 8� Corollary 7 implies that the density densK(G, 0 mod d) is known
unconditionally to be a strictly positive computable rational number.

2.2. Simplifications by changing the modulus

We keep the notation of Theorem 1. By Remark 8 we may suppose that
0 < a < d. The following lemma allows us to reduce to residue classes coprime
to d if d is a prime power.

����
 9� Let d = �e, where � is a prime number and e � 1. Suppose that
a = �x · w, where w is coprime to � and 0 < x < e. Set wj := w + j�e−x

for 0 � j < � (notice that wj is also coprime to �). Then the primes p of K
such that ordp(G) ≡ a mod d are exactly those such that

ordp
(
G�x

) ≡ w mod �e−x (5)
minus those such that

ordp
(
G�x−1) ≡ wj mod �e−x+1 (6)

for some 0 � j < �. In particular, we have

densK (G, a mod �e) =

densK

(
G�x, w mod �e−x

)
−

�−1∑
j=0

densK

(
G�x−1

, wj mod �e−x+1
)
.

P r o o f. Notice that condition (6) for any j implies condition (5) because wj is

coprime to � and hence we must have ordp
(
G�x

)
= ordp

(
G�x−1)

.

Let p be a prime of K such that ordp(G) ≡ a mod d. In particular, �x divides
ordp(G). Thus we have

ordp

(
G�x

)
=

ordp(G)

�x
and ordp

(
G�x−1

)
=

ordp(G)

�x−1
.

Dividing the congruence ordp(G) ≡ a mod �e by �x and �x−1, respectively, we
obtain

ordp

(
G�x

)
≡ w mod �e−x and ordp

(
G�x−1

)
≡ w� mod �e−x+1 .

We have proven one containment because w� is not congruent to any of the wj

modulo �.

Now suppose that (5) holds, and that (6) does not hold for any j. In particular

we must have ordp
(
G�x−1) �= ordp

(
G�x

)
. We deduce ordp

(
G�x−1)

= �·ordp
(
G�x

)
,

and therefore ordp(G) = �x·ordp
(
G�x

)
. We may conclude because multiplying (5)

by �x gives
�x · ordp

(
G�x

)
≡ a mod d . �
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���
� 10� Consider the condition ordp(G)≡a mod d. Decompose (a, d)=sh

where s=
∏

�|(a,d) � is its radical, and write a′ = a
h , d

′ = d
h . Notice that (a

′, d′) = s

is squarefree. We claim that the following equivalence holds:

ordp(G) ≡ a mod d ⇐⇒ ordp
(
Gh
) ≡ a′ mod d′ .

If the first congruence is satisfied, then (a, d) divides ordp(G), so in particular
we have ordp(G)

h
≡ a′ mod d′ .

Since h divides ordp(G), we have
ordp(G)

h = ordp(G
h) and the second congruence

holds. Conversely, if the second congruence is satisfied, then s = (a′, d′) divides
ordp(G

h). Since h introduces no new prime factors, we have

ordp
(
Gh
) · h = ordp(G)

and hence the congruence ordp(G) ≡ a mod d holds.

2.3. A general result

We keep the notation from Theorem 1, and we denote by DensK(G, d) the
density of primes p of K such that ordp(G) is coprime to d.

���
� 11� From the results in [2] and [7], under the assumptions of The-
orems 2 and 4, the density DensK(G, d) depends on G only through the d-
-parameters for the �-divisibility of G for each � | d. As a consequence of the
results of this paper, the same holds for the density densK(G, a mod d) consid-
ered in Theorems 2 and 4 and in Corollary 3.

������� 12� Let � be a prime number. Suppose that for every G and for every
e � 1 we have

densK (G,w mod �e) = densK (G,w′ mod �e)

as long as w,w′ are coprime to �. Then for every G and for every e � 1 the
density densK(G, a mod �e)

depends on a only through its �-adic valuation, and it is a computable rational
number.

P r o o f. We know from [2, Theorem 3] that the quantity

DensK(G, �) = 1− densK(G, 0 mod �)

is a computable rational number. Then for every a coprime to �, by the assump-
tion on the equidistribution, we have

densK(G, a mod �e) =
1

ϕ(�e)
·DensK(G, �) ,

so that densK(G, a mod �n) is a computable rational number which does not
depend on a.
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For 0 < a < �e not coprime to � we apply Lemma 9, which allows us to com-
pute the density densK(G, a mod �e) as the difference of densities which we know
to be computable rational numbers. More precisely, by the equidistribution con-
dition the formula given in Lemma 9 becomes

densK(G, a mod �e) =

densK

(
G�x, w mod �e−x

)
− � · densK

(
G�x−1

, w mod �e−x+1
)
,

where a = w�x and x = v�(a). In particular, this formula shows that what
matters about a is only its �-adic valuation.

Finally, the density for a = 0 is given as the complementary density of all the
considered cases, and hence it is also a computable rational number. �
���
� 13� Notice that for 0 < a < �e with some fixed valuation v�(a) = x
where 0 � x < e, the previous theorem says that we have the following density

densK(G, a mod �e) =
1

ϕ(�e−x)
· densK

(
{p : v�

(
ordp(G)

)
= x}

)
. (7)

����������� 14� With the assumptions of Theorem 12, we have that the density
densK(G, a mod �e) is strictly positive for every a.

P r o o f. For a = 0 we know this unconditionally by Remark 8. For 0 < a < �e,
by Theorem 6 the densities (7) in Remark 13 are strictly positive. �

We say that a prime p of K is of degree 1 if both its ramification index and
its residue class degree over Q are equal to 1.

����
 15� Let K be a number field, and let G be a finitely generated and
torsion-free subgroup of K×. Let a, d be integers with d � 2 and let r :=

∏
�|d �

be the radical of d. Let m = r if d is odd, and m = 2r otherwise. Consider the
following set of primes p of K:

S := {p : ordp(G) ≡ a mod d, N p ≡ 1 mod m} .
Then the density of the set S exists and it is equal to

1

[Km : K]
· densKm

(G, a mod d) . (8)

���
� 16� Notice that, assuming (GRH), a formula for the density of the
set S is given in [8, Corollary 5.2]. By Theorems 2 and 4 it follows that the
density (8) is a computable strictly positive rational number if d is a prime
power or if a is coprime to d. Moreover, if d = �e for a prime �, then the density
of S depends on a only through its �-adic valuation, while if d is composite and
(a, d) = 1, then it does not depend on a.
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P r o o f o f L e mm a 15. We may assume that the primes p of S are of degree
1 and unramified in Km. Hence for a prime p in S we have N p ≡ 1 mod m if
and only if p splits completely in Km. Therefore, the set of primes of Km lying
above the primes of S is the set

{P ⊆ Km of degree 1 : ordP(G) ≡ a mod d} ,

which has density densKm
(G, a mod d). Thus we obtain that the density of the

set S exists and it is equal to 1/[Km : K] times densKm
(G, a mod d) (see, for

instance, [7, Proposition 1]). �

3. Proof of the results in the Introduction

We keep the notation of Theorem 1.

3.1. Proof of Theorem 2 for � odd

����
 17� Let � be an odd prime number. Suppose that K = K�. For every G
and for every e � 1 we have

c(n, x, �e, t) = c(n, x′, �e, t)

as long as x, x′ are coprime to �.

P r o o f. Let d = �e. Let a vary among the integers strictly between 0 and d and
coprime to �. Since a is coprime to � and d = �e, the condition (d, n) | a means
� � n and it is independent of a. If c(n, a, d, t) is non-zero, then the integer t must
be divisible by � because ζ� ∈ K and hence it must be fixed if raised to the power
1 + at (recall that a is coprime to �). In particular, the condition (1 + at, d) = 1
holds independently of a.

We are left to check that Condition (iii) of Theorem 1 does not depend
on a, provided that Conditions (i) and (ii) hold. Write F := Knt,nt and define
τ := v�(t). We thus have to show that the following is independent of a: the Ga-
lois group of F�e+τ /F contains the automorphism σ1+ta satisfying ζ�e+τ �→ ζ1+at

�e+τ .
Since K = K�, we have some largest integer x � τ � 1 such that F contains
Q�x , and this integer determines the Galois group of F�e+τ /F , which is a finite
cyclic �-group.
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If x � e + τ , then the field extension F�e+τ /F is trivial and the coeffi-
cient c(n, a, �e, t) is 0 independently of a. Now suppose that τ � x < e + τ.
The exponents for the action on ζ�e+τ are those corresponding to the automor-
phisms of order dividing �e+τ−x. Since v�(at) does not depend on a, we have
that

v�
(
(1 + at)�

n − 1
)
= τ + n

independently of a and we conclude. �

P r o o f o f T h e o r e m 2 f o r � o d d. Lemma 17 implies that the conditions
of Theorem 12 are satisfied if K = K� (compare with formula (1)). Thus the
density densK(G, a mod d) depends on a only through its �-adic valuation, and
it is a computable rational number. By Proposition 14 this rational number must
be strictly positive. �

3.2. Proof of Theorem 2 for � = 2

����
 18� Suppose K = K4. For every G and for every e � 1 we have

c(n, x, 2e, t) = c(n, x′, 2e, t)
as long as x, x′ are odd.

P r o o f. Let d = 2e. Notice that the claim is clear for e = 1, so suppose e � 2.
Let a vary in the odd integers strictly between 0 and d. Similarly to the proof
of Lemma 17, the condition (n, d) | a means that 2 � n and is independent of a.
Moreover, t must be an even integer and hence the condition (1 + at, d) = 1 is
satisfied independently of a. Now suppose that the above conditions are satisfied,
and let us focus on Condition (iii) of Theorem 1.

Set τ := v2(t), and call F the field Knt,nt. Similarly to the proof of Lemma 17,
we check that the following condition is independent of a: the Galois group
of F2e+τ /F contains the automorphism σ1+ta satisfying ζ2e+τ �→ ζ1+at

2e+τ .

Recall that K = K4, and call x � 2 the largest integer such that F con-
tains Q2x (we clearly have x � τ). We then need to investigate the cyclic group
Gal(Q2e+τ/Q2x).

If x � e+τ , then this field extension is trivial and we have c(n, a, 2e, t)=0
independently of a (where a is odd). If x = τ , then Gal(Q2e+τ/Q2x) con-
tains 2e automorphisms acting distinctly on ζ2e+τ and fixing ζ2τ : we deduce
that c(n, a, 2e, t)=1 independently of a (where a is odd).

From now on, suppose τ < x < e+ τ . We see Gal(Q2e+τ/Q2x) as a subgroup
of the cyclic Galois group Gal(Q2e+τ/Q4). That subgroup contains the elements
of order dividing 2e+τ−x. The Galois automorphisms are determined by the
image of ζ2e+τ , and they are determined by the exponent to which they raise
this element.
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If τ = 1, then we do not have the automorphism σ1+ta in Gal(Q2e+τ/Q4)
(independently of a) because a is odd and hence ζ1+ta

4 �= ζ4. This means that
in this case c(n, a, 2e, t) = 0 independently of a (for a odd).

Finally, suppose 1 < τ < x < e + τ . Since τ > 1, the automorphism σ1+ta ∈
Gal(Q2e+τ/Q4) is well-defined. We have to check whether σ1+ta also belongs
to Gal(Q2e+τ/Q2x) or not independently of a. It is then sufficient to show that
the order of σ1+ta does not depend on a. This order is a power of 2, namely the
smallest power 2n such that v

(
(1 + at)2

n − 1
)
� e + τ . Since v2(at) � 2, then

for every n � 1 we have v2
(
(1+at)2

n − 1
)
= τ +n independently of a and hence

the order of the automorphism σ1+ta does not depend on a. �

P r o o f o f T h e o r e m 2 f o r � = 2 . Analogously to the proof for the odd
case, it suffices to combine Lemma 18 with Theorem 12 and Proposition 14. �

3.3. Proof of Corollary 3

P r o o f o f C o r o l l a r y 3. Let m = � if � is odd, and m = 4 if � = 2. Let p
be a prime of K of degree 1, and which does not ramify in Km. In view
of our hypothesis on a, we have that if p is such that ordp(G) ≡ a mod �e,
then N p ≡ 1 mod m. We deduce from Lemma 15 that

densK(G, a mod �e) =
1

[Km : K]
· densKm

(G, a mod �e) .

By Theorem 2 we conclude that densK(G, a mod �e) depends on a only through
its �-adic valuation and that it is a computable strictly positive rational number.

�

3.4. Proof of Theorem 4

����
 19� Let d � 2 be an integer and write d =
∏

�e for its prime decom-
position. For the coefficients of Theorem 1, with respect to any fixed group G,
we have

c(n, a, d, t) =
∏
�|d

c(n, a, �e, t) .

P r o o f. We prove that c(n, a, d, t) = 1 if and only if c(n, a, �e, t) = 1 for every
prime divisor � of d. It is clear that (1 + at, d) = 1 and (d, n) | a if and only if
(1 + at, �e) = 1 and (�e, n) | a for every �. Now suppose that these conditions
hold. Let σ be the element of Gal(Q(ζdt)/Q) such that σ(ζdt) = ζ1+at

dt , and

let σ� be the element of Gal(Q(ζ�et)/Q) such that σ�(ζ�et) = ζ1+at
�et . We are

left to show that σ is the identity on Q(ζdt) ∩ Knt,nt if and only if σ� is the
identity on Q(ζ�et) ∩ Knt,nt for every �. This follows from the fact that Q(ζdt)
is the compositum of the fields Q(ζ�et), and σ� is the restriction of σ to Q(ζ�et)
for each �. �
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����
 20� Let d � 2 be an integer and let r :=
∏

�|d � be its radical. Suppose

that K = Kr if d is odd, or that K = K2r if d is even. For the coefficients
of Theorem 1, with respect to any fixed group G, we then have

c(n, x, d, t) = c(n, x′, d, t)

as long as x, x′ are coprime to d.

P r o o f. We have to show that, whenever a is coprime to d, the coefficient
c(n, a, d, t) is independent of a. By Lemma 19 we may reduce to the case in which
d is a prime power, and then we may conclude by Lemma 17 if d is odd, and
Lemma 18 if d is even. �

P r o o f o f T h e o r e m 4. By [7, Corollary 12] and [2, Theorem 3] the density
DensK(G, d) of primes p of K such that ordp(G) is coprime to d is an explicitly
computable rational number. This density can be decomposed as the sum over a,
with a coprime to d, of the densities densK(G, a mod d). Since Kr = K if d is
odd, and K2r = K if d is even, by Lemma 20 the above densities have equal
value, so that for every a coprime to d we have

densK(G, a mod d) =
1

ϕ(d)
·DensK(G, d) ,

which is then a computable rational number. Moreover, this density is also
strictly positive because by Theorem 6 the density DensK(G, d) is strictly posi-
tive. �

3.5. Proof of Theorem 5

P r o o f o f T h e o r e m 5. Let r be the radical of d, and let m = r if d is odd,
and m = 2r otherwise. Consider the following set of primes p of K of degree 1,
and unramified in Km

S := {p : ordp(G) ≡ a mod d, N p ≡ 1 mod m} .
By Lemma 15 the set S has density equal to

1

[Km : K]
· densKm

(G, a mod d) .

By Theorems 2 and 4, the density densKm
(G, a mod d) is strictly positive if d

is a prime power or if a is coprime to d, so the same holds for the density of S .
Consequently, the density densK(G, a mod d) is also strictly positive. �
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4. Multiplicative groups with torsion

Stating Theorem 1 for a finite group is trivial (the given density is either 0
or 1). However it is not trivial to remove the assumption that the multiplicative
group is torsion-free: this is what we achieve in this section. As a side remark, no-
tice that our strategy also applies to the density considered in [8, Theorem 1.4],
i.e. if we introduce a condition on the Frobenius conjugacy class with respect to
a fixed finite Galois extension of the base field.

LetK be a number field, and letG′ be a finitely generated (and not necessarily
torsion-free) multiplicative subgroup of K× of positive rank. Then we can write
G′ as G′ = 〈ζ〉 ×G, where ζ is a root of unity of K generating the torsion part
of G′ and G is torsion-free. Let us exclude finitely many primes p of K so that
the reduction of G′ is well-defined and we have ordp(ζ) = ord(ζ). The order of G′

modulo p is then the least common multiple between the order of G modulo p
and a fixed integer

ordp(G
′) = [ordp(G), ord(ζ)] .

We may then reformulate the given problem.

���
� 21� Let G be a finitely generated and torsion-free subgroup of K×,
and fix some integer n � 2. Given two integers a and d � 2, we investigate the
density of primes p of K for which

[ordp(G), n] ≡ a mod d . (9)

Assuming (GRH), the case n = 1 is known, and our aim is reducing to this case.
Notice that our method also shows that the considered density exists. We denote
this density by dens′K(G, n; a mod d).

Let � be a prime divisor of n. The aim is finding a way to replace n with n
�

(or to conclude directly). We distinguish various cases.

Case (i). If � | d and � � a, then we have dens′K(G, n; a mod d) = 0 because �
divides [ordp(G), n] and (9) cannot hold.

Case (ii). If � | d and � | a, then the congruence [ordp(G), n] ≡ a mod d is
equivalent to [

ordp(G
�),

n

�

]
≡ a

�
mod

d

�
,

so we have

dens′K(G, n; a mod d) = dens′K

(
G�,

n

�
;
a

�
mod

d

�

)
.
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Case (iii). Suppose that � � d. Let �̃ be a multiplicative inverse for � modulo d,
and set v := v�(n). If �

v | ordp(G), then we have

[ordp(G), n] ≡ a mod d ⇐⇒
[
ordp(G),

n

�

]
≡ a mod d . (10)

If �v � ordp(G), then we have

[ordp(G), n] ≡ a mod d ⇐⇒
[
ordp(G),

n

�

]
≡ a�̃ mod d .

The condition �v | ordp(G) amounts to[
ordp(G),

n

�

]
≡ 0 mod �v

and hence (recalling that � and d are coprime) we can easily combine this
congruence and the congruence in (10) with the Chinese Remainder Theorem.
The first subcase thus amounts to[

ordp(G),
n

�

]
≡ a�̃v�v mod d�v.

Similarly, the second subcase amounts to letting
[
ordp(G), n�

]
be in the difference

of congruence classes

(a�̃ mod d) \ (a�̃v+1�v mod d�v) .

Notice that the congruence classes for the first and second subcase are distinct.
Thus if � � d we can explicitly write

dens′K(G, n; a mod d) = dens′K
(
G,

n

�
; a0 mod d�v

)
+ dens′K

(
G,

n

�
; a�̃ mod d

)
− dens′K

(
G,

n

�
; a0�̃ mod d�v

)
,

where we have set a0 := a�̃v�v mod d�v.

We have thus proven the following result.

������� 22� Assume (GRH). Let K be a number field, and let G′ be a finitely
generated subgroup of K× of positive rank. Let n � 1 be the order of the torsion
of G′, and let G be a torsion-free subgroup of G′ such that G′ = G × 〈ζn〉.
Let a and d � 2 be fixed integers. The density of the set of primes p of K

{p : ordp(G
′) ≡ a mod d}

exists and can be expressed as a finite sum of terms of the type

(−1)k · densK(Gm, a′ mod d′),

where k, m, a′, d′ are integers and m | n.
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5. Examples

In this last section we work out some examples and collect some numerical
data to illustrate our results.

��
��	� 23� Let K = Q(ζ3) and consider the group G = 〈5, 7〉 � Q(ζ3)
×.

We compute the density

densK(G, a mod 9) for 0 � a < 9.

Since ζ3 ∈ K, we can use [2, Theorem 2] to compute the density of primes p of K
for which the order of G mod p is coprime to 3, and we have

DensK(G, 3) =
1

13
.

Then by Theorem 2 we have

densK(G, a mod 9) =
1

78
for a ∈ {1, 2, 4, 5, 7, 8} .

For a = 3 or a = 6, by [2, Theorem 3] we have

DensK
(
G3, 3

)
=

9

13

and applying Lemma 9 we obtain by the equidistribution property

densK(G, a mod 9) = densK(G3, 1 mod 3)− 3 densK(G, 1 mod 9)

=
9

2 · 13 − 3 · 1

78
=

4

13
.

For a = 0 we get the complementary density of DensK(G3, 3) and hence

densK(G, 0 mod 9) =
4

13
.

��
��	� 24� Let K = Q(ζ4) and consider the group G = 〈3, 5〉 � Q(ζ4)
×.

We compute the density of primes densK(G, a mod 8) for 0 � a < 8. Since
ζ4 ∈ K, by [2, Theorem 2] the density of primes p of K for which the order
of G mod p is odd is given by

DensK(G, 2) =
1

28
.

Then by Theorem 2 we have

densK(G, a mod 8) =
1

112
for a ∈ {1, 3, 5, 7} .
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For a = 2 or a = 6, by [2, Theorem 3] we have

DensK
(
G2, 2

)
=

1

7
,

and applying Lemma 9 we obtain by the equidistribution property

densK(G, a mod 8) = densK
(
G2, 1 mod 4

)− 2 densK
(
G, 1 mod 8

)
=

1

14
− 2 · 1

112
=

3

56
.

For a = 4 we proceed similarly. By [2, Theorem 3] we have

DensK
(
G4, 2

)
=

4

7
,

and then, by Lemma 9, we obtain by the equidistribution property

densK(G, 4 mod 8) = densK
(
G4, 1 mod 2

)− 2 densK
(
G2, 1 mod 4

)
=

4

7
− 1

7
=

3

7
.

Finally, for a = 0 we obtain the complementary density

densK(G, 0 mod 8) =
3

7
.

��
��	� 25� Let K = Q(ζ12) and consider the group G = 〈7, 11〉 � Q(ζ12)
×.

We compute the density of primes densK(G, a mod 12) for a ∈ {1, 5, 7, 11},
which are all equal by Theorem 4 as ζ12 ∈ K. By [7, Corollary 12] the den-
sity of primes p of K for which the order of G mod p is coprime to 12 can be
computed as in the previous examples

DensK(G, 12) = DensK(G, 4) ·DensK(G, 3) =
1

364
.

Hence we obtain by the equidistribution

densK(G, a mod 12) =
1

1456
.

In the following two examples we also compute with SageMath [9] approxi-
mated densities to support the validity of the equidistribution property of Corol-
lary 3.

��
��	� 26� Consider the group 〈2〉 � Q×. Focusing on the set of primes up
to 106, we find with SageMath the following approximated values for the density
densQ(2, a mod d)
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a mod d densQ(2, a mod d) primes up to 106

4 mod 16 1/6 ≈ 0.1667 0.1676
12 mod 16 1/6 ≈ 0.1667 0.1652
3 mod 9 1/8 = 0.125 0.1236
6 mod 9 1/8 = 0.125 0.1266
9 mod 27 1/24 ≈ 0.0417 0.0422
18 mod 27 1/24 ≈ 0.0417 0.0411
3 mod 27 1/24 ≈ 0.0417 0.0416
6 mod 27 1/24 ≈ 0.0417 0.0421
15 mod 27 1/24 ≈ 0.0417 0.0420
21 mod 27 1/24 ≈ 0.0417 0.0405

For instance, by Corollary 3, for 3 | a and d = 9 or d = 27 we have

densQ(2, a mod d) =
1

[Q(ζ3) : Q]
· densQ(ζ3)(2, a mod d) ,

and similarly for 4 | a and d = 16. Thus we can compute these densities by
following the same procedure as in the previous examples.

��
��	� 27� We consider the group G= 〈2, 3〉�Q× and compute the densities
densQ(G, a mod d) using the methods of the previous examples. Again we study
the set of primes up to 106 and find with SageMath the following approximated
values for the considered densities:

a mod d densQ(G, a mod d) primes up to 106

4 mod 16 17/112 ≈ 0.1518 0.1522
12 mod 16 17/112 ≈ 0.1518 0.1508
3 mod 9 2/13 ≈ 0.1538 0.1538
6 mod 9 2/13 ≈ 0.1538 0.1540
9 mod 27 2/39 ≈ 0.0513 0.0513
18 mod 27 2/39 ≈ 0.0513 0.0513
3 mod 27 2/39 ≈ 0.0513 0.0518
6 mod 27 2/39 ≈ 0.0513 0.0512
15 mod 27 2/39 ≈ 0.0513 0.0513
21 mod 27 2/39 ≈ 0.0513 0.0507

��
��	� 28� LetK = Q(ζ3)
×, and letG be a finitely generated and torsion-free

subgroup of Q(ζ3)
×. Consider the group G′ = G × 〈ζ6〉. We study the density

of primes p of K such that ordp(G
′) ≡ a mod 10, as considered in Section 4.
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For a = 1, 3, 5, 7, 9, we have dens′K(G, 6; a mod 10) = 0. For a = 4 we have

dens′K(G, 6; 4 mod 10) = dens′K(G, 2; 24 mod 30) + dens′K(G, 2; 8 mod 10)

− dens′K(G, 2; 18 mod 30)

= densK(G2, 12 mod 15) + densK(G2, 4 mod 5)

− densK(G2, 9 mod 15) ,

and also

dens′K(G, 6; 4 mod 10) = dens′K(G2, 3; 2 mod 5)

= densK(G2, 12 mod 15) + densK(G2, 4 mod 5)

− densK(G2, 9 mod 15) ,

where the difference in the two calculations consists only in whether we con-
sider the prime 2 or the prime 3 first for the method described in Section 4.
For a = 2, 6, 8 we can make a similar computation. Finally, for a = 0 we have

dens′K(G, 6; 0 mod 10) = densK(G, 0 mod 5) ,

as 2 always divides ordp(G
′), and

ordp(G
′) ≡ 0 mod 5 if and only if ordp(G) ≡ 0 mod 5.
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