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ABSTRACT. We exhibit a class of Littlewood polynomials that are not Lα-flat
for any α ≥ 0. Indeed, it is shown that the sequence of Littlewood polynomials

is not Lα-flat, α ≥ 0, when the frequency of −1 is not in the interval
]
1
4
, 3
4

[
.

We further obtain a generalization of Jensen-Jensen-Hoholdt’s result by estab-
lishing that the sequence of Littlewood polynomials is not Lα-flat for any α > 2
if the frequency of −1 is not 1

2
. Finally, we prove that the sequence of palindromic

Littlewood polynomials with even degrees are not Lα-flat for any α ≥ 0, and we
provide a lemma on the existence of c-flat polynomials.

Communicated by Radhakrishnan Nair

1. Introduction

The main goal of this paper is to establish that some class of Littlewood
polynomials are not Lα-flat, α ≥ 0. Precisely, we prove that if the sequence
of Littlewood polynomials (Pq) is palindromic with even degrees or if the fre-
quency of −1, which occurs as coefficients of those polynomials in (Pq), is not
in the interval

]
1
4 ,

3
4

[
, then (Pq) are not Lα-flat for any α ≥ 0.
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We further establish that the sequence of Littlewood polynomials cannot be
Lα-flat for α > 2 if the frequency of −1 is not 1

2 . This is a strengthening of The-
orem 2.1 of [16].

It follows that the search for a sequence of Lα-flat polynomials from the class L
of Littlewood polynomials can be restricted to the subclass of polynomials P ∈ L
which are not palindromic with even degrees and for which the frequency of −1
is in the interval

]
1
4 ,

3
4

[
.

The problem of flat polynomials goes back to Erdős [11], [12] and
Newman [24]. Later, Littlewood asked, in his famous paper [20], among sev-
eral questions, if there are positive absolute constants A and B such that, for
arbitrarily large n, one can find a sequence

ε = (εj)
n−1
j=0 ∈ {−1, 1}n

such that

A
√
n ≤
∣∣∣∣∣
n−1∑
j=0

εjz
j

∣∣∣∣∣ ≤ B
√
n, ∀ z ∈ S1, where S1 denotes the circle group.

The polynomials of type

Ln(z)
def
=

n−1∑
j=0

εjz
j

are called nowadays Littlewood polynomials or polynomials from the class L.
In the modern terminology, Littlewood’s question can be reformulated as follows.

�������� 1	 [[20, Littlewood, 1966] and [21, Problem 19]] Does there exist a
sequence of polynomials from the class L which is flat in the Littlewood sense?

The other, more general question, whether there exists a sequence of trigono-
metric polynomials

Kj(z) =
1√
qj
(a0, j + a1, jz + a2, jz

2 + · · ·+ aqj−1, jz
qj−1), (2)

j = 1, 2, . . . , |ak, j| = 1, 0 ≤ k ≤ qj − 1,

such that ∣∣Kj(z)
∣∣→ 1 uniformly as j → ∞,

was answered affirmatively by J-P. Kahane [19]. Furthermore, Jósef Beck [5] has
shown, by applying the random procedure of Kahane, that the sequence

Kj , j = 1, 2, . . . ,

can be chosen to be flat in the sense of Littlewood with coefficients of
√
qjKj , j = 1, 2, . . . ,

chosen from the solutions of z400 = 1.
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Nowadays, the polynomialsKj , j = 1, . . . , such that
∣∣Kj(z)

∣∣→ 1 uniformly as
j → ∞, are called ultraflat polynomials, and the class of polynomials of type (2)
is denoted by G.

For more details on the ultraflat polynomials of Kahane, we refer the reader
to [27]. Let us also mention that very recently, Bombieri and Bourgain [6] con-
structed an effective sequence of ultraflat polynomials.

Littlewood’s question is also related to the well-know merit factor problem and
Turyn-Golay’s conjecture [17], arising from digital communications engineering,
which states that the merit factor of any binary sequence is bounded.

We remind that the merit factor of a binary sequence

ε = (εj)
n−1
j=0 ∈ {−1, 1}n

is given by

Fn(ε) =
1∥∥∥Pn

∥∥∥4
4
− 1

,

where

Pn(z) =
1√
n

n−1∑
j=0

εjz
j, z ∈ S1.

For a nice account on the merit factor problem, we refer the reader to [7], [18],
[14], and for the connection to ergodic theory and spectral theory of dynamical
systems to [9].

The problem of flat polynomials has nowadays a long history and there is a
large literature on the subject. Moreover, this problem is related to some open
problems coming from combinatorics, number theory, digital communication,
theory of error codes, complex analysis, spectral theory, ergodic theory and other
areas.

To the best of the author’s knowledge, the only general result known on flat-
ness in the class L is due to Saffari and Smith [28]. Unfortunately, the authors
in [29] point out that their proof contains a mistake. Therefore, the problem
remains open. However, therein, the authors proved that for the palindromic
sequence of polynomials from the class L the L4 conjecture of Erdős holds
(see below). We shall strengthen their result by proving that the palindromic
polynomials with even degrees from the class L are not Lα flat, for α ≥ 0.
This is done by applying Littlewood’s criterion [22].
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We further exhibit a subclass of Littlewood polynomials which are not Lα-
-flat, α > 0 by establishing one-to-one correspondance between the Littlewood
polynomials and the Newman-Bourgain polynomials given by

Qq(z) =
1√
q

q−1∑
j=0

ηjz
j, z ∈ S1, where for each j = 0, . . . , q − 1, ηj ∈ {0, 1}.

Therefore, our main results can be seen as a general results since it reduces the
problem of finding flat polynomials in the class L to a subclass of L. Furthermore,
it supports the conjecture mentioned by D. J. Newman in [24] which says that
all the analytic trigonometric polynomials P with coefficients ±1 satisfy∥∥P∥∥

1
< c
∥∥P∥∥

2
,

for some positive constant c < 1. Obviously, this conjecture implies the two con-
jectures of Erdős [10],[11, Problem 22], [12] which states that there is a positive
constant d such that for any polynomial P from L we have

(1) ‖P‖4 ≥ (1 + d)‖P‖2. (L4 conjecture of Erdős.)

(2) ‖P‖∞ ≥ (1 + d)‖P‖2. (Ultraflat conjecture of Erdős.)

However, the author in [1] proved that the class of Newman-Bourgain polyno-
mials contain a sequence of Lα-flat polynomials, 0 < α < 2. This is accomplished
by appealing to Singer’s construction of the Sidon sets. We refer to [1] for more
details.

During the time when this article was under review, P. Balister and al. posted
a paper on arXiv.org [4] in which they stated that Littlewood question (Ques-
tion 1.) has an affirmative answer. Indeed, using Rudin-Shapiro polynomials
combined with Spencer’s six deviations lemma, the authors constructed a flat
polynomials in the Littlewood sense [4]. However, it is easy to see that those
polynomials are not Lα-flat, for any α ≥ 0. 1

This paper is organized as follows. In Section 2, we give a brief exposition
of some basic tools and we state our main results. In Section 3, we prove our first
main result in the case that the frequency of −1 is not in

[
1
4 ,

3
4

]
. In Section 4,

we prove our second main result. Finally, in the appendix, we complete the proof
of our first main result.

1This follows directly from Theorem 2.4 and Lemma 3.3 in [4]. Indeed, by (2) in Theorem 4.3
and Lemma 3.3 in [4], we get that those polynomials are not almost everywhere flat. For this
later notion, we refer to the section on flat polynomials, and for its applications in ergodic
theory and dynamical systems, we refer to [2].
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2. Basic definitions and tools

Let dz be the normalized Lebesgue measure on the circle group S1.
As customary, for f ∈ L1(S1, dz), we define its nth Fourier coefficient by

f̂(n) =

∫
S1

f(z)z−n dz.

A polynomial f(z) =
∑n

j=0 ajz
j is palindromic if for any 0 ≤ k ≤ n,

f̂(k) = f̂(n− k).

The L2-normalized Littlewood polynomials are given by

Pq(z) =
1√
q

q−1∑
j=0

εjz
j, z ∈ S1, (2.1)

where for each j = 0, . . . , q − 1, εj ∈ {+1,−1}.
Notice that each sequence ε =

(
εj
)+∞
j=0

∈ {+1,−1}N can be uniquely associ-

ated to a sequence η =
(
ηj
)+∞
j=0

∈ {0, 1}N by putting

εj = 2ηj − 1,
or

εj = 1− 2η′j , with η′ = 1− η, 1 = (1, 1, 1, . . .).

The previous remark will play a crucial role in our proof. Indeed, if (Pq) is a
sequence of L2-normalized Littlewood polynomials, then

Pq(z) =
1√
q

q−1∑
j=0

εjz
j

=
2√
q

q−1∑
j=0

ηjz
j − 1√

q

q−1∑
j=0

zj, (2.2)

=
1√
q

q−1∑
j=0

zj − 2√
q

q−1∑
j=0

η′jz
j, z ∈ S1. (2.3)

We put

Qq(z) =
1√
q

q−1∑
j=0

ηjz
j and Rq(z) =

1√
q

q−1∑
j=0

η′jz
j, z ∈ S1.
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For a given sequence of L2-normalized Littlewood polynomials (Pq) (see (2.1)),

it is easy to see that for each q ∈ N and j ∈ N,
√̂
qPq(j) is the jth coefficient

of the polynomial
√
qPq. We may further assume without loss of generality in the

sequel that the following limit exists

lim
q−→+∞

#
{
j :

√̂
qPq(j) = −1

}
q

= fr (−1)

where #E denote the cardinality of a set E. fr(−1) is the frequency of −1 which
is also the frequency of 0 for the sequence of polynomials (Qq). Note that the
frequency of 1 are the same for the both sequences of polynomials (Pq) and (Qq).

Flat polynomials.

For any α > 0 or α = +∞, the sequence
(
Pn(z)

)
of analytic trigonometric

polynomials of L2(S1, dz) norm 1 is said to be Lα-flat if the sequence
(|Pn(z)|

)
converges in Lα-norm to the constant function 1 as n −→ +∞. For α = 0,
we say that (Pn) is Lα-flat, if the sequence of the Mahler measures

(
M (Pn)

)
converges to 1. We recall that the Mahler measure of a function f ∈L1(S1, dz)
is defined by

M (f) = ‖f‖0 = lim
β−→0

‖f‖β = exp

(∫
S1

log(|f(t)|) dt
)
.

The sequence
(
Pn(z)

)
is said to be flat in a.e. sense (almost everywhere sense)

if the sequence
(|Pn(z)|

)
, converges a.e. to 1 with respect to dz as n −→ +∞.

We further say that a sequence
(
Pn

)
of L2-normalized polynomials from the

class L (or G) is flat in the sense of Littlewood if there exist constants 0 < A < B
such that for all z ∈ S1 and for all n ∈ N (or at least for sufficiently large n ∈ N),
we have

A ≤ ∣∣Pn(z)
∣∣ ≤ B.

The previous notion of flatness can be extended as follows.

Let c ∈ [0, 1]. The sequence
(
Pn(z)

)
of analytic trigonometric polynomials

of L2(S1, dz) norm 1 is said to be Lα-c-flat if the sequence
(|Pn(z)|

)
converges

in Lα-norm to the constant function c as n −→ +∞. The sequence
(
Pn(z)

)
is

said to be c-flat in a.e. sense if the sequence
(|Pn(z)|

)
converges a.e. to c with

respect to dz as n −→ +∞. Obviously, 0-flat polynomials in a.e. sense and
Lα-0-flat polynomials, for any α ∈]0, 2[, exists (see Lemma 3.4).
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A formula between Littlewood and Newman-Bourgain Polynomials.

We further assume without loss of generalities that the first and last coefficient
of Pq are positive in our definition. This makes the correspondence T defined
below one-to-one. Let NB denote the class of Newman-Bourgain polynomials,
i.e., polynomials Q of type

1√
m

(
η0 + η1z + · · ·+ ηq−2z

q−2 + ηq−1z
q−1
)
,

where

η0 = ηq−1 = 1, ηi = 0 or 1, 1 ≤ i ≤ q − 2, and m =

q∑
i=0

ηi,

which is also the number of i with ηi = 1. Note that if P is as in (2.1) and
if we put

ηi =
1

2
(εi + 1), 0 ≤ i ≤ q − 1,

then the polynomial
1√
m

(
η0 + η1z + · · ·+ ηq−2z

q−2 + ηq−1z
q−1
)

is in the class NB, where m is the number of ηi = 1 which is also the number
of εi = 1. Let us define one-to-one invertible map T from the class L to the
class NB by(

T (P )
)
(z) = T

(
1√
q

(
ε0 + ε1z + · · ·+ εq−2z

q−2 + εq−1z
q−1
))

=
1√
m

(
η0 + η1z + · · ·+ ηq−2z

q−2 + ηq−1z
q−1
)
,

where ηi =
1
2 (εi + 1), 0 ≤ i ≤ q − 1, and m is the number of ηi = 1 which is also

the number of εi = 1.

Note

T−1

(
1√
m

(
q−1∑
i=0

ηiz
i

))
=

1√
q

(
q−1∑
i=0

(2ηi − 1)zi

)
.

Let

D(z) = Dq(z) =
1√
q

q−1∑
i=0

zi.

Thus we have that D(1) =
√
q, while for z ∈ S1 \ {1},

D(z) =
1√
q

1− zq

1− z
→ 0 as q → ∞.
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The formula for polynomials in L mentioned above is as follows: If P is as
in (2.1), then

Pq(z) = 2

√
m√
q

(
T (Pq)

)
(z)−D(z) (2.4)

= 2
1√
q
Aq(z)−Dq(z),

where m is the number of terms in P with coefficient +1, A(z) =
√
m T (P )(z).

The proof follows as soon as we write T (P )(z) and D(z) in the right hand side
in full form and collect the coefficient of zi, 0 ≤ i ≤ q − 1.

Further, we define the one-to-one map S from L onto L by

S(P ) =
1√
q

⎛⎝q−1∑
j=0

(−εj)z
j

⎞⎠ ,

i.e., the polynomial obtained from P by changing the signs of εj , j = 0, . . . , q−1.

Note that the polynomial D and the polynomials in L and NB all have
L2(S1, dz) norm 1.

Further, we have that if
(
Pn(z)

)
is a.e. flat, then

(
S(Pn)

)
is also a.e. flat.

It is also obvious that the flatness properties are invariant under S. Let us
notice that it is a nice exercise to see that the L4 conjecture and the ultraflat
conjecture of Erdős holds in the class of Newman-Bourgain polynomials.

We are now able to state our main results.


�����
 2.1	 Let (Pq) be a sequence of Littlewood polynomials. Suppose that
the frequency of −1 is not in the interval

]
1
4 ,

3
4

[
, then (Pq) is not Lα-flat

for any α ≥ 0.

If we restrict our self to the Lα space with α > 2, then we have the following
much stronger result


�����
 2.2	 Let (Pq) be a sequence of Littlewood polynomials. Suppose that
the frequency of −1 is not 1

2 . Then, the polynomials (Pq) is not Lα-flat for any
α > 2. Furthermore,

lim
q−→+∞

∥∥∥Pq

∥∥∥
α
= +∞.

We state our second main result as follows.


�����
 2.3	 Let (Pq) be a sequence of Littlewood polynomials. Suppose that
each Pq is palindromic with even degree. Then (Pq) is not L

α-flat for any α ≥ 0.
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3. Proof of Theorem 2.1 when the frequency of −1
is not in

[
1
4
, 3
4

]
.

We start by stating a criterion on the connection between the L1-flatness and
Lα-flatness, for α > 0.

����������� 3.1	 Let α > 0 and
(
Pq(z)

)
q≥0

be a sequence of L2-normalized

polynomials and assume that(
Pq(z)

)
q≥0

is Lα-flat.

Then, there exists a subsequence
(
Pqn(z)

)
which is a.e. flat and L1-flat.

Conversely, assume that (
Pq(z)

)
q≥0

is L1-flat,

then there exists a subsequence
(
Pqn(z)

)
which is a.e. flat and Lα-flat, for each

0 < α < 2.

For the proof of Proposition 3.1 we need the following tool that is quite useful
for proving convergence in Lp when the almost everywhere convergence holds
without domination. This tool is based on the notion of uniform integrability.
We recall that the sequence (fn)n∈N of integrable functions is said to be uniformly
integrable if and only if∫

{|fn|>M}

∣∣fn∣∣(x) dμ(x) −−−−−→
M→+∞

0, uniformly in n ∈ N.

For the other definitions of uniform integrability, we refer to [30, Theorem 16.8].
We further notice that the condition

sup
n∈N

(∫ (∣∣fn∣∣1+ε
))

< +∞,

for some ε positive, implies that
(
fn
)
is uniformly integrable.

��

� 3.2 (Vitali’s convergence theorem)	 Let (X,B, μ) be a probability space,
p a positive number and

(
fn
)
a sequence in Lp(X) which converges in probability

to f . Then, the following are equivalent:

(i) (|fn|p)n≥0 is uniformly integrable;

(ii)
∣∣∣∣∣∣fn − f

∣∣∣∣∣∣
p
−−−−−→
n→+∞ 0.

(iii)
∫
X
|fn|p dμ −−−−−→

n→+∞
∫
X
|f |p dμ.
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P r o o f. The classical proof is given for the case p ≥ 1 (see, for instance
[30, p. 165–167]). But it is easy to see that the same arguments are valid
by noticing that Lp(X,B, μ) equipped with

dp(f, g) =

∫
|f(x)− g(x)|p dμ(x), f, g ∈ Lp(X,B, μ),

is a complete metric space.

Indeed, (ii) =⇒ (iii), since
∣∣∣∣∣∣fn− f

∣∣∣∣∣∣
p
−−−−−→
n→+∞ 0 implies dp(fn, f) −−−−−→

n→+∞ 0, and

by the triangle inequality, we have∣∣∣dp(fn, 0)− dp(0, f)
∣∣∣ ≤ dp(fn, f) −−−−−→

n→+∞ 0.

(i)=⇒(ii): We start by claiming that
(∣∣fn−fm

∣∣p)
n,m∈N

is uniformly integrable.

Indeed, let M > 0, then∫{∣∣fn−fm

∣∣>2M
} ∣∣fn − fm

∣∣p dμ ≤ 2p
∫{∣∣fn−fm

∣∣>2M
}max{|fn|, |fm|}p dμ

≤
∫{∣∣fn∣∣>M

}
∪
{∣∣fm∣∣>M

}max{|fn|, |fm|}p dμ,

since for any
a, b ∈ R, |a− b| ≤ 2max{|a|, |b|}

and {∣∣fn − fm
∣∣ > 2M

} ⊂ {∣∣fn∣∣ > M
} ∪ {∣∣fm∣∣ > M

}
.

Consequently,∫{∣∣fn−fm

∣∣>2M
} ∣∣fn − fm

∣∣p dμ
≤ 2p

(∫{∣∣fn∣∣>M
}
∩
{∣∣fm∣∣>M

}max{|fn|, |fm|}p dμ

+

∫{
|fn|>M>|fm|

}max{|fn|, |fm|}p dμ+
∫{

|fm|>M>|fn|
}}max{|fn|, |fm|}p dμ

)

≤ 2p

(∫{∣∣fn∣∣>M
}
∩
{∣∣fm∣∣∣∣>M

} |fn|p dμ+∫{∣∣fn∣∣>M
}
∩
{∣∣fm∣∣>M

} |fm|p dμ
)

+

(
2p
∫{

|fn|>M
} |fn|p dμ+

∫{∣∣fm∣∣>M
} |fm|p dμ

)
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Whence

sup
n,m∈N

∫{∣∣fn−fm

∣∣>2M
} ∣∣fn − fm

∣∣p dμ
≤ 2p+1

(
sup
n∈N

∫{∣∣fn∣∣>M
} |fn|p dμ+ sup

m∈N

∫{∣∣fm∣∣>M}
|fm|p dμ

)
Letting M −→ +∞, we get

sup
n,m∈N

∫{∣∣fn−fm

∣∣>2M
} ∣∣fn − fm

∣∣p dμ −→ 0,

and the proof of the claim is complete.

Now, let ε > 0 and M sufficiently large such that∫{∣∣fn−fm

∣∣>2M
} ∣∣fn − fm

∣∣p dμ <
ε

3
,

and

μ
{
|fn − fm| > ( ε3) 1

p

}
<

ε

3.2pMp
.

Write ∫ ∣∣fn − fm
∣∣p dμ

=

∫{∣∣fn−fm

∣∣>2M
} ∣∣fn − fm

∣∣p dμ
+

∫{∣∣fn−fm

∣∣<2M
} ∣∣fn − fm

∣∣p dμ
≤ ε

3
+

∫{∣∣fn−fm

∣∣<2M
}
∩
{∣∣fn−fm

∣∣≤( ε
3

) 1
p

} ∣∣fn − fm
∣∣p dμ

+

∫{∣∣fn−fm

∣∣<2M
}
∩
{∣∣fn−fm

∣∣>( ε
3

) 1
p

} ∣∣fn − fm
∣∣p dμ

≤ ε

3
+

ε

3
+

ε

3

Letting n,m −→ +∞ and ε −→ 0, we see that (fn) is a Cauchy sequence with
respect to dp. But L

p(X,A, μ) is complete, then (fn) converge with respect to dp
to some function g = f a.e., since (fn) converge in probability to f. Whence∣∣∣∣∣∣fn − f

∣∣∣∣∣∣
p
−−−−−→
n→+∞ 0.
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As the rest of the proof is similar to the case (p ≥ 1), we leave it to the reader
to verify that (iii)=⇒(i). This finishes the proof of Lemma 3.2. �

We proceed now to the proof of Proposition 3.1.

P r o o f o f P r o p o s i t i o n 3.1. Letα>0 and assume that
(
Pq(z)

)
q≥0

isLα-flat.

Then along a subsequence (qn) we have that
(|Pqn(z)|

)
n≥0

converges a.e. to 1.

Whence
(
Pqn(z)

)
n≥0

is L1-flat byVitali’s convergence theorem. In the opposite

direction, assume that (
Pq(z)

)
q≥0

is L1-flat,

then along a subsequence (|Pqn(z)|)n≥0 converges a.e. to 1. Again by Vitali’s
convergence theorem,(

Pqn(z)
)
n≥0

is Lα-flat for 0 < α < 2. �

In the following, we provide a necessary condition for L1-flatness of a sequence
of Littlewood polynomials.

����������� 3.3	 Let
(
Pq(z)

)
q≥0

be a sequence of L2-normalized Littlewood

polynomials. Suppose that
(
Pq(z)

)
q≥0

is L1-flat polynomials, then the frequency

of −1 is in the interval
[
1
4 ,

3
4

]
.

For the proof of Proposition 3.3, we need the following simple lemma.

��

� 3.4	 The sequence of polynomials
(

1√
q

∑q−1
j=0 z

j
)
q≥0

is Lα-uniformly

integrable, for α ∈]0, 2[.
P r o o f. Let M > 0, β = 2

α and β′ be such that 1
β + 1

β′ = 1. Then, by Hölder’s

inequality, we can write∫{∣∣∣ 1√
q

∑q−1
j=0 zj

∣∣∣α>M

}∣∣∣∣∣ 1√q

q−1∑
j=0

zj

∣∣∣∣∣
α

dz

≤
∥∥∥∥∥ 1√

q

q−1∑
j=0

zj

∥∥∥∥∥
2
β

2

(
dz

{∣∣∣∣∣ 1√q

q−1∑
j=0

zj

∣∣∣∣∣ > α
√
M

}) 1
β′

≤
(
dz

{∣∣∣∣∣ 1√q

q−1∑
j=0

zj

∣∣∣∣∣> α
√
M

}) 1
β′

,

since ∥∥∥∥∥ 1√
q

q−1∑
j=0

zj

∥∥∥∥∥
2

= 1.
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Whence, by Markov inequality, we get

dz

{∣∣∣∣∣ 1√q

q−1∑
j=0

zj

∣∣∣∣∣ > α
√
M

}
≤ 1

α
√
M

∥∥∥∥∥ 1√
q

q−1∑
j=0

zj

∥∥∥∥∥
1

.

This gives

dz

{∣∣∣∣∣ 1√q

q−1∑
j=0

zj

∣∣∣∣∣ > α
√
M

}
≤ 1

α
√
M

,

by Cauchy-Schwarz inequality. Letting M −→ +∞, we conclude that∫{∣∣∣ 1√
q

∑q−1
j=0 zj

∣∣∣α>M

}∣∣∣∣∣ 1√q

q−1∑
j=0

zj

∣∣∣∣∣
α

dz −−−−−→
M→+∞

0.

and the proof of the lemma is complete. �

P r o o f o f P r o p o s i t i o n 3.3. By (2.3), we have

Pq(z) =
1√
q

q−1∑
j=0

zj − 2Rq(z), ∀z ∈ S1.

We further have, for any z 
= 1,∣∣∣∣∣ 1√q

q−1∑
j=0

zj

∣∣∣∣∣ −−−−−→q→+∞
0.

Hence ∥∥∥∥∥ 1√
q

q−1∑
j=0

zj

∥∥∥∥∥
1

−−−−−→
q→+∞ 0,

by Vitali’s convergence theorem. Therefore∥∥∥∣∣Pq(z)
∣∣− ∣∣2Rq(z)

∣∣∥∥∥
1
−−−−−→
q→+∞

0.

It follows that
(
Pq(z)

)
q≥0

is L1-flat if and only if∥∥∥∣∣Rq(z)
∣∣− 1

2

∥∥∥
1
−−−−−→
q→+∞

0.

Assuming that
(
Pq(z)

)
q≥0

is L1-flat. It follows that we have∥∥∥Rq(z)
∥∥∥
1
−−−−−→
q→+∞

1

2
.
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Whence, by Cauchy-Schwarz inequality, we can write

∥∥∥Rq(z)
∥∥∥
2
=

√√√√#
{
j :

√̂
qRq(j) = 1

}
q

≥
∥∥∥Rq(z)

∥∥∥
1
.

Letting q −→ +∞, we obtain

lim
q−→+∞

#
{
j :

√̂
qRq(j) = 1

}
q

= fr(−1) ≥ 1

4
. (3.1)

We now apply this arguments again, with Rq replaced by Qq, to obtain

fr(1) = 1− fr(−1) ≥ 1

4
. (3.2)

Combining (3.1) with (3.2) completes the proof of Proposition 3.3. �

At this point, we conclude that the proof of the main result (Theorem 2.1),
when the frequency of −1 is not in

[
1
4
, 3
4

]
and α > 0 follows easily from Propo-

sition 3.3. To complete the proof for the case that the frequency of −1 is not
in
[
1
4 ,

3
4

]
, we present the proof of the case α = 0.

We proceed by contrapositive. Assume that the sequence (Pq) of L
2-normalized

polynomials is L0-flat. Then,M (Pq)−−−−−→
q→+∞ 1. But, by Jensen inequality, we have

M (Pq) = exp

(∫
S1

log(|f(t)|) dt
)

≤
∥∥∥Pq

∥∥∥
1
≤ 1. (3.3)

We further have by the Cauchy-Schwartz inequality∥∥∥∣∣Pq

∣∣− 1
∥∥∥
1
≤
∥∥∥∣∣Pq

∣∣2 − 1
∥∥∥
1∥∥∥∣∣Pq

∣∣2 − 1
∥∥∥
1
≤
∥∥∥∣∣Pq

∣∣− 1||2
∥∥∥
2

∥∥∥∣∣Pq

∣∣+ 1
∥∥∥
2

≤ 2
∥∥∥∣∣Pq

∣∣− 1
∥∥∥
2

(3.4)

It follows, from (3.3) and (3.4), that (Pq) is L
1-flat. By Proposition 3.3, we see

that the frequency of −1 lies in the interval
[
1
4 ,

3
4

]
as required.

Now, from Lemma 3.4 it is a simple matter to strengthen Proposition 3.1 as
follows.
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����������� 3.5	 Let
(
Pq(z)

)
q≥0

be a sequence of L2-normalized Littlewood

polynomials. Suppose that
(
Pq(z)

)
q≥0

is Lα-flat polynomials for some 0 < α < 2.

Then
1

4
≤ fr (−1) ≤ 3

4
,

Proposition 3.5 is related to the following theorem due to Jensen-Jensen and
Høholdt [16].


�����
 3.6	 Let
(
Pq(z)

)
q≥0

be a sequence of L2-normalized Littlewood poly-

nomials. Suppose that

#
{
j :

√̂
qPq(j) = −1

}
q

−→ fr (−1) as q −→ +∞.

If

fr (−1) 
= 1

2
, then

∥∥∥Pq

∥∥∥
4
−−−−−→
q→+∞ +∞.

Obviously, Theorem 3.6 follows immediately form our main result Theo-
rem 2.2. For its proof, we need the following interpolation inequalities due
to Marcinkiewicz and Zygmund [31, Theorem 7.5, Chapter X, p.28].

��

� 3.7	 For α > 1, n ≥ 1, and any trigonometric polynomial P of degree
≤ n− 1,

Aα

2n

2n−1∑
j=0

∣∣P (e2πi
j
2n )
∣∣α ≤

∫
T

∣∣∣P (z)
∣∣∣α dz ≤ Bα

n

2n−1∑
j=0

∣∣P (e2πi
j
2n )
∣∣α, (3.5)

where Aα and Bα are independent of n and P .

We are now able to give the proof of Theorem 2.2.

P r o o f o f T h e o r e m 2.2. Let β = α
2 . Then, since β > 1, we can apply

Marcinkiewicz-Zygmund inequalities (Lemma 3.5) to get∥∥∥∣∣Pq

∣∣2 − 1
∥∥∥β
β
≥ Aβ

q

∣∣∣∣∣∣∣∣Pq(1)
∣∣2 − 1

∣∣∣β , (3.6)

for some Aβ > 0. We further have∣∣Pq(1)
∣∣2 =

∣∣∣√q − 2
nq√
q

∣∣∣2,
where nq is the number of η′j = 1 which is the number of εj = −1. This equality
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is due to the fact that

Pq(z) =
1√
q

q−1∑
j=0

zj − 2Rq(z),

and

Rq(1) =
nq√
q
.

From this, we can write∣∣Pq(1)
∣∣2 = q

(
1− 2

nq

q

)2
. (3.7)

Whence ∥∥∥∣∣Pq

∣∣2 − 1
∥∥∥β
β
≥ Aβ

q

∣∣∣q(1− 2
nq

q

)2
− 1
∣∣∣β

≥ Aβ

∣∣∣(1− 2
nq

q

)2
− 1

q

∣∣∣βqβ−1.

Therefore, by the triangle inequality, we can rewrite (3.6) as follows(
‖Pq‖2α + 1

)β
≥ Aβ

∣∣∣(1− 2
nq

q

)2
− 1

q

∣∣∣βqβ−1.

Letting q −→ +∞, we conclude that

lim
q−→+∞

(
‖Pq‖2α + 1

)β
≥ (1− 2 fr(−1)

)α
lim

q−→+∞
qβ−1 = +∞,

since fr (−1) 
= 1
2
. This completes the proof of Theorem 2.2. �

It follows from our proof that if the sequence of polynomials (Pn) from the
class L is flat in the Littlewood sense, then the frequency of -1 is 1

2
. Indeed,

assume that the sequence of L2-normalized Littlewood polynomials (Pq) is flat
in the Littlewood sense. Then, there exist A,B > 0 such that, for sufficiently
large q ∈ N, we have

A < |Pq(z)| < B, ∀z ∈ S1.

Therefore,

A2 < |Pq(1)|2 < B2.

This combining with (3.7) gives

A2

q
<
(
1− 2

nq

q

)2
<

B2

q
.

Letting q −→ +∞, we obtain
nq

q −→ 1
2 .
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4. Proof of Theorem 2.3

The main tool in the proof of our second main result is the following
Littlewood’s criterion of flatness.

��

� 4.1 (Littlewood’s criterion [22])	 Let

fn(t) =

n∑
j=1

am cos(mt+ φm)

and assume that we have
n∑

m=1

a2m ≤ K

n2

n∑
m=1

m2a2m,

for some absolute constantK. Then, for any α > 0 there exists a constant A(k, α)
such that

‖fn‖α ≤ (1−A(k, α)
)‖fn‖2 if α < 2;

‖fn‖α ≥ (1 +A(k, α)
)‖fn‖2 if α > 2.

Notice that we have ∥∥f ′
n

∥∥
2
≤ n
∥∥fn∥∥2,

by Bernstein-Zygmund inequalities [31, Theorem 3.13, Chapter X, p. 11].
Furthermore, the assumption in the Littlewood’s criterion says that there is
a constant K such that ∥∥f ′

n

∥∥
2
≥ Kn

∥∥fn∥∥2.
We proceed now to prove our second main result.

Let (Pn(z)) be a sequence of even degree palindromic polynomials from the
class L, where

Pn(z) =

n∑
j=0

εjz
j, n = 2, 4, 6 . . . , z ∈ S1.

A straightforward computation gives

Pn(z) = z
n
2 Ln(z)− εn

2
z

n
2, ∀z ∈ S1,

where

Ln(z) =

n
2∑

k=0

εkσn
2 −k(z),

and

σl(z) = zl +
1

zl
.
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Therefore, for any z ∈ S1, we have

Ln(θ) =

n
2∑

k=0

an
2 −k cos(kθ), ak = 2εk.

Applying the Littlewood criterion, it follows that (Ln) is not Lα-flat, α ≥ 0.
We thus conclude that (Pn) is not Lα-flat, α ≥ 0. This finish the proof of our
second main result.

5. Appendix.

Proof of Theorem 2.1 when the frequency of−1 is 1/4 or 3/4
(jointly with M.G. Nadkarni).

For the proof of our first main result when the frequency of −1 is equal to 1
4

or 3
4 , we need some tools from [2].

LetQ(z) = 1√
m

∑q−1
j=0 ηjz

j be a polynomial in the classNB, wherem =
∑q−1

j=0 ηj ,

which is the number of nonzero terms in Q. Note that Q(1) =
√
m.

| Q(z) |2= 1 +

q−1∑
k=−q−1

k �=0

akz
k,

where each ak is a sum of terms of type ηiηj
1
m , i 
= j. Note that for each k,

a−k = ak. Write

L =

q−1∑
j=−(q−1)

j �=0

aj = | Q(1) |2 −1 = m− 1.

Consider the random variables

X(k) = zk − ak, −(q − 1) ≤ k ≤ q − 1

with respect to the measure ν =
∣∣Q(z)

∣∣2 dz. We write

m(k, l) =

∫
S1

X(k)X(l) dν, −(q − 1) ≤ k, l ≤ q − 1, k, l 
= 0

and M for the covariance matrix with entries

m(k, l),−(q − 1) ≤ k, l ≤ q − 1, k, l 
= 0.

We call M the covariance matrix associated to ν =| Q(z) |2 dz.
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Since the linear combination of X(k),−(q − 1) ≤ k ≤ q − 1, k 
= 0, can vanish
at no more than a finite set in S1 and ν is non discrete, the random variables
X(k),−(q−1) ≤ k ≤ q−1, k 
= 0, are linearly independent, whence the covariance
matrix M is non-singular. M is a 2(q − 1)× 2(q − 1) positive definite matrix.

Note that

mi,j =

∫
S1

zi−j dν − aiaj , mi,i = 1− a2i .

Let r(Q) = r > 0 denote the sum of the entries of the matrix M .
Let C(Q)=C sum of the absolute values of the entries of M . Note that r≤C.
Also note that since each

∣∣mi,j

∣∣ ≤ 1 we have

C ≤ (2q − 1)2 < 4q2.

We will now consider a sequence
(
Qn(z)

)
of polynomials from the class NB.

The quantitiesM (Qn), r(Qn), C(Qn), etc. will be now written asMn, rn, Cn, etc.

We need the following result from [2, Theorem 5.1].

��

� 5.1	 If
(
Qn(z)

)
is an a.e. flat sequence from the class NB, then

Cn

m2
n

−−−−−→
n→+∞

+∞.

As a consequence of Lemma 5.1, we have

��������� 5.2	 If
(
Qn

)
is an a.e. flat sequence then the ratios mn

qn
, n = 1, 2, . . .

converges to zero.

P r o o f. If not, there is a subsequence over which the ratios mn

qn
, n = 1, 2, . . .

converges to a positive constant c ≤ 1. We may assume without loss of generality
that

(
mn

qn

)
converges to c. Since Cn ≤ 4q2n, n = 1, 2, . . . , we conclude that

Cn

m2
n

≤ 4q2n
m2

n

−−−−−→
n→+∞

4

c2
< +∞,

which is a contradiction. The corollary follows. �

Now, we proceed by contradiction to complete the proof of our first main
result.
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P r o o f. Assume that Pn is a.e. flat and the frequency of −1 is 1
4 . Then,

(
S(Pn)

)
is also flat in a.e. sense. We further have that the frequency of 1 for the sequence(
S(Pn)

)
is 1

4 , i.e., mn

qn
−→ 1

4
as n −→ ∞.

We thus get, by the formula (2.4),

T
(
S(Pn)

)
= (Qn) is a.e. flat sequence in NB with

mn

qn
−−−−→
n→∞

1

4

which is impossible by Corollary 5.2.

In the same manner, we can see that the same conclusion hold for

lim
n−→+∞

mn

qn
=

3

4
, by appealing to the formula (2.3).

This completes the proof of our first main result. �

We finish this section by proving the following lemma on the existence
of c-flatness. We hope it may find several applications. As customary, for every
real number x, [x] denotes its integer part. For any polynomial P and c ∈ [0, 1],
we associate to it a polynomial Q defined by

Q(z) = P (z) +

d+[aA2]∑
d+1

zj,

where d is the degree of P , A = ‖P‖2 and a = 1
c2 − 1. We are now able to state

our lemma.

��

� 5.3 (Kolkata-Workshop, 2019 )	 Let c ∈ [0, 1] and assume that the

sequence of polynomials (Pn) satisfy ‖Pn‖2 −−−−−→
n→+∞

+∞. Then, if
(

|Pn(z)|
‖Pn‖2

)
n≥1

is

a.e. flat, then the sequence
(
Qn(z)

)
is a.e. c-flat.

P r o o f. We start by computing the L2-norm of (Qn(z)). We have

‖Qn(z)‖22 =

∫
S1

∣∣∣∣∣
dn−1∑
j=0

ajz
j +

dn+[aA2
n]∑

j=dn+1

zj

∣∣∣∣∣
2

dz

=

dn−1∑
j=0

|aj |2 +

dn+[aA2
n]∑

j=dn+1

1

= A2
n + [aA2

n].
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Therefore, ∣∣∣∣∣Pn(z) +
∑dn+[aA2

n]
j=dn+1 zj

∣∣∣∣∣√
A2

n + [aA2
n]

converges a.e. to c. Indeed, by the triangle inequalities, we have∣∣∣∣∣
∣∣∣∣Pn(z)

∣∣∣∣−
∣∣∣∣∣
dn+[aA2

n]∑
j=dn+1

zj

∣∣∣∣∣
∣∣∣∣∣ ≤ |Qn(z)| ≤ |Pn(z)|+

∣∣∣∣∣
dn+[aA2

n]∑
j=dn+1

zj

∣∣∣∣∣.
We further have

A2
n + [aA2

n]

A2
n

−−−−−→
n→+∞ 1 + a,

This gives that |Qn(z)|√
A2

n+[aA2
n]

converges a.e. to c, since |Pn|
An

converges a.e. to 1 and

1√
1 + a

= c.

This completes the proof of Lemma 5.3. �
��
����	

1) Formula (2.4) at once shows that if a sequence
(
Pn

)
in the class L is ultraflat,

then
(i) limn→∞ mn

qn
= 1

2 and

(ii) T (Pn), n=1, 2, . . .
converges uniformly to 1√

2
on compact subsets of S1\{1}.

It is not known if (i) and (ii) are compatible conditions. However, the numer-
ical evidence from [26] suggest that (i) and (ii) are not compatible.

2) Exploring the limit distribution of the sequence of polynomials from the class
L can be linked to the exploration of the limit distribution of the sequence
of polynomials from the class NB by (2.4). Characterization of the class
of distributions which can be a limit distribution of a sequence of polynomials
from the class NB is an open problem. For a very recent work on the subject,
we refer to [13] and the references therein.
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[19] KAHANE, J-P.: Sur les polynômes à coefficients unimodulaires, Bull. London. Math. Soc.
12 (1980), 321–342.

[20] LITTLEWOOD, J. E.: On polynomials
n∑

±zm,
n∑

eαmizm, z = eθi, J. London Math.

Soc. 41 (1966), 367–376.

[21] LITTLEWOOD, J. E.: Some Problems in Real and Complex Analysis. D.C. Heath and
Co. Raytheon Education Co., Lexington, Mass. 1968.

[22] LITTLEWOOD, J. E.: On the mean values of certain trigonometric polynomials, J. Lon-
don Math. Soc. 36, 1961, 307–334.

[23] LITTLEWOOD, J. E.: On the mean values of certain trigonometric polynomials. II,

Illinois J. Math. 6, 1962, 1–39.

[24] NEWMAN, D. J.: Norms of polynomials, Amer. Math. Monthly, 67 (1960), no. 8, pp.
778–779.

[25] NEWMAN, D. J.—BYRNES, J. S.: The L4 norm of a polynomial with coefficients ±1,
Amer. Math. Monthly 97 (1990), no 1,42–45.

[26] ODLYZKO, A.M.: Search for ultraflat polynomials with plus and minus one coefficients,

In: (S. Butler ed. et al.) Connections in Discrete Mathematics. (A celebration of the work
of Ron Graham), Cambridge University Press, Cambridge, 2018, pp. 39–55

[27] QUEFFELEC, H.—SAFFARI, B.: On Bernstein’s inequality and Kahane’s ultraflat poly-
nomials, J. Fourier Anal. Appl. 2 (1996), no. 6, 519–582.

[28] SAFFARI, B.—SMITH, B.: Inexistence de polynômes ultra-plats de Kahane à coefficients
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