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ABSTRACT. In the last decades many results have been proved on pseudo-

randomness of binary sequences. In this series our goal is to show that using

many of these results one can also construct large families of quasi-random,
pseudo-random and strongly pseudo-random graphs. Indeed, it will be proved

that if the first row of the adjacency matrix of a circulant graph forms a bi-

nary sequence which possesses certain pseudorandom properties (and there are
many large families of binary sequences known with these properties), then the

graph is quasi-random, pseudo-random or strongly pseudo-random, respectively.

In particular, here in Part I we will construct large families of quasi-random
graphs along these lines. (In Parts II and III we will present and study con-

structions for pseudo-random and strongly pseudo-random graphs, respectively.)
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1. Introduction

The notion of pseudorandomness has many applications and it appears in
many different fields of modern mathematics. Clearly, the study of the interac-
tions between the applications in these fields may lead to interesting new results.
In this series our goal is to study such an interaction: we will show that many
results and constructions from the theory of pseudorandomness of binary se-
quences (motivated originally by applications in cryptography) can be adjusted
to utilize them in studying quasi-randomness and pseudo-randomness of graphs.
(We remark that in graph theory the words quasi-random and pseudo-random
are spelled with hyphen while in case of binary sequences it is more customary
to write the word “pseudorandom” without hyphen. We will keep this spelling
here, since in this way we will be able to specify the meaning of the word
“pseudorandom” just by adding or omitting the hyphen and no further expla-
nation will be needed.)

The notion of pseudo-random graphs (in particular, the definition and prop-
erties of “(p, α)-jumbled” graphs) was introduced and studied by A. Thomason
[21], [22] while the notion of quasi-random graphs was defined and investigated
by F. R. K. Chung, R. L. Graham and R. M. Wilson [5], [6]. As they write in [6]:
“We follow much in the spirit of the recent seminal paper of Thomason [21].”
Indeed, the notions of pseudo-randomness and quasi-randomness of graphs are
related, the philosophy behind them is similar, but the aims and tools of the two
approaches are different and they focus on different graph properties.

First here in Part I we will study the applicability of the theory of pseudo-
random binary sequences for constructing quasi-random graphs (while in Part II
pseudo-random, in Part III strongly pseudo-random graphs will be constructed).
Namely, the construction of quasi-random graphs will be simpler and more trans-
parent, while for constructing pseudo-random graphs some adjustments and fur-
ther work will be needed. In Sections 2 and 3 we will present the basic definitions,
facts and results on quasi-random graphs and pseudorandom binary sequences,
respectively, which will be needed later. In Section 4 we will describe the gen-
eral construction principle, while in Section 5 we will present several special
constructions. Throughout this series we will follow the notation and terminol-
ogy used in graph theory (in particular, in [5], [6], [21], [22]) and the one used
in the theory of pseudorandomness of binary sequences (in particular, in [4],
[11], [16]) possibly closely. However, in some cases we will simplify the nota-
tion slightly. Moreover, in certain cases there is conflict between the notation
used in the two fields. In particular, the letter p will be reserved for the edge
density (in other words, for the probability of joining two vertices), thus the
primes used in constructions will be denoted by q instead of the customary p.
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The number of vertices of graphs is usually denoted by n, while the standard
notation for the length of binary sequences is N. However, in some constructions
these quantities coincide (or nearly coincide); then we will be forced to stick
to one of the two letters. We will represent a finite field Fq (with q prime) by the
field of the modulo q residue classes, and we will use the same notation for a
residue class and an integer representing it.

2. Quasi-random graphs

We will write G = (V,E) for a (finite) graph G with vertex set V and edge
set E. If G has n vertices then we will also write G = G(n). The number of edges
of G is denoted by e(G): e(G) = |E|. For G = G(n), V = {v1, v2, . . . , vn},
i ∈ {1, 2, . . . , n} the set of the vertices joined to vi is denoted by Vi : Vi =

{
vj ∈

V : {vi, vj} ∈ E
}

so that the degree of vi, denoted by deg(vi), is deg(vi) = |Vi|.
For some other graph G′ = (V ′, E′), N∗G(G′) denotes the number of labeled
occurrences of G′ as an induced subgraph of G, and define NG(G′) as the number
of occurrences of G′ as a (not necessarily induced) subgraph of G.

For some graph G = G(n) with vertex set V = {v1, v2, . . . , vn}, let A(G) =
[a(i, j)]i,j∈{1,2,...,n} denote the adjacency matrix ofG defined by setting a(i, j)=1
if vi and vj are joined, and 0, otherwise. Denote the eigenvalues of A(G)
(which are real since A(G) is symmetric) by λ1, λ2, . . . , λn ordered so that
|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

In the abstract of their paper [5] introducing the notion of quasi-random
graphs, Chung, Graham and Wilson write: “We introduce a large equivalence
class of graph properties, all of which are shared by so-called random graphs.
Unlike random graphs, however, it is often relatively easy to verify that a par-
ticular family of graphs possesses some property in this class.” In their paper,
they use the phrase “random graphs” in the sense that they consider a random
graph G = G(n) on n vertices so that its edges are taken independently each
with probability 1/2. The graph properties studied by them are the following:

Take a family F of graphs G(n) with n → ∞. Then the seven properties
considered are:

P1(s): For all graphs H(s) on s vertices we have

N∗G
(
H(s)

)
=
(
1 + o(1)

)
ns2−(s

2).

(So that all the 2(s
2) labeled graphs H(s) on s vertices occur asymptotically

the same number of times in G.)
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P2(t): e(G) ≥
(
1+o(1)

)
n2

4 , NG(Ct) ≤
(
1+o(1)

) (
n
2

)t
, where Ct denotes the

cycle with t vertices.

P3: e(G) ≥
(
1 + o(1)

)
n2

4 , λ1 =
(
1 + o(1)

)
n
2 , λ2 = o(n).

P4(ε): For each subset S ⊆ V with |S| ≥ εn we have

e(S) =
(
1 + o(1)

) |S|2
4
.

P5: For each subset S ⊆ V with |S| = [n/2],

e(s) =
(
1 + o(1)

)n2

16
.

P6: ∑
i,j∈{1,2,...,n}

∣∣∣s(i, j)− n

2

∣∣∣ = o(n3),

where

s(i, j)=
∣∣{x ∈ {1, 2, . . . , n} : a(i, x) = a(j, x)

}∣∣ for i, j ∈ {1, 2, . . . , n}. (2.1)

P7:
∑

i,j∈{1,2,...,n}

∣∣∣∣∣{x : a(i, x) = a(j, x) = 1}
∣∣− n

4

∣∣∣ = o(n3).

They proved the following theorem:

Theorem 2.1. The following properties are equivalent for a graph G = G(n):

a) P1(s) with fixed s ≥ 4;

b) P2(4);

c) P2(t) with fixed even t ≥ 4;

d) P3;

e) P4(ε) with fixed ε > 0;

f) P5;

g) P6;

h) P7.

Based on this theorem, they define the notion of quasi-random graph in the
following way:

Definition 2.1. Graphs having any (and therefore, all) of the above properties
will be called quasi-random.
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They write in [5]: “The same techniques can be used to establish the cor-
responding results for quasi-random graphs that imitate random graphs gen-
erated with a more general edge probability p = p(n) (see also ref. [21]).”
This is certainly so, however, in their papers they stick to the case p = 1/2
so that Theorem 2.1 and Definition 2.1 are restricted to this case. Thus in this
paper, we will also stick to this case, and we will study the case of general p only
in the sequels.

3. Pseudorandom binary sequences

Pseudorandomness of binary sequences plays a crucial role in cryptography,
and it has several different definitions. Here we will use the constructive and
quantitative approach developed in [16] and its sequels which is most suitable
for our goals.

In [16] Mauduit and the second author introduced the following measures
of pseudorandomness:

Definition 3.1. Let

EN = (e1, e2, . . . , eN ) ∈ {−1,+1}N

be a finite binary sequence. Then the well-distribution measure ofEN is defined as

W (EN ) = max
a,b,t

∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣, (3.1)

where the maximum is taken over all a, b, t∈N such that 1≤a≤a+ (t−1)b ≤ N ,
and for ` ∈ N, ` ≥ 2 the correlation measure of order ` of EN is defined as

C`(EN ) = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1en+d2 . . . en+d`

∣∣∣∣∣, (3.2)

where the maximum is taken over all D = (d1, d2, . . . , d`) and M such that
0 ≤ d1 < · · · < d` ≤ N −M .

Then the sequence EN is said to have strong pseudorandom properties (or
briefly, to be a “good” pseudorandom sequence) if both of these measuresW (EN )
and C`(EN ) (at least for “small” `) are small in terms of N (in particular, both
are o(N) as N →∞). Indeed, later Cassaigne, Mauduit and the second author [4]
showed that this terminology is justified since for almost all EN ∈ {−1,+1}N
both W (EN ) and C`(EN ) are less than N1/2(logN)c (and later their results were
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sharpened further in [1] and [2]). It was also shown in [16] that the Legendre

symbol sequence
((

1
p

)
,
(

2
p

)
, . . . ,

(
p−1
p

))
forms a “good” pseudorandom sequence:

Theorem 3.1. There is a number q0 such that if q > q0 is a prime number,
k ∈ N, k < q and we write

Eq−1 =

((
1

q

)
,

(
2

q

)
, . . . ,

(
q − 1

q

))
, (3.3)

then we have

W (Eq−1) ≤ 9q1/2 log q

and
Ck(Eq−1) < 9kq1/2 log q. (3.4)

Indeed, this is a special case of Theorem 1 in [16]. (The proof is based
on A. Weil’s theorem [24].)

Since that numerous results have been proved and constructions presented
along these lines; in [11] Gyarmati gave an excellent survey of them (there are
135 references listed in her paper), see also [20]. Here we will present only a few
further definitions and constructions that we will need later.

First we present 6 constructions (some of them in a simplified form) for bi-
nary sequences with strong pseudorandom properties. The first two of them are,
perhaps, the best ones.

Theorem 3.2. Assume that q is a prime number, f(x) ∈ Fq[x] (Fq being the
field of the modulo residue classes) has degree k (> 0), f(x) has no multiple zero
in Fq (= the algebraic closure of Fq), and the binary sequence Eq=(e1, e2, . . . , eq)
is defined by

en =


(
f(n)
q

)
for

(
f(n), q

)
= 1,

+1 for q | f(n),
(3.5)

where
(
...
q

)
is the Legendre symbol. Then we have

W (Eq) < 10kq1/2 log q .

Moreover, assume that also ` ∈ N, and one of the following assumptions holds:

(i) ` = 2;

(ii) ` < q, and 2 is a primitive root modulo q;

(iii) (4k)`< q.

Then we also have

C`(Eq) < 10k`q1/2 log q .
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This was proved by Goubin, Mauduit and the second author [8]; it is a com-
bination of their Theorem 1 and 2 there. They also presented examples showing
that if none of conditions (i), (ii) and (iii) holds, then C`(Eq) can be large.

Theorem 3.3. Assume that q is an odd prime number, k,`∈N, k<q, 2≤`<q,

k` <
q

2
, (3.6)

and f(x) ∈ Fq[x] is of form

f(x) = (x+ a1)(x+ a2) · · · (x+ ak), (3.7)

where a1, a2, . . . , ak are pairwise distinct elements of Fq. For a ∈ Fq, a 6= 0
denote the multiplicative inverse of a modulo q by a−1 : aa−1 ≡ 1 (mod q).
Define the binary sequence Eq = (e1, e2, . . . , eq) by

ei =

{
+1 if (f(n), q) = 1, rq

(
f(n)−1

)
< q

2 ,

−1 if (f(n), q) = 1, rp
(
f(n)−1

)
> q

2 or q | f(n),

where for all a ∈ Z, rq(a) denotes the unique integer r such that

r ∈ {0, 1, . . . , q − 1} and r ≡ a (mod q). (3.8)

Then we have

W (Eq)� kq1/2(log q)2

and

C`(Eq)� k`q1/2(log q)`+1. (3.9)

(Here and later � is Vinogradov’s notation: f(n)� g(n) means that f(n) =
O
(
g(n)

)
.) This is a special case of the combinations of Theorem 1 and Theo-

rem 3 in the paper [17] of Mauduit and the second author. Note that Liu [13]
proved another similar theorem in which (3.7) is replaced by an other assumption
on f(x).

The next two constructions also produce large families of binary sequences
with strong pseudorandom properties, they can be handled well, and they can
be adjusted easily to different situations; we will be able to profit from these
properties in Parts II and III of this series. However, these constructions also have
certain weak points. In [9] Gyarmati proved the following theorem (generalizing
a result of the second author [19]):

Theorem 3.4. Let q be an odd prime, g a primitive root modulo q. For (n, q) = 1
define ind n (the index or discrete logarithm of n modulo q) by n≡gind n (mod q)
and (to make it uniquely determined) 1 ≤ ind n ≤ q − 1. Let f(x) ∈ F[x] be
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a polynomial of degree k and define the binary sequence Eq = (e1, e2, . . . , `q) by

en =

{
+1 if 1 ≤ ind f(n) ≤ (q − 1)/2,

−1 if (q + 1)/2 ≤ ind f(n) ≤ q − 1 or q | f(n)
(3.10)

for n = 1, 2, . . . , q. Then we have

W (Eq) < 38kq1/2(log q)1/2.

Moreover, assume that ` ∈ N, and one of the following 4 conditions holds:

(i) f(x) is irreducible over Fq;
(ii) if f(x) has the factorization f(x)=(ϕ1(x))α1(ϕ2(x))α2 . . .

(
ϕu(x)

)αu
, where

αi ∈ N and ϕi(x) is irreducible over Fq for every i ∈ {1, 2, . . . , u},
then there exists a β ∈ N such that exactly one or two ϕi(x) have degree β;

(iii) ` = 2;

(iv) (4`)k< q or (4k)`< q.

Then we also have
C`(Eq) < 10k`4`q1/2(log q)`+1. (3.11)

We remark that the weak point of this construction is that there is no fast
algorithm for computing the discrete logarithm, thus the explicit computation
of the elements of Eq is rather slow (see [10] for a faster, although more compli-
cated version of this construction).

In [15] Mauduit, Rivat and the second author of this paper proved the fol-
lowing theorem:

Theorem 3.5. Let q be a prime, k ∈ N, k ≥ 2 and f(x) ∈ Fq[x] a polynomial
of degree k. Define the binary sequence Eq = (e1, e2, . . . , eq) by

en =

{
+1 if 0 ≤ rq

(
f(n)

)
< q/2,

−1 if q/2 < rq
(
f(n)

)
< q

(3.12)

for all n ∈ {1, 2, . . . , q} where again rq(a) is defined by (3.8). Then we have

W (Eq)� kq1/2(log q)2.
Moreover, if ` ∈ N and

2 ≤ ` ≤ k − 1, (3.13)

then we also have
C`(Eq)� kq1/2(log q)`+1.

This construction is one of the simplest ones, however, it has the weak point
that a condition of type (3.13) is necessary, since the correlation of order k can
be “large”. More precisely, it is also proved in [15] that
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Theorem 3.6. If t ∈ N and k = 2t, then there exists a constant c = c(k) > 0
such that if q is a prime number large enough, f(x) ∈ Fq[x] is of degree k and
Eq = (e1, e2, . . . , eq) ∈ {−1,+1}q is defined by (3.12), then

Ck(Eq) � max
1≤T<T+M≤q

∣∣∣∣∣
T+M∑
n=T

enen+1 . . . en+k−1

∣∣∣∣∣� cq.

Observe that all the constructions above are “modular” constructions with
prime moduli q, i.e., we work over Fq. There are very few constructions of other
type and, indeed, just extending some of these constructions from prime moduli
to “RSA type” composite moduli

m = pq, where p, q are primes with (2 <) < p < q < 2p, (3.14)

the situation gets more complicated. In [18] Rivat and the second author studied,
among others, the extension of construction (3.5) to the Jacobi symbol and
moduli of type (3.14). They proved:

Theorem 3.7. Assume that m ∈ N is of the form (3.14), f(x) = adx
d + · · ·

· · ·+ a1x+ a0 ∈ Z[x],
(ad, pq) = 1, (3.15)

0 < d < p(< q), (3.16)

f(x) as a polynomial over Fp (more exactly, the polynomial of degree d whose
coefficients are the residue classes modulo p represented by ad , . . . , a1, resp. a0)
is not the constant multiple of the square of a polynomial over Fp, and f(x) as
a polynomial over Fq is not the constant multiple of the square of a polynomial
over Fq. Define the binary sequence Em = (e1, . . . , em) by

en =

{ (
f(n)
m

)
for

(
f(n),m

)
= 1,

+1 for
(
f(n),m

)
> 1,

where
(
...
m

)
denotes the Jacobi symbol.

Then we have W (Em)� d2m1/2 logm,

C2(Em)� dm3/4
(3.17)

and

C4(Em) ≥ m− 35dm1/2
(

=
(
1 + o(1)

)
m
)
.

(See also [14].) In [18] similar extensions of other composite moduli construc-
tions for binary sequences with strong pseudorandom properties are also studied,
and similar results have been proved.
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So far we have summarized the most important definitions, notations, results
and facts on pseudorandomness of binary sequences that we will need in this
series. However, for adapting them to study quasi-randomness and pseudo-
randomness of graphs, we have to complete this survey by adding a few more
definitions and facts.

We will also need the cyclic versions of the measures of pseudorandomness
defined and applied in [12]:

Definition 3.2. If EN is the binary sequence

EN = (e1, e2, . . . , eN ) ∈ {−1,+1}N, (3.18)

then the infinite binary sequence
◦
EN = (. . . , e−2, e−1, e0, e1, e2, . . .), (3.19)

(infinite in both directions) is defined so that for i ∈ Z let r(i) be the integer
with r(i) ≡ i (mod N), 1 ≤ r(i) ≤ N, and then ei = er(i).

(In other words,
◦
EN is the periodic extension of EN with period length N.)

Definition 3.3. The cyclic well-distribution measure of the sequence EN
in (3.18) is defined by

◦
W (EN ) = max

a,b,t

∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣,
where the maximum is taken over all a ∈ Z and b, t ∈ N such that (0 ≤)
(t− 1)b < N (and the terms ea+jb are defined as in (3.19)).

Definition 3.4. The cyclic correlation measure of order ` of the sequence EN
in (3.18) is defined by

◦
C`(EN ) = max

M,D

∣∣∣∣∣
M∑
n=1

en+d1en+d2 . . . en+d`

∣∣∣∣∣,
where the maximum is taken over all D = (d1, d2, . . . , d`) and M such that the
di’s are integers with 0 ≤ d1 < d2 < · · · < d` < N and M ∈ N, M ≤ N (and the
terms en+di are defined as in (3.19)).
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Definition 3.5. If EN is the sequence in (3.18) then we will write

◦
S1(EN ) =

∣∣∣∣∣
N∑
n=1

en

∣∣∣∣∣
and, for ` ∈ N, ` ≥ 2,

◦
S`(EN ) = max

D

∣∣∣∣∣
N∑
n=1

en+d1en+d2 . . . en+d`

∣∣∣∣∣,
where the maximum is taken over all D = (d1, d2, . . . , d`) such that the di’s are
integers with 0 ≤ d1 < d2 < · · · < d` < N (and the terms en+di are defined as
in (3.19)). Then, clearly, we have

◦
S1(EN ) ≤W (EN )

and
◦
S`(EN ) ≤

◦
C`(EN ) (for every ` ≥ 2). (3.20)

Moreover, by Proposition 1 in [12] we also have

W (EN ) ≤
◦
W (EN ) ≤ 2W (EN ) (3.21)

and

C`(EN ) ≤
◦
C`(EN ) ≤ (`+ 1)C`(EN ) (for every ` ≥ 2). (3.22)

So far we have studied binary sequences of the type (3.18) all whose elements
are −1 or +1, although later we will work with bit sequences, i.e., with sequences
belonging to {0, 1}N (in cryptography the situation is similar). The reason of this
is that for sequences of type (3.18) the formulas tend to be simpler, since the
main term is frequently 0 and, on the other hand, it is easy to switch from
sequences of type (3.18) to bit sequences and vice versa by using the simple
bijection

ϕ : {−1,+1} ←→ {0, 1} defined so that for e ∈ {−1,+1}
we have

ϕ(e) =
1 + e

2
(for e ∈ {−1,+1}), (3.23)

and then we transform the binary sequence EN in (3.18) into a bit sequence
by the bijection Φ : {−1,+1}N ←→ {0, 1}N defined as

Φ(EN ) = Φ
(
(e1, e2, . . . , en)

)
=
(
ϕ(e1), ϕ(e2), . . . , ϕ(eN )

)
(for the sequence EN in (3.18)), (3.24)

we will keep this notation throughout this paper.
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4. The general construction principle

We will need some more definitions.

Definition 4.1. A circulant matrix is a square matrix whose each row vector
can be obtained from the preceding vector by rotating it one element to the
right, i.e., a matrix Z of the form

Z =


z0 z1 z2 . . . zn−2 zn−1

zn−1 z0 z1 . . . zn−3 zn−2

zn−2 zn−1 z0 . . . zn−4 zn−3

. . .
z1 z2 z3 . . . zn−1 z0

 . (4.1)

(See [7].) Observe that such a circulant matrix is uniquely determined by its
first row, i.e., by the sequence

Zn = (z0, z1, . . . , zn−1). (4.2)

Thus we may introduce the following terminology:

Definition 4.2. The circulant matrix Z in (4.1) is generated by the sequence
Zn in (4.2), and the matrix Z generated by the sequence Zn is denoted by
Z = Z(Zn).

Definition 4.3. A circulant (or cyclic) graph is a graph whose adjacency ma-
trix is a circulant matrix.

(See [23].)

Our main construction principle is to start out from constructions for large
families of binary sequences with certain pseudorandom properties (like the con-
structions in Theorems 3.1–3.5 and 3.7 above), and to show that these families
contain large subfamilies consisting of binary sequences which (after making,
perhaps, minor adjustments) generate circulant graphs which are quasi-random.
This principle will be formulated in a more precise form in Theorem 4.1 and
Corollaries 4.1 and 4.2.

Definition 4.4. A binary sequence Fn = {f0, f1, . . . , fn−1} ∈ {−1,+1}n is
said to be symmetric if for the extended binary sequence

◦
Fn = (. . . , f−2, f−1, f0, f1, f2, . . .) (4.3)

(defined as in Definition 3.2) we have

fi = f−i for all i ∈ N,
i.e.,

fi = fn−i for all i ∈ {1, 2, . . . , n− 1}.
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Theorem 4.1. Assume that n is integer with n→∞,

Fn = (f0, f1, . . . , fn−1) ∈ {−1,+1}n (4.4)

is such that:

(i) f0 = −1,

(ii) Fn is symmetric,

and define the sequence F ′n = (f ′0, f
′
1, . . . , f

′
n−1) ∈ {0, 1}n by

F ′n = Φ(Fn), (4.5)

where Φ : {−1,+1}n → {0, 1}n is the transformation defined by (3.23) and
(3.24). Then by (4.4), (i) and (ii) the circulant matrix Z(F ′n) generated by the
sequence F ′n defined in (4.5) is such that every element of it is 0 or 1, the elements
in its main diagonal are 0, and it is symmetric. Thus it is the adjacency matrix
of a (uniquely determined) circulant graph Gn(F ′n). Denote the `th element in
the kth row of the matrix Z(F ′n) by a(k, `), and define the function s(i, j) by (2.1)

and
◦
S2(Fn) by Definition 3.5. Then we have∑

i,j∈{1,2,...,n}
i 6=j

∣∣∣s(i, j)− n

2

∣∣∣ ≤ n(n− 1)

4

◦
S2(Fn). (4.6)

Corollary 4.1. If we have the same notation and assumptions as in Theo-
rem 4.1, then we also have∑

i,j∈{1,2,...,n}
i 6=j

∣∣∣S(i, j)− n

2

∣∣∣ ≤ 3

4
n(n− 1)C2(Fn). (4.7)

Corollary 4.2. Consider a family F of binary sequences Fn with a sequence
of positive integers n tending to infinity and such that they are of the form (4.1),
satisfy (i) and (ii) in Theorem 4.1, and assume that either

◦
S2(Fn) = o(n) (4.8)

or

C2(Fn) = o(n) (4.9)

also holds. Then the circulant graphs Gn(F ′n) are quasi-random.
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P r o o f o f T h e o r e m 4.1. It follows from the definition of the matrix Z(F ′n)
that its k-th row is(

a(k, 1), a(k, 2), . . . , a(k, `), . . . , a(k, n)
)

=(
f ′n−k+1, f

′
n−k+2, . . . , f

′
n−k+`, . . . , f

′
n−k+n

)
=(

1 + fn−k+1

2
,

1 + fn−k+2

2
, . . . ,

1 + fn−k+`

2
, . . . ,

1 + fn−k+n

2

)
,

where the numbers fx are defined in the periodic extension sense (with period
length n) of Fn (as described in Definition 3.2). It follows that

a(k, `) =
1 + fn−k+`

2
. (4.10)

Clearly, for all
i, j ∈ {1, 2, . . . , n}, i 6= j, (4.11)

we have (
a(i, x)− a(j, x)

)2
=

{
0 if a(i, x) = a(j, x),

1 if a(i, x) 6= a(j, x),

hence

1−
(
a(i, x)− a(j, x)

)2
=

{
1 if a(i, x) = a(j, x),

0 if a(i, x) 6= a(j, x).
(4.12)

It follows from (4.10) and (4.12) that

s(i, j) =
∣∣{x ∈ {1, 2, . . . , n} : a(i, x) = a(j, x)

}∣∣
=

n∑
x=1

(
1−

(
a(i, x)− a(j, x)

)2)
= n−

n∑
x=1

(
a(i, x)− a(j, x)

)2
= n−

n∑
x=1

(
(1 + fn−i+x)− (1 + fn−j+x)

2

)2

= n− 1

4

n∑
x=1

(fn−i+x − fn−j+x)2

= n− 1

4

n∑
x=1

(1− 2fn−i+xfn−j+x + 1) =
n

2
+

1

2

n∑
x=1

fn−i+xfn−j+x,

whence, by Definition 3.5,∣∣∣s(i, j)− n

2

∣∣∣ =
1

2

∣∣∣∣∣
n∑
x=1

fn−i+xfn−j+x

∣∣∣∣∣ ≤ 1

2

◦
S2(Fn).
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This holds for every i, j satisfying (4.11), thus we have∑
i,j∈{1,2,...,n}

i 6=j

∣∣∣s(i, j)− n

2

∣∣∣ ≤ ∑
i,j∈{1,2,...,n}

i 6=j

1

2

◦
S2(Fn) =

n(n− 1)

4

◦
S2(Fn). �

P r o o f o f C o r o l l a r y 4.1. By the ` = 2 special cases of (3.20) and (3.22)
we have ◦

S2(Fn) ≤
◦
C2(Fn)

and
◦
C2(Fn) ≤ 3C2(Fn).

Combining these inequalities with (4.6) in Theorem 4.1 we get the result. �

(We remark that we have used
◦
S` and

◦
C` only for ` = 2 so far;

◦
S` with

`=1 and ` > 2, and also
◦
W will be used only in the sequels of this paper.)

P r o o f o f C o r o l l a r y 4.2. By Theorem A of Chung, Graham and Wilson
it suffices to show that the graph G(F ′n) possesses property P6, i.e.,∑

i,j∈{1,2,...,n}

∣∣∣s(i, j)− n

2

∣∣∣ = o(n3). (4.13)

If either (4.8) or (4.9) holds, then this follows trivially from Theorem 4.1 and
Corollary 4.1 using also that, clearly,∣∣∣s(i, i)− n

2

∣∣∣ =
n

2
for all i ∈ {1, 2, . . . , n}. �

To extend the applicability of Theorem 4.1 we will need two more simple
lemmas.

Lemma 4.1. If N ∈ N, N ≥ 3, EN−1 = (e1, e2, . . . , eN−1) ∈ {−1,+1}N−1 and
FN ∈ {−1,+1}N is of the form FN = (f1, f2, . . . , fN ) = (f1, e1, e2, . . . eN−1),
then we have

C2(FN ) ≤ 3C2(EN−1). (4.14)

P r o o f o f L e m m a 4.1. By Definition 3.1 we have

C2(EN−1) = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1en+d2

∣∣∣∣∣, (4.15)

where M,D are such that D = (d1, d2) with 0 ≤ d1 < d2 ≤ N − 1−M and
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C2(FN ) = max

∣∣∣∣∣
M∑
n=1

fn+d1fn+d2

∣∣∣∣∣, (4.16)

where M ′, D′ are such that D = (d1, d2) with 0 ≤ d1 < d2 ≤ N ′ − 1 − M ′.
Observe that the sums in (4.16) are the same as the sums in (4.15) except at
most a single term of absolute value 1 appearing in (4.16) which includes the
factor f1, thus the absolute values of the sums in (4.16) are greater than the
absolute values of the sums in (4.15) by at most 2. It follows that

C2(FN ) ≤ C2(EN−1) + 2 ≤ 3C2(EN−1). �

Next we will show how to get around condition (i) in Theorem 4.1. Assume
that Fn is a binary sequence of form (4.4) which satisfies (ii) in Theorem 4.1
(but (i) is not assumed now). Define

Fn =
(
f0, f1, . . . , fn−1

)
∈ {−1,+1}n (4.17)

by

Fn = (−f0)(f0, f1, . . . , fn−1) = (−1,−f0f1, . . . ,−f0fn−1), (4.18)

and let

F
′
n = Φ(Fn). (4.19)

Then all the assumptions in Theorem 4.1 (including (i)) hold with Fn in place
of Fn. It follows easily from (3.2) in Definition 3.1 that we also have

◦
S2(Fn) =

◦
S2(Fn) and C2(Fn) = C2(Fn).

Thus we obtain

Lemma 4.2. If Fn satisfies (4.4) and (ii) in Theorem 4.1, then the uniquely de-

termined circulant graph Gn(F
′
n) satisfies each of Theorem 4.1, Corollary 4.1 and

Corollary 4.2 with Fn in place of Fn.

5. Examples for quasi-random graphs constructed using
Theorems 3.1, 3.2, 3.3, 3.4, 3.5 and 3.7

In this section we will specify Theorem 4.1 to circulant graphs constructed
by using (slightly modified) subfamilies of the families of the binary sequences
studied in Theorems 3.1–3.5 and 3.7. Theorems 5.2 and 5.3 will be the best
constructions, while the other costructions are presented here since we can use
them to illustrate certain facts here and in the sequels.
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Theorem 5.1. Let q be a prime number of the form

q = 4k + 1, (5.1)

and define Fq ∈ {−1,+1}q by

Fq = (f0, f1, f2, . . . , fq−1) =

(
−1,

(
1

q

)
,

(
2

q

)
, . . . ,

(
q − 1

q

))
(5.2)

(where again
(
...
q

)
is the Legendre symbol). Then defining F ′q by

F ′q = Φ(Fq), (5.3)

the circulant graphs Gq = Gq(F
′
q) are quasi-random (for q →∞).

P r o o f. The sequence Fq in (5.2) satisfies (4.4) and (i) in Theorem 4.1 trivially,
and (ii) (symmetry) in the theorem also holds since by (5.1) we have

fi =

(
i

q

)
=

(
−i
q

)
=

(
q − i
q

)
= fq−i for all i ∈ {1, 2, . . . , q − 1}.

Moreover, using Lemma 4.1 with q,−1 and
((

1
q

)
,
(

2
q

)
, . . . ,

(
q−1
q

))
in place of N, f1

and EN−1, respectively, we obtain that

C2(Fq) ≤ 3C2(Eq−1)

whence, by (3.4) in Theorem 3.1,

C2(Fq) = O(q1/2 log q) = o(q).

Thus by Corollary 4.2 the graphs Gq(F
′
q) are quasi-random. �

Remarks. It is easy to see that this graph Gq(F
′
q) is the Payley graph which can

be defined by the adjacency matrix [a(i, j)]i,j∈{0,1,...,q−1} with a(i, j) =
(
j−i
q

)
for i 6= j and a(i, i) = 0, and which is known to be quasi-random [6, p. 359],

se also [3, Chapter XIII]. Moreover, we remark that our proof above gives the
upper bound q5/2 log q for the sum∑

i,j∈{1,2,...,q}

∣∣∣s(i, j)− q

2

∣∣∣ .
The factor log q in this upper bound could be eliminated but here this slightly
weaker upper bound is enough for our purpose, thus we will discuss this matter
only in Part II of this series where the estimate of the deviation between certain
graph related quantities and their expected value will play a more important
role. (In most of the following examples the situation will be similar.)
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Theorem 5.2. Assume that q is a prime with q →∞, t ∈ N with

t = o

(
q1/2

log q

)
, (5.4)

and let a1, a2, . . . , at ∈ Fq be such that

ai 6= 0 for i = 1, 2, . . . , t (5.5)

and
a2
i 6= a2

j for i, j = 1, 2, . . . , t, i 6= j. (5.6)

Define f(x) ∈ Fq[x] by

f(x) =

t∏
i=1

(
x2 − a2

i

)
=

t∏
i=1

(x− ai)(x+ ai) (5.7)

and Fq = (f0, f1, . . . , fq−1) by

fi =

{(
f(i)
q

)
for

(
f(i), q

)
= 1,

+1 for q | f(i)
(5.8)

(for i = 0, 1, . . . , q−1). Define F
′
q as in (4.17), (4.18) and (4.19) (with q in place

of n) :
F
′
q = Φ(F q).

Then the circulant graphs Gq = Gq(F
′
q) are quasi-random.

P r o o f. It is trivial that Fq is of form (4.4) (with q in place of n). Moreover,
the function f(x) is even, thus we have

f(a) = f(−a) = f(q − a)

for every a ∈ Fq, thus it follows from (5.8) that

fi = fq−i for i = 1, 2, . . . , q − 1

so that Fq also satisfies (ii) in Theorem 4.1 (with q in place of n). Thus
by Lemma 4.2, we may apply Corollary 4.2 (with q in place of n) if we have

C2(Fq) = o(q). (5.9)

To see that this holds, observe that by (5.5), (5.6) and (5.7) the zeros of the
polynomial f(x) are pairwise distinct so that it has no multiple zero. Thus we
may apply (i) in Theorem 3.2 (with k = 2t, ` = 2) to estimate C2(Fq), and then
we obtain that

C2(Fq) < 10 · 2t · 2q1/2 log q = 40tq1/2 log q. (5.10)

The equation (5.9) follows from (5.4) and (5.10) thus, indeed, by Corollary 4.2

the circulant graphs Gq = Gq(F
′
q) are quasi-random. �
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Theorem 5.3. Assume that q is prime with q →∞, let t ∈ N with

t = o

(
q1/2

(log q)3

)
, (5.11)

and define a1, a2, . . . , at and f(x) as in Theorem 5.2. Define the binary sequence
Fq = (f0, f1, . . . , fq−1) by

fi =

{
+1 if

(
f(i), q

)
= 1, rq

(
f(i)−1

)
< q

2 ,

−1 if
(
f(i), q

)
= 1, rq

(
f(i)−1

)
> q

2 or q | f(i)

(for i = 0, 1, . . . , q − 1) where a−1 and rq(a) are defined as in Theorem 3.3.

Define F
′
q as in (4.17), (4.18) and (4.19) (with q in place of n): F

′
q = Φ(F q).

Then the circulant graphs Gq = Gq(F
′
q) are quasi-random.

P r o o f. As in the proof of Theorem 5.2, it suffices to show that (5.9) holds.
By our assumptions on f(x), it is of form (5.5) with

k = deg f(x) = 2t,

thus it follows from (5.11) that t and ` = 2 satisfy (3.6) for large q, so that
we may apply Theorem 3.3 with ` = 2 for estimating C2(Fq). Then by (5.11)
we obtain from (3.9) that

C2(Fq)� k`q1/2(log q)`+1 = 4tq1/2(log q)3 = o(q).

Thus all the assumptions in Corollary 4.2 hold (with (4.9) and q in place of n)
so that the statement of the theorem follows from this corollary. �

Theorem 5.4. Assume that q is prime with q →∞, t ∈ N,

t = o

(
q1/2

(log q)3

)
, (5.12)

g(x) ∈ Fq[x] is an irreducible polynomial of degree t and

f(x) = g(x)g(−x). (5.13)

Define the binary sequence Fq = (f0, f1, . . . , fq−1) by

fi =

{
+1 if 1 ≤ ind f(i) ≤ (q − 1)/2,

−1 if (q + 1)/2 ≤ ind f(i) ≤ q − 1 or q | f(i)

(for i = 1, 2, . . . , q; here ind a is defined as in Theorem 3.4) and define F q and

F
′
q by (4.17), (4.18) and (4.19) (with q in place of n) so that F

′
q = Φ(F q). Then

the circulant graphs Gq = Gq(F
′
q) are quasi-random.
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P r o o f. Again we may proceed as in the proofs of Theorems 5.2 and 5.3 (note
that clearly the function f(x) is even by (5.12)), and we may reduce the proof
to showing that (5.9) holds.

It follows from (5.13) that f(x) is of the form described in (ii) in Theorem 3.4
(with ϕ1(x) = g(x), ϕ2(x) = g(−x), α1 = α2 = 1, β = t), and (iii) also holds for
` = 2. Thus we may apply Theorem 3.4 to estimate C2(Fq), and then by

k = deg f = 2deg g = 2t

and (5.12) we get from (3.11) that

C2(Fq) < 10k`4`q1/2(log q)`+1 = 640tq1/2(log q)3 = o(q).

Thus again we may apply Corollary 4.2 with n = q and C2(Fq) and we get the
result. �

Theorem 5.5. Assume that q is prime with q →∞, let t ∈ N,

t > 1, (5.14)

t = o

(
q1/2

(log q)3

)
, (5.15)

let g(x) ∈ Fq[x] be any polynomial with deg g(x) = t, and define f(x) by (5.13).
Define the binary sequence Fq = (f0, f1, . . . , fq−1) by

fi =

{
+1 if 0 ≤ rq

(
f(i)

)
< q/2,

−1 if q/2 < rq
(
f(i)

)
< q

(for i = 0, 1, . . . , q − 1) where rq(a) is defined by (3.8). Define F q and F
′
q by

(4.17), (4.18) and (4.19) (with q in place of n) so that F
′
q = Φ(F q). Then the

circulant graphs Gq = Gq(F
′
q) are quasi-random.

P r o o f. Again (4.4) and (i) in Theorem 4.1 (with F q in place of Fn) hold triv-
ially, while (ii) (symmetry) in the theorem follows from (5.13). Thus we may
reduce the proof to showing that (5.9) holds. Writing k = deg f = 2t, by (5.14)
we have k = 2t ≥ 3, so that taking ` = 2 inequality (3.13) holds. Thus with this
k and ` Theorem 3.5 can be applied to estimate C`(Fq) = C2(Fq), and then we
obtain

C2(Fq)� kq1/2(log q)3 = 2tq1/2(log q)3. (5.16)

The equation (5.9) follows from (5.15) and (5.16) so that (by Lemma 4.2) Corol-
lary 4.2 can be applied to complete the proof of the theorem. �
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Theorem 5.6. Assume that p, q are primes with

p→∞, q →∞, (5.17)

p < q < 2p, (5.18)

and let
m = pq. (5.19)

Let t ∈ N with
t = o(m1/4) (5.20)

and b1, b2, . . . , bt be integers with

0 < b1 < b2 < · · · < bt < p/2, (5.21)

write d = 2t, and let

f(x) =

t∏
i=1

(
x2 − b2i

)
=

t∏
i=1

(x− bi)
t∏
i=1

(x+ bi) = adx
d + · · ·+ a1x+ a0 (5.22)

with
ad = 1. (5.23)

Define the binary sequence Fm = (f0, f1, . . . , fm−1) by

fi =

{(
f(i)
m

)
for

(
f(i),m

)
= 1,

+1 for
(
f(i),m

)
> 1

(for i = 0, 1, . . . ,m−1) where
(
...
m

)
denotes the Jacobi symbol, and define Fm and

F
′
m as in (4.17), (4.18) and (4.19) (with m in place of n) so that F

′
m = Φ(Fm).

Then the circulant graphs Gm = Gm(F
′
m) are quasi-random.

P r o o f. Again we argue as in the proof of Theorems 5.2–5.5. (4.4) and (i) in The-
orem 4.1 hold with Fm in place of Fn, while (ii) (the symmetry of Fm and Fm)
follows from the fact that the polynomial f(x) in (5.22) is even. Thus again it
suffices to show that (5.9) holds with m in place of q:

C2(Fm) = o(m). (5.24)

We will do this by using Theorem 3.7. This can be done since the polynomial
f(x) in (5.22) satisfies (3.15) and (3.16) by (5.18), (5.19) and (5.23), and clearly
f(x) as a polynomial over Fp and Fq is not the constant multiple of the square of
a polynomial over Fp and Fq, resp., since it has d = deg f distinct zeros in both
fields. Then we obtain from (3.17) in Theorem 3.7 that

C2(Fm)� dm3/4 = 2tm3/4. (5.25)

(5.24) follows from (5.20) and (5.25), thus by Lemma 4.2, Corollary 4.2 can be
applied and this completes the proof of the theorem. �
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6. Conclusions

In this paper we have described a principle to generate quasi-random graphs
from binary sequences having certain pseudorandom properties. There are many
large families of binary sequences known to possess many of these properties, and
we illustrated by several examples that in many cases one can find a subfamily
of the given family such that the sequences belonging to this subfamily (perhaps,
after some trivial adjustments) possess all the pseudorandom properties needed.
The most important step in this procedure is to find many sequences in the given
family which possess a certain symmetry property.

Here we have constructed quasi-random graphs, i.e., we have showed that one
of certain seven quantities related to the given graphs is asymptotically equal
to its expected value and (following [5], [6]) we restricted ourselves to graphs
whose edge density p is near 1/2. One might like to extend this work to the case
of any 0 < p < 1 and also to estimate the deviation between the actual value
of the graph quantity studied and its expectation. Indeed, we will carry out this
extension in Part II of this paper by using the notion of “(p, α)-jumbled” graphs
which was introduced by Thomason [21], [22].

Finally, we remark that the proofs of Theorems 5.1–5.6 were based on The-
orems 3.1–3.5 and 3.7 but from them we used only the estimates given for the
correlation of order 2 of the binary sequences studied, although Theorems 3.1–3.5
also contain good upper bounds for correlations of higher order. Is it not possible
to also utilize these higher order correlation estimates, do they not imply that
the quasi-random graphs generated by them possess more and/or stronger “ran-
dom type” properties? In case of Theorem 3.7 already the correlation of order 4
is large, while in case of Theorem 3.6 only the correlation of order k (= the de-
gree of the polynomial in question) can be large. Does this lead to any difference
in the “random type” properties of the graphs generated by the polynomials
in question? Moreover, in case of quasi-randomness the focus is on finding many
(seven) equivalent (“random type”) properties. One also might like to say some-
thing in the opposite direction, namely that there are graphs possessing many
independent “random type” properties, where the word “many” means that if
the number of the vertices of the graph tends to infinity then also the number
of these properties tends to infinity (relatively fast). All these problems will be
studied in Part III of this paper.
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[4] CASSAIGNE, J.—MAUDUIT, C.—SÁRKÖZY, A.: On finite pseudorandom binary
sequences VII: The measures of pseudorandomness, Acta Arith. 103 (2002), 97–118.

[5] CHUNG, F. R. K.—GRAHAM, R. L.—WILSON, R. M.: Quasirandom graphs, Proc. Nat.
Acad. Sci. U.S.A., 85 (1988), 969–970.

[6] Quasirandom graphs, Combinatorica 9 (1989), 345–362.

[7] DAVIS, P. J.: Circulant Matrices. Wiley, New York, 1970.
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[18] RIVAT, J.—SÁRKÖZY, A.: Modular constructions of pseudorandom binary sequences

with composite moduli, Periodica Math. Hungar. 51 (2005), 75–107.
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