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ABSTRACT. Flat tori are analyzed in the context of an intrinsic Fourier-analytic
approach to electrostatics on Riemannian manifolds, introduced by one of the

authors in 1984 and previously developed for compact hyperbolic manifolds.
The approach covers a large class of repelling laws, but does not naturally in-

clude laws with singularities at the origin, for which possible accommodations

are discussed in the final section of the paper.

Communicated by Werner Georg Nowak

1. Introduction

This paper continues themes introduced in [6] and [7], whose notation we
employ. We begin by providing proofs as well as extending to the flat case
results from these references, which were developed in a hyperbolic context.
In particular, we provide a proof of a general equilibrium condition which was
stated but not proved in [6], and of which only a very brief sketch for hyper-
bolic manifolds was provided in [7]. We then investigate several applications
of these ideas to the case of flat tori, beginning with examples, possibilities, and
equidistribution results for the 1-torus, and continuing with a discussion of the
general case of the n-torus, which introduces new features. We conclude with a
discussion of methods for extending our results to singular force laws, using the
Coulomb law on T 3 as an illustrative example.
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Recall that [6] introduced an intrinsic interpretation of electrostatics for cer-
tain types of Riemannian manifolds, in which force between two interacting
points propagates, in a vectorially additive way, along the countably numer-
ous geodesic segments connecting the two points, with magnitudes determined
by a force law that is a function of distance. This differs from classical electro-
static settings, e.g., the Thomson problem, in which the manifold is isometrically
embedded, generally in R3, and the force between two points propagates along
the unique single geodesic segment in R3 connecting the points.

Our approach is Fourier analytic in character, and is generally adapted to ho-
mogeneous spaces with a well-developed harmonic analysis, for which any two
points in the universal covering space have a unique connecting geodesic. In some
cases, the possibility of non-trivial self-action is present, e.g., in the hyperbolic
case (cf. [7]), although this phenomenon does not occur in the flat case, nor
of course in the classical approach.

As just noted, in some cases it is important in our intrinsic treatment to con-
sider the way in which a point may act on itself, and as also noted, in the classical
embedded version of this type of question, in which the set of standardly consid-
ered interacting point-pairs consists of the Cartesian product in Rn minus the
diagonal of the specified point ensemble with itself, the issue by definition does
not arise.

However, in some geometries, our particular consideration of the intrinsic
problem naturally leads to the possibility of non-trivial self action (c.f. [7],
p. 2772, Remark 4). This notion requires a suitable definition and analysis,
which is not present in the existing literature, apart from the brief mention
of such a possibility in Remark 4 of [7]. Because of this gap, and to give a more
complete picture of the scope and applicability of our method, we include a
short analysis of this phenomenon here, even though non-trivial self action does
not occur in the flat case, but in those cases where it does occur, the locations
of an energy minimizing self-acting point encode geometric information about the
containing manifold and constitute an important aspect of the general theory.
More generally, the study of energy minimizing configurations containing an
arbitrary number of points is of interest in all cases, including the flat case.
It is important to note that such configurations depend on the particular under-
lying potential function (cf. Theorems 1 and 6 of this paper).

In [6] and [7], there is postulated an underlying even function k(ρ), ρ∈(−∞,∞),
corresponding to a classical potential function, which in turn produces a force
law H(ρ), given by the relation H(ρ) =−k′(ρ). The function k(ρ) can be quite
general, although it is subject to certain requirements which are intended to se-
cure the absolute uniform convergence of series which arise in the theory, as well
as the validity of several derived identities. The contextual framework of the
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discussion in [6] was that of compact hyperbolic manifolds, and the underlying
analytic tool was the Selberg pre-trace formula. In the flat torus case, which
was not explicitly treated in [6] and [7], but with which we will be predomi-
nantly concerned in this paper, the corresponding analytic tool is the Poisson
summation formula.

Our operative analytical techniques require smoothness assumptions on the
function k(ρ) that are fairly strict in the hyperbolic case and less so in the case
of flat tori. Another feature of our treatment of the intrinsic case is that, as is
usual and useful in many applications of the Selberg pre-trace and Poisson sum-
mation formulas, great variety is permitted in the selection of the function k(ρ).
We note that in some, but by no means all, classical studies of electrostatics,
e.g., in the case of the Coulomb potential, the function k(ρ) has a singularity
at the origin, which is not initially covered by our treatment, and until the last
section of this paper, we will restrict our discussion to the non-singular case.

Retaining for now an assumption in [6] that k(ρ) is the restriction to [0,∞)
of an even C∞ function on (−∞,∞), and hence that the force function H(ρ) =
−k′(ρ) vanishes at ρ = 0, we also make a temporary assumption that x 6= y.
Then, as noted in [6] for the hyperbolic case, under suitable additional assump-
tions on k(ρ), the vectorial effect at x of a unit charge located at y is given by∑

γ

H
(
d(x, γy)

)
~Vγ = −∇x

∑
γ

k(x, γy)

= −∇x
∞∑
n=1

h(rn)ϕn(x)ϕn(y) ,

(1)

where in the hyperbolic case as treated in [6] and [7], γ ranges over the elements
of the lattice whose action on the appropriate hyperbolic covering space Hn gives

M, and ~Vγ is the tangent vector at x of the unique directed geodesic segment
in Hn from y to x. In this context, h is the Selberg transform of k, the rn’s are
the standard parametrization in the Selberg theory of the Laplace eigenvalues
on M, the ϕn’s are the corresponding Laplace eigenfunctions on M, and in the
last sum, half the rn’s are counted and the term corresponding to the constant
eigenfunction is omitted, since the gradient operation removes the necessity for
its presence.

In the current case, in which we will take M to be a flat torus of unit volume
given by the action of a lattice Γ on a Euclidean space, an argument effectively
identical to that of [6] using the Poisson summation formula shows that an analog
of formula (1) is valid, in which h is the Fourier transform of the radial function
k and the sum is taken over the non-zero elements ν of the dual lattice of Γ,
with rn replaced by ν and ϕν by e2πi(ν,x).
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Note that under the currently operative assumption H(0) = 0, the formula
in (1) has an obvious natural meaning if x = y, since the term correspond-

ing to γ = identity, namely H(0)~Videntity, vanishes, and is thus not present.
Moreover, this condition is continuous, in the sense that as y → x, the cor-
responding term tends to zero. Thus, the effect of a charge at x on itself has
a natural definition as ∑′

γ

H
(
d(x, γx)

)
~Vγ ,

where the prime indicates that γ = identity is omitted from the sum, and by
either the pre-trace or the Poisson formula, the correct definition on the eigen-
function side is

∇x
∞∑
n=1

h(rn)|ϕn(x)|2 .

(Self action does not occur in the case of a flat torus, since the contribution
from a geodesic segment is canceled by that from its negative counterpart.
This also follows from the last formula, since the eigenfunctions in the flat case
have constant absolute value 1. Non-trivial self action can, however, occur in the
hyperbolic case.)

In view of the above, the effect at xj of points at x1, . . . xN is given by

−∇xj

∞∑
n=1

h(rn)ϕn(xj)
(
ϕn(x1) + · · ·+ ϕn(xN )

)
,

so the effect is null at xj if and only if

−∇xj

∞∑
n=1

h(rn)ϕn(xj)
(
ϕn(x1) + · · ·+ ϕn(xN )

)
= 0 .

If the configuration is in equilibrium at each of the xj ’s, then by adding and
collecting terms, we find that

−∇x
∞∑
n=1

h(rn)
(
ϕn(x1) + · · ·ϕn(xN )

)(
ϕn(x1) + · · ·+ ϕn(xN )

)
= 0 ,

or

−∇x
∞∑
n=1

h(rn)|ϕn(x1) + · · ·ϕn(xN )|2 = 0 ,

where the gradient can be regarded as taken over the Cartesian product MN,
since the gradient of the metric product is the orthogonal direct sum of the
gradients in the factors.
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Thus, a necessary and sufficient condition for the equilibrium of a configura-
tion {x1 . . . xN} is that it be a critical point on MN of

∞∑
n=1

h(rn)|ϕn(x1) + · · ·ϕn(xN )|2 , (2)

and as a corollary, a single point x is in equilibrium under self action if and only
if it is a critical point of ∞∑

n=1

h(rn)|ϕn(x)|2 . (3)

In particular, the above discussion strongly suggests that the quantities given
by (2) and its specialization (3) provide appropriate definitions for an energy
functional in our setting, and that if h is non-negative, those configurations
for which it is globally minimized will be of exceptional interest, while if h is
non-positive, configurations for which it is globally maximized will play this
role. Note in particular that in the hyperbolic case, the determination of points
satisfying (3) is non-obvious, while in the flat torus case, (3) has the same value
for all points, since |ϕn(x)|2 ≡ 1.

We conclude this section by noting that we can associate to a potential func-
tion what may be termed its dual, which is simply the negative of the original
function. As motivation, suppose for simplicity, although this is not required,
that the force function H is negative in (0,∞), thus not of mixed sign. Then
the points in the configuration are mutually repelling, and the situation is elec-
trostatic in character. If we now consider the environment produced by the dual
potential, the points attract, and the situation becomes gravitational in charac-
ter. The force vectors at each point have the same magnitudes in both cases, but
are reversed in direction, from which it is clear that an electrostatically stable
configuration, i.e., one in which the force resolves to zero at each point, is also
gravitationally stable. This can be expressed as a general law: a configuration
that is stable for a potential is also stable for its dual, or less formally, an elec-
trostatically stable configuration is also gravitationally stable for the dual law.

2. The 1-torus

In this section, we will look into the application of these ideas to the case in
which M is the unit volume 1-torus T 1, i.e., the quotient of R1 by the integer

lattice, in which case h = k̂. For the 1-torus, the eigenfunctions are {e2πinx},
n = 0,±1,±2, . . . , so in this case (2) becomes

2

∞∑
n=1

k̂(n)|e2πinx1 + · · ·+ e2πinxN |2 , (4)
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which we will call, as suggested above, the energy of the configuration, and

when k̂ > 0, points on MN at which (4) attains its global minimum µN are
of exceptional interest.

Note that the factor of 2 in the the above sum is present because the absolute
values in (4) corresponding to ±n are identical, and the Fourier transform is
defined with the scaling of 2π in the character, which in one dimension gives

f̂(ρ) =

∫ ∞
−∞

f(t)e−2πiρt dt .

Theorem 1. Suppose k̂ > 0, and {SN} is a sequence of point configurations
on T 1 which, for each N , globally minimize energy. Then {SN} is equidistributed
as N →∞, at a rate that can be estimated above as a function of N.

This follows immediately from the theorem in pages 2770–2771 of [7].

We can easily derive a universal upper bound for µN . Namely, if we integrate
the right side of (4) over TN, the N -fold Cartesian product of the 1-torus T 1,
then by orthonormality, bearing in mind that |z|2 = zz, we obtain

2N

∞∑
n=1

k̂(n).

It thus follows from the mean value theorem for integrals that there is a point
(p1, . . . , pN ) ∈ TN such that

2

∞∑
n=1

k̂(n)|e2πinp1 + · · ·+ e2πinpN |2 = 2N

∞∑
n=1

k̂(n) , (5)

so the right side of (5) is an upper bound for µN . It is also obviously a lower
bound for the global maximum of the energy achievable by any N -point config-
uration on T 1, although this is of limited interest, since it is obvious from (4)

that if, for example, k̂(n) ≥ 0, the maximum energy is achieved when the points
all coincide.

Let us next examine how all of the above considerations apply to the case
of N equispaced points on T 1. For this case, of course, equidistribution in the
limit is trivially obvious. Moreover, since all applicable results are invariant under
isometry, the points can without loss of generality be taken to be the Nth roots
of unity. We also note that an equispaced configuration is in electrostatic equi-
librium, or stable for short, since, if we regard the circle as standardly embedded
and bounding a round disk in R2, an equispaced configuration is invariant under
reflection through a diameter of the disk passing through a point of the config-
uration, so all forces impinging on a point from one side are canceled by iden-
tical forces impinging from the other side. This observation does not however,
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address the question of whether equispaced configurations are necessarily glob-
ally energy minimizing, which we will now take up.

Accordingly, suppose that in (4) , xj = j/N (j = 1, . . . , N). Then, since a
power of an Nth root of unity is again an Nth root of unity, and since when

ωN = 1 and ω 6= 1,
∑N
j=1 ω

j = 0, we conclude that all terms of (4) vanish, except
those occurring when n = N, 2N, 3N . . . , in which case the corresponding term

is 2N2k̂(n). In particular, the energy in the equispaced case is given by

2N2
∞∑
j=1

k̂(jN) . (6)

There are several interesting observations that we can now draw from this,
depending on the behavior of the function k. In discussing these, we will work

interchangeably with either k or k̂, depending on convenience.

Setting νN to be the value of the energy (6) in the equispaced case, we note

that µN ≤ νN , and also that under mild conditions on the rate of decrease of k̂,

and the assumption that k̂ ≥ 0, νN is asymptotically zero, in the sense that
νN → 0 as N →∞. For example, if

k̂(n)� ε(N)/n2, with ε(N)→ 0 as N →∞,
then

2N2
∞∑
j=1

k̂(jN)� ε(N) .

On the other hand, if

1/nα ≤ k̂(n) for α < 2,

then

2N2
∞∑
j=1

k̂(jN) tends to infinity as N →∞.

In the transitional case for which k̂(n) is bounded between positive multiples
of 1/n2, νN fluctuates between positive values or tends to a positive limit.

We now address the question of whether or not the equispaced configura-
tion is globally energy minimizing in our model, and begin by showing that
we can, by adding appropriate functions concentrated around a large N = N0

to a suitable choice of k̂, easily produce a situation in which k̂ > 0, but νN0

is larger than the upper bound for µN0
given by the analysis leading to (5).

In particular, even if k̂ > 0, the equispaced configuration, although stable,
does not always globally minimize energy, although the corresponding potential
function k may not satisfy the classical positivity and monotonicity conditions.
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In order to exhibit this phenomenon, suppose ψ(t) ≥ 0 is a standard even C∞

bump function supported in [− 1
2 ,

1
2 ], with integral 1 and ψ(0) = 1, and k̂(t) is

defined to be

e−πt
2

+
1

2

(
ψ(t−N0) + ψ(t+N0)

)
.

Then
k̂(N0) ≈ 1, and k(ρ) = e−πρ

2

+ ψ̂(ρ) cos 2πN0ρ.

Now the contribution to the energy expression (6) from j=1 is 2N2
0 k̂(N0)≈2N2

0 ,

and it is easy to see, even bearing in mind that the above choice of k̂ depends
on the choice of N0, that the bound for µN0 given by (5) is� N0, so for large N0

the equispaced configuration is not globally energy minimizing, which proves:

Theorem 2. The Fourier transform k̂ can be chosen so that k̂ > 0 and the
equispaced configuration is not globally energy minimizing.

By contrast, we have:

Theorem 3. k̂ can be chosen to be of compact support, non-negative and non-
increasing. with k positive and strictly decreasing. These conditions imply, among
other things, that for N large, the equispaced configuration has zero energy, and
is therefore globally energy minimizing.

To show this, consider the Paley-Wiener type functions

Φm(y) = −
∫ y

−∞

sinmt

tm−1
dt ,

where m is an even integer greater than 2, to guarantee absolute convergence.
This type of function, which for the case m = 4 was introduced in [5] and is
mentioned on page 82 of Higgins’s survey article on cardinal series [4], provides
a family of even, positive, band-limited functions which are strictly decreasing
on [0,∞), and have interesting properties when chosen for the potential func-
tion k in the equispaced case.

We quickly verify the above assertions about these functions. The positivity,
evenness, and strict monotone decrease on [0,∞) are obvious, and it remains
to verify that the functions are of Paley-Wiener type, i.e., band limited, meaning
that their Fourier transforms have compact support. This follows from the facts
that sinm t/tm−1 is an entire function of t, and that the integral defining the
function Φm(y) can be replaced, up to an additive constant, by an integral from
0 to y, which implies that Φm(y) extends to an entire function of y, which
can be defined up to an additive constant by an integral over the segment in C1

connecting the origin to y. By an obvious estimate, Φm(y), regarded as a function
in the complex plane, is of exponential type and is clearly � y−(m−2) and
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therefore L2 on the real line, which by a Paley-Wiener theorem shows that Φm(y)
is band limited. More elementarily, we could argue by noting that sin t/t is up to
a positive multiple the Fourier transform of the indicator function of a compact
interval, so (sin t/t)m is in an obvious way the Fourier transform of a specific
compactly supported m-fold convolution ϕ(ρ). Moreover, integrating by parts,∫ ∞

−∞
Φm(t) e−2πiρt dt =

1

2πiρ

∫ ∞
−∞

Φ′m(t) e−2πiρt dt

= − 1

2πiρ

∫ ∞
−∞

sinmt

tm−1
e−2πiρt dt

= − 1

4π2ρ

d

dρ

∫ ∞
−∞

(
sin t

t

)m
e−2πiρt dt

=
1

4π2ρ
ϕ′(−ρ) ,

which, since ϕ′ is a derivative of a compactly supported function and thus com-
pactly supported, again shows that Φm(y) is band limited. Also, by examining
the graphical interpretation of ϕ(ρ), which is an m

2 -fold convolution of a triangle
function, it is easy to verify from the above that the Fourier transform of Φm is
non-negative and non-increasing on [0,∞).

Now take the potential function k to be one of the Φm’s. Then as noted,

k is positive and decreasing, and the transform k̂, which figures in the en-
ergy expression (5), is non-negative, non-increasing, and of compact support.
This implies, since for roots of unity, the sum defining the energy reduces to

2N2
∞∑
j=1

k̂(jN),

that for sufficiently large N , depending on k, the energy in the equispaced case
is zero, and is of course globally minimizing, which establishes Theorem 3.

We conclude with an additional criterion for when the equispaced configu-
ration is globally energy minimizing. In connection with this, we will establish
an interesting Fourier-analytic connection with a convexity result of Götz [3],
which he employed in the analysis of a very different shortest distance electro-
static model. In the case of our model, our analysis is also concerned with the
convexity of the function on [0, 12 ], whose Fourier coefficients in our case coin-

cide with {k̂(n)}∞n=1, and we will exploit the fact that in the flat torus case, the
eigenfunctions are characters of the covering space.
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We begin by noting that the energy expression (2) can be rewritten, for
(x1, . . . , xN ) in general position, as

∞∑
n=1

k̂(n)
(
e2πix1 + · · ·+ e2πinxN

) (
e−2πinx1 + · · ·+ e−2πinxN

)

= N

∞∑
n=1

k̂(n) +
∑

1≤j,m≤N

j 6=m

∞∑
n=1

k̂(n) cos 2πn(xm − xj)

=
∑

1≤j,m≤N

j 6=m

∞∑
n=1

k̂(n)

(
1

N − 1
+ cos 2πn(xm − xj)

)
,

where the last expression does not depend on the choice of representatives of xj
and xm in the covering space.

In particular, for fixed N the above expression can be written in the form∑
1≤j,m≤N

j 6=m

f
(
d(xj , xm)

)
,

where d is the length of a shortest geodesic, or arc, between xj and xm, and the
function f is given by

f(t) =

∞∑
n=1

k̂(n)

(
1

N − 1
+ cos 2πnt

)
= cN +

∞∑
n=1

k̂(n) cos 2πnt .

At this point we recall Proposition 9 from [3] (cf. also [2] , which is applicable
to this situation. Specifically, [3] is concerned with the study of configurations
on the circle which absolutely minimize a functional that is a finite sum of the
form ∑

j 6=m

f
(
d(xj , xm)

)
,

where d(xj , xm) is the length of a shortest arc connecting xj and xm, and f is
a real valued function on [0, 12 ].

In greater detail, Proposition 9 from [3] states that if f is convex and non-
increasing, then the above functional attains a global minimum on the equis-
paced configuration, and if moreover f is strictly convex, then the equispaced
configuration is the unique such configuration.
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We can now summarize the preceding discussion in the following theorem:

Theorem 4. If

cN +

∞∑
n=1

k̂(n) cos 2πnt

is the Fourier series of a convex non-increasing function on [0, 12 ], then the equi-
spaced configuration gives a global energy minimum in our sense. Furthermore,
if the convex function is strictly convex, then the equispaced configuration is the
unique global minimum for the potential k. (The additive constant is immaterial
to this result, which only depends on the Fourier coefficients for n ≥ 1) .

Remark. Theorem 4, which involves a hypothesis on the Fourier transform
of the potential function k, shows that the intrinsic problem can, in some ge-
ometries, be somewhat “finitized”, but it must be borne in mind that the function
f is not finitely defined, and that the above connection is not applicable to, e.g.,
the hyperbolic case, because in that case the eigenfunctions do not combine in
the requisite way. Also, importantly, the use of the above-referenced Proposition
9 from [3] is not applicable to higher dimensional flat tori, because of the presence
of geometric information in addition to distances. Finally, as Theorem 2 makes
clear, the condition expressed in Theorem 4 is not necessary and sufficient, and
is one of several that produce minimality. Theorem 4 is not vacuous, inasmuch
as it is not difficult to give examples of potentials for which its hypotheses are
satisfied.

3. The higher dimensional case

We can define a mapping to an energy functional in the multidimensional
flat case as well, although in dimensions greater than 1, the result from [3]
is no longer applicable. Namely, suppose T ris the generically representative r-
-dimensional integral torus, and (x1 . . . , xN ) is an N -tuple of points on T r.
Then by imitating the derivation in the 1-dimensional case for the energy func-
tional f , we are led to an expression of the form

N
∑
n6=0

k̂(n) +
∑

1≤j,m≤N

j 6=m

∑
n 6=0

k̂(n)e2πi(n,xm−xj) ,

where n is summed over the non-zero integer lattice points in Rr. This suggests,
for j 6= m, defining vectors vj,m = xm − xj . The preceding expression can then
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be written

N
∑
n 6=0

k̂(n) +
∑

1≤j,m≤N

j 6=m

∑
n 6=0

k̂(n)e2πi(n,vj,m) ,

which can be combined into∑
1≤j,m≤N

j 6=m

∑
n 6=0

k̂(n)
(
cr(N) + cos 2π(n, vj,m)

)
,

where
cr(N) = 1/(Nr−1 − 1) .

Thus if we define, for x ∈ T r,

f(x) =
∑

1≤j,m≤N

j 6=m

∑
n 6=0

k̂(n)
(
cr(N) + cos 2π(n, x)

)
,

we obtain, in several, dimensions, the following result:

Theorem 5. With notation as above, our energy expression is, up to an additive
constant, equal to ∑

1≤j,m≤N

j 6=m

f(vj,m) ,

which, as in the 1-dimensional case, now gives a mapping from k to an energy
functional f on T r.

Note that in dimensions greater than 1, vj,m, and therefore f(vj,m), depend
on geometric information in addition to the distance between xj and xm, so that,
as mentioned, the result from [3] is not applicable. Nevertheless. the following
theorem is valid.

Theorem 6. Suppose k̂ > 0, and {SN} is a sequence of point configurations
on T r which, for each N, globally minimize energy. Then {SN} is equidistributed
as N →∞, at a rate that can be estimated above as a function of N .

As in the case of T 1, this follows immediately from the theorem in pages
2770–2771 of [7].
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4. Remarks on singular potentials

We end with some remarks that are pertinent to the case of a singular poten-
tial. They arose in part from correspondence with Dennis Sullivan, who was in-
terested in possible extensions of the scope of our intrinsic electrostatic model [6],
in particular for the Coulomb potential on a flat 3-torus T 3.

We will briefly discuss some issues which make the provision of a suitable
interpretative framework for this question difficult, and then sketch one of many
possible approximations suggestive of information that can be developed in this
direction. Moreover, since the Coulomb potential is a widely familiar object,
we will utilize it as an illustrative case, although our following observations are
applicable in much greater generality. We should also note that recently a Green’s
function technique has been applied to similar questions [1].

We begin our remarks by noting an obvious difficulty posed by the Coulomb
potential 1/r and its associated inverse square force law. Namely, 1/r does not
fall within the precise scope of the admissible functions for which the theory
has been developed, and an attempt to nevertheless simply apply it to the
case of a flat 3-torus immediately runs into convergence problems at infinity.
The (distributional) Fourier transform of the Coulomb potential in three dimen-
sions is 1/r2. This well-known result in physics is often established by first noting
that the Fourier transform of a Yukawa potential

e−ηr/r (η > 0) is 1/
(
r2 + η2

)
,

and then dissolving η to 0 (note that the 1/r singularity is integrable around
the origin in R3).

These facts and the general presence of a singularity at the origin prevent
the precise use in this case of the equilibrium criterion given by (2), in partic-
ular since the number of corresponding dual lattice points grows too rapidly
to accommodate its applicability. I.e., the growth with increasing length of the
number of connecting geodesics that must be counted is too fast.

In view of this, it is reasonable to ask whether or not there are suitable admis-
sible approximations to the Coulomb potential that might prove useful in cer-
tain circumstances. For example, by mollifying the Coulomb potential at the two
locations at which it is problematic, namely, at the origin and at infinity, it may
be possible to obtain insight into questions for which the detection of a particular
tendency is significant, as such approximate potentials approach the Coulomb
potential.
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To examine this approach, mollification at the origin and at infinity is re-
quired, and there are many ways of doing this. For this purpose, we illustrate
with a Yukawa potential mollified at the origin. Specifically, in the setting of R3,
suppose ϕ(ρ) ≤ 1 is a non-decreasing radial C∞ function, which is

≡ 0 for 0 ≤ ρ ≤ ε/2,
and

≡ 1 for ρ ≥ ε (ε > 0).

Now consider the radial function ϕ(ρ)ρ−1e−ηρ (η > 0), and its Fourier transform∫
R3

ϕ(ρ)ρ−1e−ηρe−i(x,y) dx , (7)

where for notational simplicity, we are defining the Fourier transform without
the 2πi factor in the exponent.

This is a Fourier-Bessel transform, since it is the Fourier transform of a radial
function and hence itself radial, and in R3, the Fourier-Bessel transform can be
elementarily expressed, in this case as

4π

r

∫ ∞
0

ϕ(ρ)e−ηρ sin(rρ) dρ .

This is a sine transform of a function on [0,∞). It behaves nicely at the
origin and at infinity, and is an admissible h in the formula (2), so the previous
techniques are applicable.

We are interested in the behavior of point configurations under the influence
of these mollified potentials for small values of the parameters ε and η, and will
call such potentials mollified Coulomb potentials, or just mollified potentials for
short. In particular, we would like, if possible, to say something about whether
asymptotic equidistribution occurs with such mollified potentials, as the number
N of points becomes large, subject to an appropriate minimization condition,
perhaps one suggested by our previous study of configurations that globally
minimize (2) .

A previously utilized criterion for equidistribution can be also adapted to the
study of this question, in the form of the theorem contained in pages 2770-
-2771 of [7]. An examination of its proof makes it clear that positivity plays
a crucial role, which in the present context translates into a requirement that
the Fourier transform h(r) of a potential being investigated for an implication
of equidistribution be positive, or more precisely, positive at the norms of the
non-zero lattice points of Z3.
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Rather than searching for a family of mollifications of the Coulomb poten-
tial having positive Fourier transforms, we will, in this brief discussion, adopt
an approximate approach. Namely, the Weyl criterion shows that a sequence
{S1, S2, . . .} of finite point sets of M with cardinalities satisfying |Sn| ↑ ∞, is
equidistributed if, for all j = 1, 2, . . . , it asymptotically integrates, with measure
identically 1/N at each point of SN , the Laplace eigenfunctions of M, ordered
as in (1), up to level j. With this in mind, we will call {S1, S2, . . .} approxi-
mately equidistributed to level j0, if it asymptotically integrates all eigenfunc-
tions up to and including level j0.

We now take the mollified potentials introduced above, and use, as counter-
parts and suitable approximations to the full energy functional (2), its finite
segments ∑̀

n=1

hε,η(rn)|ϕn(x1) + · · ·ϕn(xN )|2 (` = 1, 2 . . .). (8)

As already noted, the Yukawa potential is in L1(R3), and its Fourier trans-
form in R3 is 1/(r2+η2), which is positive on [0,∞). From this it is easy to show,
for fixed η > 0, that there is an r(ε), with r(ε)→∞ as ε→ 0, such that hε,η(r)
is positive on [0, r(ε)]. Keeping η fixed, the following result now follows from an
almost word-for-word adaptation of the proof of the theorem from [7], applied
to a given finite segment H of the form (8) .

Theorem 7. for any ` there is an ε(`) > 0 such that for any mollified potential
with 0 < ε ≤ ε(`), a sequence {SN} of globally H-minimizing configurations is
approximately equidistributed to level `.
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