💲 sciendo

DOI: 10.2478/udt-2019-0015 Unif. Distrib. Theory **14** (2019), no.2, 73-86

ON THE DISCREPANCY OF RANDOM WALKS ON THE CIRCLE

Alina Bazarova¹ — István Berkes² — Marko Raseta³

¹Institute for Biological Physics, University of Cologne, Köln, GERMANY

²Rényi Institute of Mathematics, Budapest, HUNGARY

³Research Institute for Primary Care and Health Sciences and Research Institute, University of Keele, Staffordshire, UNITED KINGDOM

ABSTRACT. Let X_1, X_2, \ldots be i.i.d. absolutely continuous random variables, let $S_k = \sum_{j=1}^k X_j \pmod{1}$ and let D_N^* denote the star discrepancy of the sequence $(S_k)_{1 \le k \le N}$. We determine the limit distribution of $\sqrt{N}D_N^*$ and the weak limit of the sequence $\sqrt{N}(F_N(t) - t)$ in the Skorohod space D[0, 1], where $F_N(t)$ denotes the empirical distribution function of the sequence $(S_k)_{1 \le k \le N}$.

Communicated by Friedrich Pillichshammer

Dedicated to Professor Radhakrishnan Nair on the occasion of his 60th birthday

1. Introduction

Let X_1, X_2, \ldots be i.i.d. absolutely continuous random variables and let $S_k = \sum_{j=1}^k X_j \pmod{1}$. Then $S_k, k = 0, 1, \ldots$ is a random walk on the circle and by a classical result of Lévy [6], the distribution of S_k converges weakly to the uniform distribution on (0, 1). Schatte [8] proved that the speed of convergence

 $[\]odot$ 2019 BOKU-University of Natural Resources and Life Sciences and Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 11K38, 60G50, 60F17.

Keywords: i.i.d. sums mod 1; empirical distribution; discrepancy; weak convergence. Research supported by NKFIH Grant K 125569.

Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

is exponential, and letting

$$D_N^* := \sup_{0 \le a < 1} \left| \frac{1}{N} \sum_{k=1}^N I_{(0,a)}(S_k) - a) \right| \quad (N = 1, 2, \ldots)$$

denote the star discrepancy of the sequence $(S_k)_{1 \le k \le N}$, he also proved in [9] the law of the iterated logarithm

$$\limsup_{N \to \infty} \sqrt{\frac{N}{\log \log N}} D_N^* = \gamma \quad \text{a.s.},\tag{1}$$

where

$$\gamma = \sup_{x \in [0,1)} \sigma^2(x)$$

with

$$\sigma^{2}(x) = x - x^{2} + 2\sum_{j=1}^{\infty} \left(\mathbb{E}I_{(0,x)}(U)I_{(0,x)}(U + X_{j}) - x^{2} \right).$$
(2)

Here U is a uniform (0, 1) random variable independent of the sequence $(X_n)_{n\geq 1}$ and for $0 \leq a < b \leq 1$, $I_{(a,b)}$ denotes the indicator function of (a, b), extended with period 1. Letting

$$F_N(t) = F_N(t,\omega) = \frac{1}{N} \sum_{k=1}^N I_{(0,t)}(S_k) \qquad (0 \le t \le 1)$$
(3)

denote the empirical distribution function of the first N terms of the sequence $(S_n)_{n\geq 1}$, Berkes and Raseta [2] proved a Strassen type functional LIL for $F_N(t)$, yielding precise asymptotics for several functionals of the empirical process. The purpose of the present paper is to prove the following result, determining the limit distribution of $\sqrt{ND_N^*}$.

THEOREM 1. Let X_1, X_2, \ldots be *i.i.d.* random variables and assume X_1 is bounded with bounded density. Let

$$\Gamma(s,t) = s(1-t) + \sum_{k=1}^{\infty} \mathbb{E}f_s(U)f_t(U+S_k) + \sum_{k=1}^{\infty} \mathbb{E}f_t(U)f_s(U+S_k), \quad (4)$$

where U is a U(0,1) variable independent of $(X_n)_{n\in\mathbb{N}}$ and $f_s = I_{(0,s)} - s$. Then the series in (4) are absolutely convergent and

$$\sqrt{N}D_N^* \xrightarrow{d} \sup_{0 \le t \le 1} |K(t)|, \tag{5}$$

where K(s) a mean zero Gaussian process with covariance function $\Gamma(s,t)$.

Actually, Theorem 1 will be deduced from a more general functional result describing the weak limit behaviour of the empirical distribution function $F_N(t)$.

THEOREM 2. Under the conditions of Theorem 1 we have

$$\sqrt{N} (F_N(t) - t) \xrightarrow{D[0,1]} K(t) \quad as \quad N \to \infty.$$
 (6)

Relation (6) expresses weak convergence in the Skorohod space D[0, 1], see Billingsley [4] for basic definitions and facts for weak convergence of probability measures on metric spaces.

By a classical result of Donsker [5], if X_1, X_2, \ldots are i.i.d. random variables with distribution function F and F_N denotes the empirical distribution function of the sample (X_1, \ldots, X_N) , then

$$\sqrt{N} (F_N(t) - F(t)) \xrightarrow{D[0,1]} B(F(t))$$

where B is Brownian bridge. Note the substantial difference caused by considering mod 1 sums in the present case.

If X_1 has a lattice distribution, the situation changes essentially. For example, in [1] it is shown that if α is irrational and X_1 takes the values α and 2α with probability 1/2 - 1/2, then up to logarithmic factors, the order of magnitude of D_N^* is

$$O\left(N^{-1/2}\right)$$
 or $O\left(N^{-1/\gamma}\right)$

according as $\gamma < 2$ or $\gamma > 2$, where γ is the Diophantine rank of α , i.e., the supremum of numbers c such that $|\alpha - p/q| < q^{-c-1}$ holds for infinitely many fractions p/q. The asymptotic distribution of D_N^* in this case remains open.

2. Proofs

The proof of our theorems uses, similarly to that of the functional LIL in [2], a traditional blocking argument combined with a coupling lemma of Schatte, see Lemma 1 below. The substantial new difficulty is to prove the tightness of the sequence $\sqrt{N}(F_N(t) - t)$, since the standard maximal inequalities (e.g., Billingsley's inequalities in [4], Section 2.12) are not applicable here. We circumvent this difficulty by proving a Chernoff type exponential bound (Lemma 6) for the considered partial sums which, combined with the chaining method of Philipp [7], yields the desired fluctuation inequality (Lemma 7).

LEMMA 1. Let

$$\ell \geq 1$$
 and I_1, I_2, \ldots

be disjoint blocks of integers with $\geq \ell$ integers between consecutive blocks. Then there exists a sequence $\delta_1, \delta_2, \ldots$ of random variables such that

$$|\delta_n| \le C e^{-\lambda t}$$

with some positive constants C, λ and the random vectors

$$\{S_i, i \in I_1\}, \{S_i - \delta_1, i \in I_2\}, \dots, \{S_i - \delta_{n-1}, i \in I_n\}, \dots$$

are independent and have, except for the first one, uniformly distributed components.

Proof. For the proof, see [2]. The uniformity statement is implicit in the proof; see also Lemma 4.3 of [3]. \Box

In what follows, $C, \lambda, \gamma, \gamma' \dots$ will denote positive constants, possibly different at different places, depending (at most) on the distribution of X_1 . The relation \ll will mean the same as the big O notation, with a constant depending on the distribution of X_1 .

Let \mathcal{F} denote the class of functions f of the form

$$f = I_{(a,b)} - (b-a) \quad (0 \le a < b \le 1),$$

extended with period 1. For $f \in \mathcal{F}$ we put

$$A^{(f)} := \|f\|^2 + 2\sum_{k=1}^{\infty} \mathbb{E}f(U)f(U+S_k),$$
(7)

where U is a uniform (0,1) random variable, independent of $(X_j)_{j\geq 1}$ and ||f|| denotes the $L^2(0,1)$ norm of f. Put further

$$\widetilde{m}_k = \sum_{j=1}^k \left\lfloor j^{1/2} \right\rfloor, \quad \widehat{m}_k = \sum_{j=1}^k \left\lfloor j^{1/4} \right\rfloor$$

and let $m_k = \tilde{m}_k + \hat{m}_k$. Using Lemma 1 we can construct sequences $(\Delta_k)_{k \in \mathbb{N}}$, $(\Pi_k)_{k \in \mathbb{N}}$ of random variables such that $\Delta_0 = 0$, $\Pi_0 = 0$,

$$|\Delta_k| \le C e^{-\lambda k^{1/4}}, \qquad |\Pi_k| \le C e^{-\lambda \sqrt{k}}$$
(8)

and

$$T_k^{(f)} := \sum_{\substack{j=m_{k-1}+1\\ j=m_k}}^{m_{k-1}+\lfloor\sqrt{k}\rfloor} f(S_j - \Delta_{k-1}), \qquad k = 1, 2, \dots,$$
$$T_k^{*(f)} = \sum_{\substack{j=m_{k-1}+\lfloor\sqrt{k}\rfloor+1}}^{m_k} f(S_j - \Pi_{k-1}), \qquad k = 1, 2, \dots$$

are sequences of independent random variables.

Since $\int_0^1 f(x) dx = 0$ for $f \in \mathcal{F}$, the uniformity statement in Lemma 1 implies that $\mathbb{E}T_k^{(f)} = \mathbb{E}T_k^{*(f)} = 0$ for $k \ge 2$.

The following asymptotic estimates for the variances of $T_k^{(f)}$ and $T_k^{*(f)}$ are from [2].

LEMMA 2. For $f \in \mathcal{F}$ we have

$$\sum_{k=1}^{n} \operatorname{Var}\left(T_{k}^{(f)}\right) \sim A^{(f)} \widetilde{m}_{n}, \qquad \sum_{k=1}^{n} \operatorname{Var}\left(T_{k}^{*(f)}\right) \sim A^{(f)} \widehat{m}_{n},$$

where $A^{(f)}$ is defined by (7).

Since

$$\operatorname{Cov}\left(T_{k}^{(f)}, T_{k}^{(g)}\right) = \frac{1}{4} \left(\operatorname{\mathbb{V}ar}\left(T_{k}^{(f+g)}\right) - \operatorname{\mathbb{V}ar}\left(T_{k}^{(f-g)}\right)\right),$$

Lemma 2 implies

$$\sum_{k=1}^{n} \operatorname{Cov}\left(T_{k}^{(f)}, T_{k}^{(g)}\right) \sim \frac{1}{4} \left(A^{(f+g)} - A^{(f-g)}\right) \widetilde{m}_{n}$$
(9)

and

$$\sum_{k=1}^{n} \operatorname{Cov}\left(T_{k}^{*(f)}, T_{k}^{*(g)}\right) \sim \frac{1}{4} \left(A^{(f+g)} - A^{(f-g)}\right) \widehat{m}_{n}.$$
 (10)

From (7) it follows that

$$A^{(f+g)} - A^{(f-g)} = 4\langle f, g \rangle + 4\sum_{k=1}^{\infty} \mathbb{E}f(U)g(U+S_k) + 4\sum_{k=1}^{\infty} \mathbb{E}g(U)f(U+S_k).$$
(11)

LEMMA 3. Let $f \in \mathcal{F}$, h > 0 and let ξ be a random variable with $|\xi| < h$. Then for any $n \ge 1$ we have

$$\mathbb{E}|f(S_n+\xi) - f(S_n)|^2 \le Ch.$$

Proof. Since X_1 is bounded with bounded density, Theorem 1 of [8] implies that the sums $S_n = \sum_{k=1}^n X_k \pmod{1}$ have a uniformly bounded density and thus

$$\mathbb{P}(S_n \in J) \le C|J| \quad \text{for any interval } J.$$
(12)

Now if $f = I_{(a,b)} - (b-a)$, then $|f(S_n + \xi) - f(S_n)| = |I_{(a,b)}(S_n + \xi) - I_{(a,b)}(S_n)|$ is different from 0 only if one of $S_n + \xi$ and S_n lies in (a, b) and the other does not, which, in view of $|\xi| < h$, implies that S_n lies closer to the boundary of (a, b)than h, i.e., $S_n \in (a, a + h)$ or $S_n \in (b - h, b)$. Since $|f(S_n + \xi) - f(S_n)| \le 2$, Lemma 3 follows from (12).

LEMMA 4. For $f \in \mathcal{F}$ and any $M \ge 0$, $N \ge 1$ we have

$$\mathbb{E}\left(\sum_{k=M+1}^{M+N} f(S_k)\right)^2 \le C \|f\| N.$$
(13)

Proof. We first show

$$|\mathbb{E}f(S_k)f(S_\ell)| \le Ce^{-\lambda(\ell-k)} ||f|| \qquad (k < \ell).$$
(14)

Indeed, by the proof of Lemma 1 in [2], there exists a r.v. Δ with $|\Delta| \leq Ce^{-\lambda(\ell-k)}$ such that $S_{\ell} - \Delta$ is a uniform r.v. independent of S_k . Hence

$$\mathbb{E}f(S_{\ell} - \Delta) = \int_0^1 f(t) \, \mathrm{d}t = 0$$

and thus

$$\mathbb{E}f(S_k)f(S_\ell - \Delta) = \mathbb{E}f(S_k)\mathbb{E}f(S_\ell - \Delta) = 0.$$
 (15)

On the other hand,

$$\begin{aligned} &|\mathbb{E}f(S_k)f(S_\ell) - \mathbb{E}f(S_k)f(S_\ell - \Delta)| \\ &\leq \mathbb{E}\big(|f(S_k)| |f(S_\ell) - f(S_\ell - \Delta)|\big) \\ &\leq \big(\mathbb{E}f^2(S_k)\big)^{1/2} \big(\mathbb{E}|f(S_\ell) - f(S_\ell - \Delta)|^2\big)^{1/2}. \end{aligned}$$
(16)

Using (12) we get

$$\mathbb{E}f^{2}(S_{k}) \leq C \int_{0}^{1} f^{2}(t) \,\mathrm{d}t = C \|f\|^{2}.$$
(17)

Also, $|\Delta| \leq C e^{-\lambda(\ell-k)}$ and Lemma 3 imply

$$\mathbb{E}|f(S_{\ell}) - f(S_{\ell} - \Delta)|^2 \le Ce^{-\lambda(\ell - k)}$$
(18)

which, together with (16)-(18), gives

$$|\mathbb{E}f(S_k)f(S_\ell) - \mathbb{E}f(S_k)f(S_\ell - \Delta)| \le Ce^{-\lambda(\ell - k)}.$$

Thus using (15) we get (14). Now by (14)

$$\left|\sum_{M+1 \le k < \ell \le M+N} \mathbb{E}f(S_k)f(S_\ell)\right| \le CN \|f\| \sum_{\ell \ge 1} e^{-\lambda\ell} \le CN \|f\|$$

which, together with (17), completes the proof of Lemma 4.

Let $0 < t_1 < \cdots < t_r \leq 1$ and put

$$\mathbf{Y}_{k} = \left(f_{(0,t_{1})}(S_{k}), f_{(0,t_{2})}(S_{k}), \dots, f_{(0,t_{r})}(S_{k})\right),$$
$$f_{(a,b)} = I_{(a,b)} - (b-a),$$

where

with the indicator
$$I_{(a,b)}$$
 extended with period 1, as before.

LEMMA 5. We have

$$N^{-1/2} \sum_{k=1}^{N} \mathbf{Y}_k \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Sigma}), \tag{19}$$

where

$$\boldsymbol{\Sigma} = \left(\Gamma(t_i, t_j) \right)_{1 \le i, j \le r}$$

Proof. Let

$$\mathbf{T}_{k} = \left(T_{k}^{(f_{(0,t_{1})})}, \dots, T_{k}^{(f_{(0,t_{r})})}\right),$$
$$\mathbf{T}_{k}^{*} = \left(T_{k}^{*(f_{(0,t_{1})})}, \dots, T_{k}^{*(f_{(0,t_{r})})}\right),$$

and let $\Sigma_{\mathbf{k}}$ denote the covariance matrix of the vector \mathbf{T}_{k} . From (9), (10) and (11) it follows that

$$m_n^{-1}(\Sigma_1 + \dots + \Sigma_n) \longrightarrow \Sigma.$$

Clearly,

$$|\mathbf{T}_k| \le C_r k^{1/2} = o\left(m_k^{1/2}\right),$$

where C_r is a constant depending on r, showing that the sequence $(\mathbf{T}_k)_{k\geq 1}$ of independent, mean **0** random vectors satisfies the Lindeberg condition and thus

$$m_n^{-1/2} \sum_{k=1}^n \mathbf{T}_k \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Sigma}).$$
 (20)

A similar statement holds for the sequence $(\mathbf{T}_k^*)_{k\geq 1}$, implying that

$$\left|\sum_{k=1}^{n} \mathbf{T}_{k}^{*}\right| = O_{P}(\widehat{m}_{n}) = o_{P}\left(m_{n}^{1/2}\right), \qquad (21)$$

and consequently,

$$m_n^{-1/2} \sum_{k=1}^n (\mathbf{T}_k + \mathbf{T}_k^*) \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Sigma}).$$
 (22)

Now, using (8) and Lemma 3 we get

$$\left\| T_k^{(f)} - \sum_{j=m_{k-1}+1}^{m_{k-1}+\lfloor\sqrt{k}\rfloor} f(S_j) \right\| \ll \sqrt{k} e^{-\lambda k^{1/4}}$$

and

$$\left\| T_k^{*(f)} - \sum_{j=m_{k-1}+\lfloor\sqrt{k}\rfloor+1}^{m_k} f(S_j) \right\| \ll k^{1/4} e^{-\lambda k^{1/2}},$$

and thus

$$\left\|\sum_{k=1}^{m_n} \mathbf{Y}_k - \sum_{k=1}^n (\mathbf{T}_k + \mathbf{T}_k^*)\right\| = O(1).$$

Together with (22) this shows that (19) holds for the indices $N = m_n$. To get (19) for all N, observe that $m_k \sim ck^{3/2}$ and thus for $m_k \leq N < m_{k+1}$ we have

$$\left|\sum_{j=1}^{N} \mathbf{Y}_{j} - \sum_{j=1}^{m_{k}} \mathbf{Y}_{j}\right| = O(m_{k+1} - m_{k}) = O(k^{1/2}) = O(m_{k}^{1/3}) = O(N^{1/3}).$$

This completes the proof of Lemma 5.

Lemma 6. For $f \in \mathcal{F}$, any $N \ge 1$, $t \ge 1$ and $||f|| \ge \frac{1}{5}N^{-5/18}$ we have

$$\mathbb{P}\left\{\left|\sum_{k=1}^{N} f(S_k)\right| \ge t \|f\|^{1/4} \sqrt{N}\right\} \ll \exp\left(-Ct \|f\|^{-7/20}\right) + t^{-2} \exp\left(-CN^{1/3}\right).$$
(23)

REMARK. The constants 1/5, 5/18, 1/4, 7/20, 1/3 in (23) are not sharp and the inequality could be easily improved. However, the present form of Lemma 6 will suffice for the chaining argument in Lemma 7.

Proof. Put

$$\psi(n) = \sup_{0 \le x \le 1} |\mathbb{P}(S_n \le x) - x|.$$

By Theorem 1 of [8] we have

$$\psi(n) \le C e^{-\gamma n} \qquad (n \ge 1)$$

for some constant $\gamma > 0$. Divide the interval [1, N] into subintervals I_1, \ldots, I_L , with $L \sim N^{2/3}$, where each interval I_{ν} contains $\sim N^{1/3}$ terms. We set

$$\sum_{k=1}^{N} f(S_k) = \eta_1 + \dots + \eta_L, \text{ where } \eta_{\nu} = \sum_{k \in I_{\nu}} f(S_k).$$

We deal with the sums $\sum \eta_{2j}$ and $\sum \eta_{2j+1}$, separately. Since there is a separation $\sim N^{1/3}$ between the even block sums η_{2j} , we can apply Lemma 1 to get

$$\eta_{2j} = \eta_{2j}^* + \eta_{2j}^{**},$$

1

where

$$\eta_{2j}^* = \sum_{k \in I_{2j}} f(S_k - \Delta_j),$$

$$\eta_{2j}^{**} = \sum_{k \in I_{2j}} (f(S_k) - f(S_k - \Delta_j)).$$

Here the Δ_j are r.v.'s with $|\Delta_j| \leq \psi(N^{1/3}) \leq C \exp(-\gamma N^{1/3})$ and the r.v.'s η_{2j}^* $j = 1, 2, \ldots$ are independent. Conditionally on Δ_j , the distribution of S_k in a term of η_{2j}^{**} is the same as the (unconditional) distribution of an $S_{k_1} + c$ with $k_1 < k$ and a constant c and thus by Lemma 3, the L_2 norm of each summand in η_{2j}^{**} is $\leq C\psi^{1/2}(N^{1/3}) \leq C \exp(-\gamma N^{1/3})$ and thus for $||f|| \geq N^{-1}$ we have

$$\|\eta_{2j}^{**}\| \le CN \exp\left(-\gamma N^{1/3}\right) \le C\|f\|N^2 \exp\left(-\gamma N^{1/3}\right)$$

$$\le C\|f\| \exp\left(-\gamma' N^{1/3}\right).$$
(24)

Thus

$$\left\|\sum \eta_{2j}^{**}\right\| \le C \|f\| \exp\left(-\gamma'' N^{1/3}\right)$$

and therefore by the Markov inequality

$$\mathbb{P}\left(\left|\sum \eta_{2j}^{**}\right| \ge t \|f\|^{1/4} \sqrt{N}\right) \le Ct^{-2} \|f\|^{-1/2} N^{-1} \|f\|^{2} \exp\left(-2\gamma'' N^{1/3}\right) \\
\le Ct^{-2} \exp\left(-2\gamma'' N^{1/3}\right).$$

Let now $|\lambda| \leq dN^{-1/3}$ with a sufficiently small constant d > 0. Then $|\lambda \eta_{2j}^*| \leq 1/2$ for all N and thus using $e^x \leq 1 + x + x^2$ for $|x| \leq 1/2$ we get, using $E\eta_{2j}^* = 0$ for $j \geq 2$,

$$\mathbb{E}\left(\exp\lambda\left(\sum_{j}\eta_{2j}^{*}\right)\right) = \prod_{j}\mathbb{E}\left(e^{\lambda\eta_{2j}^{*}}\right) \leq \prod_{j}\mathbb{E}\left(1+\lambda\eta_{2j}^{*}+\lambda^{2}\eta_{2j}^{*2}\right)$$
$$= \prod_{j}\left(1+\lambda^{2}\mathbb{E}\eta_{2j}^{*2}\right) \leq \exp\left(\lambda^{2}\sum_{j}\mathbb{E}\eta_{2j}^{*2}\right).$$
(25)

Here, and in the rest of the proof of the lemma, the sums and products are extended for $j \ge 2$. By Lemma 4

$$\|\eta_{2j}\| \le C \|f\|^{1/2} N^{1/6},$$

which, together with (24) and the Minkowski inequality, implies

$$\|\eta_{2j}^*\| \le C \|f\|^{1/2} N^{1/6}$$

Thus the last expression in (25) cannot exceed

$$\exp\left(\lambda^2 C \|f\| \sum_j N^{1/3}\right) \le \exp\left(\lambda^2 C \|f\|N\right).$$

We choose now

. .

$$\lambda = \frac{d}{2} N^{-1/2} \|f\|^{-3/5}$$

with the number d introduced before and note that by $||f|| \ge \frac{1}{5}N^{-5/18}$ we have

 $|\lambda| < dN^{-1/3}.$

Thus using the Markov inequality, we get

$$\mathbb{P}\left\{ \left| \sum_{j} \eta_{2j}^{*} \right| \geq t \|f\|^{1/4} \sqrt{N} \right\} \leq 2 \exp\left\{ -\lambda t \|f\|^{1/4} \sqrt{N} + \lambda^{2} C \|f\|N\right\} \\
= 2 \exp\left(-\|f\|^{-7/20} t + C \|f\|^{-1/5}\right) \\
\leq 2 \exp\left(-C \|f\|^{-7/20} t\right).$$

Recall that the sum here is extended for $j \ge 2$. However, the term corresponding to j = 1 is $O(N^{1/3})$ and since $||f||^{1/4}\sqrt{N} \ge N^{0.4}$ for $N \ge N_0$ by the assumptions of the lemma, the last chain of estimates remains valid by including the term j = 1 in the sum in the first probability and changing t to 2t. A similar argument applies for the odd blocks η_{2i+1}^* (note that $\mathbb{E}\eta_1^*$ can be different from 0, but this causes no problem), completing the proof of Lemma 6.

LEMMA 7. For any $N \ge 1$, $0 < \delta < 1$ we have

$$\mathbb{P}\left(\sup_{0\le a\le \delta} \left|\sum_{k=1}^{N} (I_{(0,a)}(S_k) - a)\right| \gg \delta^{1/8}\sqrt{N} + N^{4/9}\right) \ll \delta^4 + N^{-2}.$$

Proof. For any $h \ge 1, 1 \le j \le 2^h$ let $\varphi_h^{(j)}$ denote the indicator function of the interval $[(j-1)2^{-h}, j2^{-h})$ and put

$$F(N, j, h) = \left| \sum_{k=1}^{N} (\varphi_h^{(j)}(S_k) - 2^{-h}) \right|.$$

Clearly, $\|\varphi_h^{(j)}\| = 2^{-h/2}$.

We observe that if $0 \leq a \leq 1$ has the dyadic expansion

$$a = \sum_{j=1}^{\infty} \varepsilon_j 2^{-j}, \qquad \varepsilon_j = 0, 1$$

and $H \ge 1$ is an arbitrary integer, then $g_a = I_{(0,a)}$ satisfies

$$\sum_{h=1}^{H} \varrho_h(x) \le g_a(x) \le \sum_{h=1}^{H} \varrho_h(x) + \sigma_H(x), \tag{26}$$

where ρ_h is the indicator function of

$$\left[\sum_{j=1}^{h-1}\varepsilon_j 2^{-j}, \sum_{j=1}^h\varepsilon_j 2^{-j}\right)$$

and σ_H is the indicator function of

$$\left[\sum_{j=1}^{H} \varepsilon_j 2^{-j}, \sum_{j=1}^{H} \varepsilon_j 2^{-j} + 2^{-H}\right).$$

For $\varepsilon_h = 0$, clearly, $\varrho_h \equiv 0$ and thus (26) remains valid if in the sums we keep only those terms where $\varepsilon_h = 1$. Also, for $\varepsilon_h = 1$, ϱ_h coincides with one of the $\varphi_h^{(j)}$ and σ_H also coincides with some of the $\varphi_H^{(j)}$. It follows that

$$g_a(x) - a \leq \sum_{1 \leq h \leq H} \left(\varrho_h(x) - \varepsilon_h 2^{-h} \right)$$
$$+ \left(\sigma_H(x) - 2^{-H} \right) + 2^{-H}$$
$$g_a(x) - a \geq \sum \left(\varrho_h(x) - \varepsilon_h 2^{-h} \right) - 2^{-H},$$

and

$$1 \le h \le H$$

means that the summation is extended only for those h

where \sum^* means that the summation is extended only for those h such that $\varepsilon_h = 1$. Setting $x = S_k$ and summing for $1 \le k \le N$ we get

$$\sum_{k \le N} \left(g_a(S_k) - a \right) \le \sum_{k \le N} \sum_{1 \le h \le H} \left(\varrho_h(S_k) - \varepsilon_h 2^{-h} \right)$$
$$+ \sum_{k \le N} \left(\sigma_H(S_k) - 2^{-H} \right) + N 2^{-H}$$
$$\sum_{k \le N} \left(\sigma_H(S_k) - 2^{-h} \right) = N 2^{-h}$$

and

$$\sum_{k \le N} (g_a(S_k) - a) \ge \sum_{k \le N} \sum_{1 \le h \le H}^* (\varrho_h(S_k) - \varepsilon_h 2^{-h}) - N 2^{-H}.$$

Hence it follows that for any $N \ge 1$, $H \ge 1$ there exist suitable integers $1 \le j_h \le 2^h$, $1 \le h \le H$ such that

$$\left| \sum_{k \le N} (g_a(S_k) - a) \right| \le 2 \sum_{h \le H} \left| \sum_{k \le N} \varphi_h^{(j_h)}(S_k) - 2^{-h} \right| + N 2^{-H}$$
$$= 2 \sum_{h \le H} F(N, j_h, h) + N 2^{-H}.$$
(27)

Introduce the events

$$G(N, j, h) = \left\{ F(N, j, h) \ge 2^{-h/8} \sqrt{N} \right\},$$

$$G_N = \bigcup_{A \le h \le B \log_2 N} \bigcup_{j \le 2^h} G(N, j, h) \quad \text{with} \quad A = \log_2 \frac{1}{a}, \quad B = \frac{5}{9}.$$

For $h \leq B \log_2 N$ we have

$$\|\varphi_j^{(h)} - 2^{-h}\| \ge 2^{-h/2} - 2^{-h} \ge 2^{-h/2}(1 - 1/\sqrt{2}) \ge \frac{1}{5}N^{-5/18}$$

and thus applying (23) with t = 1, we get

 \sim

$$\mathbb{P}(G(N,h,j)) \ll \exp(-C2^{7h/40}) + N^{-3},$$

and consequently,

$$\mathbb{P}(G_N) \ll \sum_{h=A}^{\infty} 2^h \exp\left(-C2^{7h/40}\right) + N^{-3} \sum_{h \le B \log_2 N} 2^h.$$
(28)

Clearly, the second term on the right-hand side of (28) is $\ll N^{-2}$. On the other hand, the terms of the first sum in (28) decrease superexponentially and thus the sum can be bounded by a constant times its first term, i.e., the sum is

$$\ll 2^A \exp(-C2^{7A/40}) \ll 2^{-4A} \ll a^4.$$

 $\mathbb{P}(G_N) \ll a^4 + N^{-2}.$

Note that when breaking the interval (0, a) into dyadic intervals of length 2^{-h} we automatically have $h \ge \log \frac{1}{a} = A$ and thus choosing

$$H = [B \log_2 N]$$

it follows that with the exception of a set with probability $\ll a^4 + N^{-2}$, for any $0 < a \le \delta$ the expression in the second line of (27) is

$$\ll \sum_{A \le h \le H} 2^{-h/8} \sqrt{N} + N 2^{-H} \ll 2^{-A/8} \sqrt{N} + N^{4/9} \ll a^{1/8} \sqrt{N} + N^{4/9} \ll \delta^{1/8} \sqrt{N} + N^{4/9}.$$

This proves Lemma 7.

Lemma 5 implies the convergence of the finite dimensional distributions of the sequence $\sqrt{N}(F_N(t)-t)$ in (5) to those of K and to prove Theorem 2 it remains to prove the tightness of the sequence in D[0, 1]. To this end, fix $\varepsilon > 0$ and choose h so that $2^{-h} \leq \varepsilon < 2^{-(h-1)}$. Note that for $j = 0, 1, \ldots, 2^h - 1$ we have

$$\mathbb{P}\left(\sup_{0\leq a\leq 2^{-h}}\left|\sum_{k=1}^{N} \left(f_{j2^{-h}+a}(S_k) - f_{j2^{-h}}(S_k)\right)\right| \gg 2^{-h/8}\sqrt{N} + N^{4/9}\right) \ll 2^{-4h} + N^{-2}.$$
 (29)

For j = 0 relation (29) is identical with Lemma 7 and for j = 1, 2, ... the proof is the same. It follows that

$$\mathbb{P}\left(\max_{0\leq j\leq 2^{h}-1}\sup_{0\leq a\leq 2^{-h}}\left|\sum_{k=1}^{N} \left(f_{j2^{-h}+a}(S_{k}) - f_{j2^{-h}}(S_{k})\right)\right| \gg 2^{-h/8}\sqrt{N} + N^{4/9}\right) \ll 2^{-3h} + 2^{h}N^{-2}.$$
 (30)

Then (30) implies that with the exception of a set with probability

 $\ll 2^{-3h} + 2^h N^{-2} \ll \varepsilon^3 + N^{-2} \varepsilon^{-1}$

the fluctuation of the process $\sqrt{N}(F_N(t) - t)$ over any subinterval of (0, 1) with length $\leq \varepsilon$ is

$$\ll \varepsilon^{1/8} + N^{-1/18}.$$

By Theorem 15.5 of Billingsley [4, p. 127], the sequence $\sqrt{N}(F_N(t) - t)$ is tight in D[0, 1]. This completes the proof of Theorem 2; Theorem 1 follows immediately from Theorem 2.

ACKNOWLEDGEMENTS. The authors are grateful to the referee for several useful comments leading to a substantial improvement of the paper.

REFERENCES

- [1] BERKES, I.—BORDA, B.: On the discrepancy of random subsequences of $\{n\alpha\}$, Acta Arithmetica (to appear).
- [2] BERKES, I.—RASETA, M.: On the discrepancy and empirical distribution function of {n_kα}, Unif. Distr. Theory 10 (2015), no. 1, 1–17.
- [3] BERKES, I.—WEBER, M.: On the convergence of $\sum c_k f(n_k x)$, Mem. Amer. Math. Soc. **201** (2009), no. 943, viii+72 pp.
- [4] BILLINGSLEY, P.: Convergence of probability measures. Wiley, 1968.
- [5] DONSKER, M.: Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statist. 23 (1952), 277–281.

- [6] LÉVY, P.: L'addition des variables aléatoires définies sur une circonference, Bull. Soc. Math. France 67 (1939), 1–40.
- [7] PHILIPP, W.: Limit theorems for lacunary series and uniform distribution mod 1, Acta Arith. 26 (1975), 241–251.
- [8] SCHATTE, P.: On the asymptotic uniform distribution of sums reduced mod 1, Math. Nachr. 115 (1984), 275–281.
- SCHATTE, P.: On a uniform law of the iterated logarithm for sums mod 1 and Benford's law, Lithuanian Math. J. 31 (1991), 133-142.

Received August 24, 2018 Accepted March 12, 2019

Alina Bazarova

Institute for Biological Physics University of Cologne Zülpicher Straße 77 D-50937 Köln GERMANY E-mail: a.bazarova@uni-koeln.de

István Berkes

Rényi Institute of Mathematics Reáltanoda u. 13–15 H-1053 Budapest HUNGARY E-mail: berkes.istvan@renyi.mta.hu

Marko Raseta

Research Institute for Primary Care and Health Sciences and Research Institute for Applied Clinical Sciences University of Keele Keele ST5 5BG, Staffordshire UNITED KINGDOM E-mail: m.raseta@keele.ac.uk