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ABSTRACT. Let X1, X2, . . . be i.i.d. absolutely continuous random variables,

let Sk =
∑k

j=1 Xj (mod 1) and letD∗
N denote the star discrepancy of the sequence

(Sk)1≤k≤N . We determine the limit distribution of
√
ND∗

N and the weak limit of

the sequence
√
N(FN (t)− t) in the Skorohod space D[0, 1], where FN (t) denotes

the empirical distribution function of the sequence (Sk)1≤k≤N .

Communicated by Friedrich Pillichshammer

Dedicated to Professor Radhakrishnan Nair on the occasion of his 60th birthday

1. Introduction

Let X1, X2, . . . be i.i.d. absolutely continuous random variables and let Sk =∑k
j=1Xj (mod 1). Then Sk, k = 0, 1, . . . is a random walk on the circle and

by a classical result of Lévy [6], the distribution of Sk converges weakly to the
uniform distribution on (0, 1). Schatte [8] proved that the speed of convergence
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is exponential, and letting

D∗
N := sup

0≤a<1

∣∣∣∣∣ 1N
N∑

k=1

I(0,a)(Sk)− a)

∣∣∣∣∣ (N = 1, 2, . . .)

denote the star discrepancy of the sequence (Sk)1≤k≤N , he also proved in [9] the
law of the iterated logarithm

lim sup
N→∞

√
N

log logN
D∗

N = γ a.s., (1)

where
γ = sup

x∈[0,1)

σ2(x)

with

σ2(x) = x− x2 + 2

∞∑
j=1

(
EI(0,x)(U )I(0,x)(U +Xj)− x2

)
. (2)

Here U is a uniform (0, 1) random variable independent of the sequence (Xn)n≥1

and for 0 ≤ a < b ≤ 1, I(a,b) denotes the indicator function of (a, b), extended
with period 1. Letting

FN (t) = FN (t, ω) =
1

N

N∑
k=1

I(0,t)(Sk) (0 ≤ t ≤ 1) (3)

denote the empirical distribution function of the first N terms of the sequence
(Sn)n≥1, Berkes and Raseta [2] proved a Strassen type functional LIL for FN (t),
yielding precise asymptotics for several functionals of the empirical process.
The purpose of the present paper is to prove the following result, determining
the limit distribution of

√
ND∗

N .

������� 1� Let X1, X2, . . . be i.i.d. random variables and assume X1 is bounded
with bounded density. Let

Γ(s, t) = s(1− t) +

∞∑
k=1

Efs(U )ft(U + Sk) +

∞∑
k=1

Eft(U )fs(U + Sk), (4)

where U is a U (0, 1) variable independent of (Xn)n∈N and fs = I(0,s) − s. Then
the series in (4) are absolutely convergent and

√
ND∗

N
d−→ sup

0≤t≤1
|K(t)|, (5)

where K(s) a mean zero Gaussian process with covariance function Γ(s, t).

Actually, Theorem 1 will be deduced from a more general functional result
describing the weak limit behaviour of the empirical distribution function FN (t).
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������� 2� Under the conditions of Theorem 1 we have

√
N
(
FN (t)− t

) D[0,1]−→ K(t) as N → ∞. (6)

Relation (6) expresses weak convergence in the Skorohod space D[0, 1], see
Billingsley [4] for basic definitions and facts for weak convergence of probability
measures on metric spaces.

By a classical result of Donsker [5], if X1, X2, . . . are i.i.d. random variables
with distribution function F and FN denotes the empirical distribution function
of the sample (X1, . . . , XN ), then

√
N
(
FN (t)− F (t)

) D[0,1]−→ B
(
F (t)
)

where B is Brownian bridge. Note the substantial difference caused by consid-
ering mod 1 sums in the present case.

If X1 has a lattice distribution, the situation changes essentially. For example,
in [1] it is shown that if α is irrational and X1 takes the values α and 2α with
probability 1/2 − 1/2, then up to logarithmic factors, the order of magnitude
of D∗

N is

O
(
N−1/2

)
or O

(
N−1/γ

)
according as γ < 2 or γ > 2, where γ is the Diophantine rank of α, i.e., the
supremum of numbers c such that |α−p/q|<q−c−1 holds for infinitely many
fractions p/q. The asymptotic distribution of D∗

N in this case remains open.

2. Proofs

The proof of our theorems uses, similarly to that of the functional LIL in [2],
a traditional blocking argument combined with a coupling lemma of Schatte, see
Lemma 1 below. The substantial new difficulty is to prove the tightness of the
sequence

√
N(FN (t)− t), since the standard maximal inequalities (e.g., Billings-

ley’s inequalities in [4], Section 2.12) are not applicable here. We circumvent
this difficulty by proving a Chernoff type exponential bound (Lemma 6) for the
considered partial sums which, combined with the chaining method of Philipp [7],
yields the desired fluctuation inequality (Lemma 7).

75
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����	 1� Let
� ≥ 1 and I1, I2, . . .

be disjoint blocks of integers with ≥ � integers between consecutive blocks. Then
there exists a sequence δ1, δ2, . . . of random variables such that

|δn| ≤ Ce−λ�

with some positive constants C, λ and the random vectors

{Si, i ∈ I1}, {Si − δ1, i ∈ I2}, . . . , {Si − δn−1, i ∈ In}, . . .
are independent and have, except for the first one, uniformly distributed compo-
nents.
P r o o f. For the proof, see [2]. The uniformity statement is implicit in the proof;
see also Lemma 4.3 of [3]. �

In what follows, C, λ, γ, γ′. . . will denote positive constants, possibly different
at different places, depending (at most) on the distribution ofX1. The relation�
will mean the same as the big O notation, with a constant depending on the
distribution of X1.

Let F denote the class of functions f of the form

f = I(a,b) − (b− a) (0 ≤ a < b ≤ 1),

extended with period 1. For f ∈ F we put

A(f) := ‖f‖2+ 2

∞∑
k=1

Ef(U )f(U + Sk), (7)

where U is a uniform (0, 1) random variable, independent of (Xj)j≥1 and ‖f‖
denotes the L2(0, 1) norm of f. Put further

m̃k =

k∑
j=1

⌊
j1/2
⌋
, m̂k =

k∑
j=1

⌊
j1/4
⌋

and let mk = m̃k + m̂k. Using Lemma 1 we can construct sequences (Δk)k∈N,
(Πk)k∈N of random variables such that Δ0 = 0, Π0 = 0,

|Δk| ≤ Ce−λk1/4

, |Πk| ≤ Ce−λ
√
k (8)

and

T
(f)
k :=

mk−1+
√k�∑
j=mk−1+1

f(Sj −Δk−1), k = 1, 2, . . . ,

T
∗(f)
k =

mk∑
j=mk−1+
√k�+1

f(Sj −Πk−1), k = 1, 2, . . .

are sequences of independent random variables.
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Since
∫ 1

0
f(x) dx = 0 for f ∈ F, the uniformity statement in Lemma 1 implies

that
ET

(f)
k = ET

∗(f)
k = 0 for k ≥ 2.

The following asymptotic estimates for the variances of T
(f)
k andT

∗(f)
k are

from [2].

����	 2� For f ∈ F we have

n∑
k=1

Var
(
T

(f)
k

)
∼ A(f)m̃n ,

n∑
k=1

Var
(
T

∗(f)
k

)
∼ A(f)m̂n ,

where A(f) is defined by (7).

Since

Cov
(
T

(f)
k , T

(g)
k

)
=

1

4

(
Var

(
T

(f+g)
k

)
− Var

(
T

(f−g)
k

))
,

Lemma 2 implies

n∑
k=1

Cov
(
T

(f)
k , T

(g)
k

)
∼1

4

(
A(f+g) −A(f−g)

)
m̃n (9)

and
n∑

k=1

Cov
(
T

∗(f)
k , T

∗(g)
k

)
∼1

4

(
A(f+g) −A(f−g)

)
m̂n. (10)

From (7) it follows that

A(f+g)−A(f−g)= 4〈f, g〉+ 4

∞∑
k=1

Ef(U )g(U+Sk) + 4

∞∑
k=1

Eg(U )f(U+Sk). (11)

����	 3� Let f ∈ F , h > 0 and let ξ be a random variable with |ξ| < h. Then
for any n ≥ 1 we have

E|f(Sn + ξ)− f(Sn)|2 ≤ Ch.

P r o o f. Since X1 is bounded with bounded density, Theorem 1 of [8] implies
that the sums Sn =

∑n
k=1Xk (mod 1) have a uniformly bounded density and

thus
P(Sn ∈ J) ≤ C|J | for any interval J. (12)

Now if f = I(a,b)− (b−a), then |f(Sn+ ξ)−f(Sn)| = |I(a,b)(Sn+ ξ)− I(a,b)(Sn)|
is different from 0 only if one of Sn + ξ and Sn lies in (a, b) and the other does
not, which, in view of |ξ| < h, implies that Sn lies closer to the boundary of (a, b)
than h, i.e., Sn ∈ (a, a + h) or Sn ∈ (b − h, b). Since |f(Sn + ξ) − f(Sn)| ≤ 2,
Lemma 3 follows from (12). �
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ALINA BAZAROVA — ISTVÁN BERKES — MARKO RASETA

����	 4� For f ∈ F and any M ≥ 0, N ≥ 1 we have

E

(
M+N∑
k=M+1

f(Sk)

)2
≤ C‖f‖N. (13)

P r o o f. We first show

|Ef(Sk)f(S�)| ≤ Ce−λ(�−k)‖f‖ (k < �). (14)

Indeed, by the proof of Lemma 1 in [2], there exists a r.v. Δ with |Δ| ≤ Ce−λ(�−k)

such that S� −Δ is a uniform r.v. independent of Sk. Hence

Ef(S� −Δ) =

∫ 1

0

f(t) dt = 0

and thus

Ef(Sk)f(S� −Δ) = Ef(Sk)Ef(S� −Δ) = 0. (15)

On the other hand,

|Ef(Sk)f(S�)− Ef(Sk)f(S� −Δ)|
≤ E
(|f(Sk)| |f(S�)− f(S� −Δ)|)

≤ (Ef2(Sk)
)1/2(

E|f(S�)− f(S� −Δ)|2)1/2. (16)

Using (12) we get

Ef2(Sk) ≤ C

∫ 1

0

f2(t) dt = C‖f‖2. (17)

Also, |Δ| ≤ Ce−λ(�−k) and Lemma 3 imply

E|f(S�)− f(S� −Δ)|2 ≤ Ce−λ(�−k) (18)

which, together with (16)–(18), gives

|Ef(Sk)f(S�)− Ef(Sk)f(S� −Δ)| ≤ Ce−λ(�−k).

Thus using (15) we get (14). Now by (14)∣∣∣∣∣ ∑
M+1≤k<�≤M+N

Ef(Sk)f(S�)

∣∣∣∣∣ ≤ CN‖f‖
∑
�≥1

e−λ� ≤ CN‖f‖

which, together with (17), completes the proof of Lemma 4. �
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Let 0 < t1 < · · · < tr ≤ 1 and put

Yk =
(
f(0,t1)(Sk), f(0,t2)(Sk), . . . , f(0,tr)(Sk)

)
,

where
f(a,b) = I(a,b) − (b− a),

with the indicator I(a,b) extended with period 1, as before.

����	 5� We have

N−1/2
N∑

k=1

Yk
d−→ N(0,Σ), (19)

where

Σ =
(
Γ(ti, tj)

)
1≤i,j≤r

.

P r o o f. Let

Tk =
(
T

(f(0,t1))

k , . . . , T
(f(0,tr))

k

)
,

T∗
k =

(
T

∗(f(0,t1))

k , . . . , T
∗(f(0,tr))

k

)
,

and letΣk denote the covariance matrix of the vectorTk. From (9), (10) and (11)
it follows that

m−1
n (Σ1 + · · ·+Σn) −→ Σ.

Clearly,
|Tk| ≤ Crk

1/2 = o
(
m

1/2
k

)
,

where Cr is a constant depending on r, showing that the sequence (Tk)k≥1

of independent, mean 0 random vectors satisfies the Lindeberg condition and
thus

m−1/2
n

n∑
k=1

Tk
d−→ N(0,Σ). (20)

A similar statement holds for the sequence (T∗
k)k≥1, implying that∣∣∣∣∣

n∑
k=1

T∗
k

∣∣∣∣∣ = OP (m̂n) = oP

(
m1/2

n

)
, (21)

and consequently,

m−1/2
n

n∑
k=1

(Tk +T∗
k)

d−→ N(0,Σ). (22)
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ALINA BAZAROVA — ISTVÁN BERKES — MARKO RASETA

Now, using (8) and Lemma 3 we get∥∥∥∥∥T (f)
k −

mk−1+
√k�∑
j=mk−1+1

f(Sj)

∥∥∥∥∥� √
ke−λk1/4

and ∥∥∥∥∥T ∗(f)
k −

mk∑
j=mk−1+
√k�+1

f(Sj)

∥∥∥∥∥� k1/4e−λk1/2

,

and thus ∥∥∥∥∥
mn∑
k=1

Yk −
n∑

k=1

(Tk +T∗
k)

∥∥∥∥∥ = O(1).

Together with (22) this shows that (19) holds for the indices N = mn.
To get (19) for all N , observe that mk ∼ ck3/2 and thus for mk ≤ N < mk+1

we have∣∣∣∣∣
N∑
j=1

Yj −
mk∑
j=1

Yj

∣∣∣∣∣ = O(mk+1 −mk) = O
(
k1/2

)
= O

(
m

1/3
k

)
= O

(
N1/3

)
.

This completes the proof of Lemma 5. �

����	 6� For f ∈ F , any N ≥ 1, t ≥ 1 and ‖f‖ ≥ 1
5N

−5/18 we have

P

{∣∣∣∣ N∑
k=1

f(Sk)

∣∣∣∣ ≥ t‖f‖1/4
√
N

}
�

exp
(
−Ct‖f‖−7/20

)
+ t−2 exp

(
−CN1/3

)
. (23)


��	��� The constants 1/5, 5/18, 1/4, 7/20, 1/3 in (23) are not sharp and the
inequality could be easily improved. However, the present form of Lemma 6 will
suffice for the chaining argument in Lemma 7.

P r o o f. Put
ψ(n) = sup

0≤x≤1
|P(Sn ≤ x)− x|.

By Theorem 1 of [8] we have

ψ(n) ≤ Ce−γn (n ≥ 1)

for some constant γ > 0. Divide the interval [1, N ] into subintervals I1, . . . , IL,
with L ∼ N2/3, where each interval Iν contains ∼ N1/3 terms. We set

N∑
k=1

f(Sk) = η1 + · · ·+ ηL, where ην =
∑
k∈Iν

f(Sk).
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We deal with the sums
∑
η2j and

∑
η2j+1, separately. Since there is a separation

∼ N1/3 between the even block sums η2j , we can apply Lemma 1 to get

η2j = η∗2j + η∗∗2j ,
where

η∗2j =
∑
k∈I2j

f(Sk −Δj),

η∗∗2j =
∑
k∈I2j

(
f(Sk)− f(Sk −Δj)

)
.

Here the Δj are r.v.’s with |Δj | ≤ ψ(N1/3) ≤ C exp(−γN1/3) and the r.v.’s η∗2j
j = 1, 2, . . . are independent. Conditionally on Δj, the distribution of Sk in a
term of η∗∗2j is the same as the (unconditional) distribution of an Sk1

+ c with
k1 < k and a constant c and thus by Lemma 3, the L2 norm of each summand
in η∗∗2j is ≤ Cψ1/2(N1/3) ≤ C exp(−γN1/3) and thus for ‖f‖ ≥ N−1 we have

‖η∗∗2j ‖ ≤ CN exp
(−γN1/3

) ≤ C‖f‖N2 exp
(−γN1/3

)
≤ C‖f‖ exp(−γ′N1/3

)
. (24)

Thus ∥∥∥∑ η∗∗2j
∥∥∥ ≤ C‖f‖ exp(−γ′′N1/3

)
and therefore by the Markov inequality

P

(∣∣∣∣∑ η∗∗2j

∣∣∣∣ ≥ t‖f‖1/4
√
N

)
≤ Ct−2‖f‖−1/2N−1‖f‖2 exp(−2γ′′N1/3

)
≤ Ct−2 exp

(−2γ′′N1/3
)
.

Let now |λ| ≤ dN−1/3 with a sufficiently small constant d > 0. Then |λη∗2j | ≤ 1/2

for all N and thus using ex ≤ 1 + x + x2 for |x| ≤ 1/2 we get, using Eη∗2j = 0
for j ≥ 2,

E

⎛⎝expλ

(∑
j

η∗2j

)⎞⎠ =
∏
j

E
(
eλη

∗
2j
) ≤∏

j

E
(
1+λη∗2j+λ

2η∗22j
)

=
∏
j

(
1 + λ2Eη∗22j

) ≤ exp

(
λ2
∑
j

Eη∗22j

)
. (25)

Here, and in the rest of the proof of the lemma, the sums and products are
extended for j ≥ 2. By Lemma 4

‖η2j‖ ≤ C‖f‖1/2N1/6,

which, together with (24) and the Minkowski inequality, implies

‖η∗2j‖ ≤ C‖f‖1/2N1/6.
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Thus the last expression in (25) cannot exceed

exp

(
λ2C‖f‖

∑
j

N1/3

)
≤ exp

(
λ2C‖f‖N) .

We choose now

λ =
d

2
N−1/2‖f‖−3/5

with the number d introduced before and note that by ‖f‖ ≥ 1
5
N−5/18 we have

|λ| ≤ dN−1/3.

Thus using the Markov inequality, we get

P

⎧⎨⎩
∣∣∣∣∣∣
∑
j

η∗2j

∣∣∣∣∣∣ ≥ t‖f‖1/4
√
N

⎫⎬⎭ ≤ 2 exp
{
−λt‖f‖1/4

√
N + λ2C‖f‖N

}
= 2 exp

(
−‖f‖−7/20t+ C‖f‖−1/5

)
≤ 2 exp

(
−C‖f‖−7/20t

)
.

Recall that the sum here is extended for j ≥ 2. However, the term corre-
sponding to j = 1 is O(N1/3) and since ‖f‖1/4√N ≥ N0.4 for N ≥ N0 by the
assumptions of the lemma, the last chain of estimates remains valid by including
the term j = 1 in the sum in the first probability and changing t to 2t. A similar
argument applies for the odd blocks η∗2j+1 (note that Eη

∗
1 can be different from 0,

but this causes no problem), completing the proof of Lemma 6. �

����	 7� For any N ≥ 1, 0 < δ < 1 we have

P

(
sup

0≤a≤δ

∣∣∣∣∣
N∑

k=1

(I(0,a)(Sk)− a)

∣∣∣∣∣ δ1/8
√
N +N4/9

)
� δ4 +N−2.

P r o o f. For any h ≥ 1, 1 ≤ j ≤ 2h let ϕ
(j)
h denote the indicator function of the

interval [(j − 1)2−h, j2−h) and put

F (N, j, h) =

∣∣∣∣∣
N∑

k=1

(ϕ
(j)
h (Sk)− 2−h)

∣∣∣∣∣ .
Clearly, ‖ϕ(j)

h ‖ = 2−h/2.
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We observe that if 0 ≤ a ≤ 1 has the dyadic expansion

a =

∞∑
j=1

εj2
−j, εj = 0, 1

and H ≥ 1 is an arbitrary integer, then ga = I(0,a) satisfies

H∑
h=1

�h(x) ≤ ga(x) ≤
H∑

h=1

�h(x) + σH(x), (26)

where �h is the indicator function of⎡⎣h−1∑
j=1

εj2
−j,

h∑
j=1

εj2
−j

⎞⎠
and σH is the indicator function of⎡⎣ H∑

j=1

εj2
−j,

H∑
j=1

εj2
−j + 2−H

⎞⎠ .

For εh = 0, clearly, �h ≡ 0 and thus (26) remains valid if in the sums we keep
only those terms where εh = 1. Also, for εh = 1, �h coincides with one of

the ϕ
(j)
h and σH also coincides with some of the ϕ

(j)
H . It follows that

ga(x)− a ≤
∑∗

1≤h≤H

(
�h(x)− εh2

−h
)

+
(
σH(x)− 2−H

)
+ 2−H

and

ga(x)− a ≥
∑∗

1≤h≤H

(
�h(x)− εh2

−h
)− 2−H ,

where
∑∗

means that the summation is extended only for those h such that
εh = 1. Setting x = Sk and summing for 1 ≤ k ≤ N we get∑

k≤N

(
ga(Sk)− a

) ≤
∑
k≤N

∑∗

1≤h≤H

(
�h(Sk)− εh2

−h
)

+
∑
k≤N

(
σH(Sk)− 2−H

)
+N2−H

and ∑
k≤N

(ga(Sk)− a) ≥
∑
k≤N

∑∗

1≤h≤H

(
�h(Sk)− εh2

−h
)−N2−H .
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Hence it follows that for any N≥1, H≥1 there exist suitable integers 1≤jh≤2h,
1≤h≤H such that∣∣∣∣∣∣

∑
k≤N

(ga(Sk)− a)

∣∣∣∣∣∣ ≤ 2
∑
h≤H

∣∣∣∣∣∣
∑
k≤N

ϕ
(jh)
h (Sk)− 2−h

∣∣∣∣∣∣+N2−H

= 2
∑
h≤H

F (N, jh, h) +N2−H . (27)

Introduce the events

G(N, j, h) =
{
F (N, j, h) ≥ 2−h/8

√
N
}
,

GN =
⋃

A≤h≤B log2 N

⋃
j≤2h

G(N, j, h) with A = log2
1

a
, B =

5

9
.

For h ≤ B log2N we have

‖ϕ(h)
j − 2−h‖ ≥ 2−h/2 − 2−h ≥ 2−h/2(1− 1/

√
2) ≥ 1

5
N−5/18

and thus applying (23) with t = 1, we get

P
(
G(N, h, j)

)� exp
(−C27h/40)+N−3,

and consequently,

P(GN) �
∞∑

h=A

2h exp
(−C27h/40)+N−3

∑
h≤B log2 N

2h. (28)

Clearly, the second term on the right-hand side of (28) is � N−2. On the other
hand, the terms of the first sum in (28) decrease superexponentially and thus
the sum can be bounded by a constant times its first term, i.e., the sum is

� 2A exp(−C27A/40) � 2−4A � a4.
Hence

P(GN ) � a4 +N−2.

Note that when breaking the interval (0, a) into dyadic intervals of length 2−h

we automatically have h ≥ log 1
a = A and thus choosing

H = [B log2N ],

it follows that with the exception of a set with probability � a4 +N−2, for any
0 < a ≤ δ the expression in the second line of (27) is

�
∑

A≤h≤H

2−h/8
√
N +N2−H � 2−A/8

√
N +N4/9 �
a1/8

√
N +N4/9 � δ1/8

√
N +N4/9.

This proves Lemma 7. �
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Lemma 5 implies the convergence of the finite dimensional distributions of the
sequence

√
N(FN (t)− t) in (5) to those of K and to prove Theorem 2 it remains

to prove the tightness of the sequence in D[0, 1]. To this end, fix ε > 0 and
choose h so that 2−h ≤ ε < 2−(h−1). Note that for j = 0, 1, . . . , 2h − 1 we have

P

(
sup

0≤a≤2−h

∣∣∣∣∣
N∑

k=1

(
fj2−h+a(Sk)− fj2−h(Sk)

)∣∣∣∣∣ 2−h/8
√
N +N4/9

)
�

2−4h +N−2. (29)

For j = 0 relation (29) is identical with Lemma 7 and for j = 1, 2, . . . the
proof is the same. It follows that

P

(
max

0≤j≤2h−1
sup

0≤a≤2−h

∣∣∣∣∣
N∑

k=1

(
fj2−h+a(Sk)−fj2−h(Sk)

)∣∣∣∣∣ 2−h/8
√
N +N4/9

)
�

2−3h + 2hN−2. (30)

Then (30) implies that with the exception of a set with probability

� 2−3h + 2hN−2 � ε3+ N−2ε−1

the fluctuation of the process
√
N(FN (t)− t) over any subinterval of (0, 1) with

length ≤ ε is

� ε1/8 +N−1/18.

By Theorem 15.5 of Billingsley [4, p. 127], the sequence
√
N(FN (t)− t) is tight

in D[0, 1]. This completes the proof of Theorem 2; Theorem 1 follows immedi-
ately from Theorem 2.

	�������������� The authors are grateful to the referee for several useful
comments leading to a substantial improvement of the paper.
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GERMANY

E-mail : a.bazarova@uni-koeln.de

István Berkes
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