
uniform
distribution

theory

DOI: 10.2478/udt-2019–0013

Unif. Distrib. Theory 14 (2019), no.2, 43–68

ON FREIMAN’S 3k − 4 THEOREM
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ABSTRACT. Let X and Y be nonempty finite subsets of Z and X+Y its sumset.

The structures of X and Y when r(X,Y ) := |X+Y |−|X|−|Y | is small have been
widely studied; in particular the Generalized Freiman’s 3k−4 Theorem describes

X and Y when r(X,Y ) ≤ min{|X|, |Y |} − 4. However, not too much is known

about X and Y when r(X,Y ) > min{|X|, |Y |} − 4. In this paper we study the
structure of X and Y for arbitrary r(X,Y ).

Communicated by Friedrich Pillichshammer

1. Introduction

In this paper Z and N are the set of integers and natural numbers, respectively;
we consider 0 6∈ N. For any x, y ∈ Z, we write [x, y] := {z ∈ Z : x ≤ z ≤ y}.
For any nonempty subsets X and Y of Z , write

X + Y := {x+ y : x ∈ X, y ∈ Y },
−X := {−x : x ∈ X}.

When X and Y are finite, we write

r(X,Y ) := |X + Y | − |X| − |Y |,
l(X) := maxX −minX.

We denote by GCD(X) the greatest common divisor of the elements of X and
GCD∗(X) :=GCD(X−X); note that GCD∗(X)=GCD(X−{x}) for any x∈X.
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The relation between r(X,Y ) and the structures of X and Y has been widely
studied, see [1], [2], [3], [4], [5], [6], [10], [11], [12], [13]. We start recalling a result
of I. Ruzsa which bounds r(X,Y ).

Theorem 1.1. Let X and Y be nonempty finite subsets of Z such that

GCD∗(X) = 1 and l(X) ≥ 3.

If |Y | > (l(X)−1)(l(X)−2)
2 , then

r(X,Y ) ≥ l(X)− |X|.

P r o o f. See [11, Thm. 3.6.1]. �

Let X and Y be nonempty subsets. Write

δ(X,Y ) :=

{
1 if {x}+X ⊆ Y for some x ∈ Z;

0, otherwise.

Freiman’s 3k−4 Theorem is one of the most important inverse theorems in addi-
tive number theory. D. Grynkiewicz generalized this theorem. We state a slightly
weaker version of his generalization.

Theorem 1.2. Let X and Y be nonempty finite subsets of Z such that

GCD∗(X + Y ) = 1.

If r(X,Y ) ≤ min{|X| − δ(Y,X), |Y | − δ(X,Y )} − 3, then

l(X) ≤ |X|+ r(X,Y ), l(Y ) ≤ |Y |+ r(X,Y )

and there is z ∈ Z such that [z, z + |X|+ |Y | − 2] ⊆ X + Y .

P r o o f. See [5, Thm. 7.1]. �

The assumption r(X,Y ) ≤ min{|X| − δ(Y,X), |Y | − δ(X,Y )} − 3 cannot
be weakened in Theorem 1.2. For instance, if x, y are positive integers with
y > 3x+ 1 and X = Y = [0, x] ∪ [y, y + x], then

r(X,Y ) = 2x− 1 = min{|X| − δ(Y,X), |Y | − δ(X,Y )} − 2,

but
l(X) = l(Y ) = y + x.

Thus, since y > 3x+ 1,
l(X) > |X|+ r(X,Y );

moreover, if x is fixed and y grows, then l(X) is much larger than |X|+r(X,Y ).
The purpose of this paper is to obtain similar results to the ones of Theorem 1.2
when we do not have necessarily that

r(X,Y ) ≤ min{|X| − δ(Y,X), |Y | − δ(X,Y )} − 3.
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For nonempty subsets X and Y of Z, we say that Y is X-disconnected
if there are Y1 and Y2 nonempty subsets of Y such that Y = Y1 ∪ Y2 and
(X+Y1)∩(X+Y2) = ∅. If Y is not X-disconnected, we say that it is X-connected.
The maximal X−connected subsets of Y are called the X-components of Y and
they induce a partition of Y , see [5, p. 16]. Thus, to understand the struc-
ture of X and Y, it suffices to study the structure of the X-components of Y.
Hence it suffices to study X and Y when GCD∗(X) = 1 and Y is X-connected.

We state the first theorem of this paper.

Theorem 1.3. Let X and Y be nonempty finite subsets of Z such that

GCD∗(X) = 1, |X| ≥ 3 and Y is X-connected, and

let z ∈ [min(X + Y ) − l(X) + 1, max(X + Y )]. Set I := [min(X + Y ) + 1,
max(X + Y )− l(X)] and u := |(X + Y ) ∩ [z, z + l(X)− 1]|. Then

l(Y ) ≤

 |Y |+
(
l(X)− 1

) ( 2r(X,Y )−2u+l(X)+3
|X|−2 + 4

)
if z ∈ I;

|Y |+
(
l(X)− 1

) ( 4r(X,Y )−4u+l(X)+7
2(|X|−2) + 3

)
if z 6∈ I.

An immediate consequence of Theorem 1.3 is that, with the notation and
assumption as above, if [z, z + l(X)− 1] ⊆ X + Y , then

l(Y ) ≤ |Y |+
(
l(X)− 1

)(2r(X,Y )− l(X) + 3

|X| − 2
+ 4

)
.

More generally, if |(X + Y ) ∩ [z, z + l(X)− 1]| is big, the upper bound of Theo-
rem 1.3 is better. The next theorem shows that if |Y | is big enough, then there
is z ∈ Z such that |(X + Y ) ∩ [z, z + l(X)− 1]| is big.

Theorem 1.4. Let X and Y be nonempty finite subsets of Z such that

GCD∗(X) = 1, |X| ≥ 3 and Y is X-connected.

For all u ∈ [0, l(X)− |X|+ 1] such that

|Y | >
(
l(X)− u− 1

)(4r(X,Y ) + l(X)− u+ 3

2(|X| − 2)
+ 2

)
,

there is z ∈ Z such that

|(X + Y ) ∩ [z, z + l(X)− 1]| ≥ l(X)− u and r(X,Y ) ≥ l(X)− |X| − u.

Using the previous theorems, we will obtain two inverse results. The first one
states that, if X and Y are nonempty finite subsets of Z with |X| ≥ 3 and
GCD∗(X) = 1, then the number of X−connected components of Y is bounded
by r(X,Y ) and each component is either small or its length is small compared
with its size.
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Corollary 1.5. Let X and Y be nonempty finite subsets of Z with |X| ≥ 3
and GCD∗(X) = 1. Denote by Y1, Y2, . . . , Yn the X-components of Y .

i) r(X,Y ) = (n− 1)|X|+
∑n

i=1 r(X,Yi). In particular

n ≤ r(X,Y ) + 1

|X| − 1
+ 1.

ii) For each i ∈ [1, n], let ui be the minimum nonnegative integer u such that

|Yi| >
(
l(X)− u− 1

)(4r(X,Yi) + l(X)− u+ 3

2(|X| − 2)
+ 2

)
.

Then
|Yi| ≤ (|X| − 2)

(
2r(X,Yi) + 2

|X| − 2
+

5

2

)
or

l(Yi) ≤ |Yi|+
(
l(X)− 1

)(2r(X,Yi)− l(X) + 2ui + 3

|X| − 2
+ 4

)
.

Theorem 1.2 gives nontrivial upper bounds of l(X) and l(Y ) when r(X,Y ) ≤
min{|X| − δ(Y,X), |Y | − δ(X,Y )} − 3 and GCD∗(X + Y ) = 1. The next result
roughly says that we can find nontrivial upper bounds of l(X) and l(Y ) in terms
of |X| and r(X,Y ) when |X| ≥ 3, GCD∗(X) = 1, Y is X-connected and |Y |
is big compared with |X|. In particular we can bound l(X) and l(Y ) even if
r(X,Y ) > min{|X| − δ(Y,X), |Y | − δ(X,Y )} − 3.

Corollary 1.6. Let X and Y be nonempty finite subsets of Z such that |X|≥3,
GCD∗(X) = 1, and Y is X-connected. If

|Y | >
(
|X|+ r(X,Y )

)(5(r(X,Y ) + 1)

2(|X| − 2)
+

5

2

)
,

then
l(X) ≤ |X|+ r(X,Y ),

l(Y ) ≤ |Y |+
(
|X|+ r(X,Y )− 1

)(2(r(X,Y ) + 1)

|X| − 2
+ 3

)
.

As we already saw in the example given after Theorem 1.2, the condition that
Y is X-connected in Corollary 1.6 is fundamental. Corollary 1.6 can be seen as
a partial result in the generalization of Freiman’s 3k − 4 Theorem for sets X,Y
which do not satisfy that r(X,Y ) ≤ min{|X|−δ(Y,X), |Y |−δ(X,Y )}−3. When
r(X,Y ) ≤ min{|X| − δ(Y,X), |Y | − δ(X,Y )} − 3, Theorem 1.2 provides better
(optimal) bounds of l(X) and l(Y ) than Corollary 1.6. Hence we think that
even in the case r(X,Y ) > min{|X| − δ(Y,X), |Y | − δ(X,Y )} − 3 our results
are not best possible. However, in the last section of this paper, we will give
some examples which show that even if our results are not optimal, the bounds
we have obtained are far from trivial.
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Whenever GCD∗(X) > 1 , we can translate and make a dilation by 1
GCD∗(X)

to obtain analogous results to the previous statements.

Now we describe roughly the main idea behind the proofs of Theorem 1.3
and Theorem 1.4. Let X and Y be nonempty finite subsets of Z with minX =
minY = 0, GCD∗(X) = 1, Y be X-connected and |Y | � |X|. Then Theorem 1.1
implies that r(X,Y ) ≥ l(X) − |X|. Assume that a is a small nonnegative in-
teger such that r(X,Y ) = l(X) − |X| + a; then |X + Y | − |Y | = l(X) + a.
If a is small and |Y | is big, then the former equality implies that we must have
that y +X ⊆ Y for many y ∈ Y. Therefore, if we set

Γ(X) := {x1 + x2 + . . .+ xn : x1, x2, . . . , xn ∈ X},

Γ({maxX} −X) := {x1 + x2 + . . .+ xn : x1, x2, . . . , xn ∈ {maxX} −X},

then there is z ∈ [0,maxY ] such that Y ∩ [0, z] (resp. Y ∩ [z+ 1,maxY ]) is quite
similar to Γ(X) ∩ [0, z] (resp. ({maxY } − Γ({maxX} − X)) ∩ [z + 1,maxY ])
up to the defects generated by a. Thus, to understand the structure of Y, it suf-
fices to understand the structure of

Γ(X) ∩ [0, z] and
(
{maxY } − Γ({maxX} −X)

)
∩ [z + 1,maxY ]

with the defects generated by a; however, this is easier and we may use some com-
binatorial results and Lev-Smeliansky Theorem to study Γ(X),Γ({maxX} −X)
with the singularities generated by a.

We briefly describe the content of this paper. In Section 2 we study the
structure of the subsets Z and W of Z such that Z and (Z +W ) \W are finite,
minZ = minW = 0, GCD(Z) = 1, |Z| ≥ 3 and W ∩ [z, z + l(Z) − 1] 6= ∅
for all z ≥ 0. In particular we shall show two results (see Proposition 2.4 and
Proposition 2.5 for the precise statements):

i) If Z and W are as above, then the set of nonnegative integers which are
not in W is finite and bounded in terms of l(Z), |Z| and |(Z +W ) \W |.

ii) If Z and W are as above and x ∈ Z is such that |[0, x]∩W | is big enough,
then there is z ∈ [0, x] such that |(Z +W ) ∩ [z, z + l(Z)− 1]| is big.

In Section 3 an auxiliary statement links the results of the previous section and
the main theorems, and then we proceed to prove the main results of this paper.
The key point in the proof of Theorem 1.3 is Proposition 2.4. The principal idea
in the proof of Theorem 1.4 is Proposition 2.5. In Section 3 we prove Corollary 1.5
and Corollary 1.6. They are straightforward consequences of Theorem 1.3 and
Theorem 1.4. At the end of this section, we discuss the sharpness of our results.
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2. Structural tools

The purpose of this section is to study the structure of nonempty subsets Z
and W of Z such that Z and (Z + W ) \ W are finite, minZ = minW = 0,
GCD(Z) = 1, |Z| ≥ 3 and W ∩ [z, z + l(Z)− 1] 6= ∅ for all z ≥ 0. The first tool
that we will need is the following theorem of V. Lev and P. Smeliansky.

Theorem 2.1. Let X and Y be nonempty finite subsets of Z such that

GCD∗(Y ) = 1 and l(X) ≤ l(Y ),

and define

δ :=

{
1 if l(X) = l(Y );

0, otherwise.

Then
|X + Y | ≥ |X|+ min{|X|+ |Y | − 2− δ, l(Y )}.

P r o o f. See [10, Thm. 2]. �

We use the previous theorem in the following lemma.

Lemma 2.2. Let Z and W be nonempty subsets of Z such that

Z is finite, minZ = minW = 0 and GCD(Z) = 1.

For all z ∈ Z such that W ∩ [z, z + l(Z)− 1] 6= ∅, we have that

|W ∩ [z + l(Z), z + 2l(Z)− 1]| ≥min{|W ∩ [z, z + l(Z)− 1]|+ |Z| − 2, l(Z)}

−
∣∣((Z +W ) \W

)
∩ [z, z + 2l(Z)− 1]

∣∣ .
P r o o f. On the one hand,

Z +
(
W ∩ [z, z + l(Z)− 1]

)
⊆ (Z +W ) ∩ [z, z + 2l(Z)− 1];

therefore (
Z +

(
W ∩ [z, z + l(Z)− 1]

))
\
(
W ∩ [z, z + 2l(Z)− 1]

)
=
(
Z +

(
W ∩ [z, z + l(Z)− 1]

))
\W

⊆
(
(Z +W ) ∩ [z, z + 2l(Z)− 1]

)
\W

=
(
(Z +W ) \W

)
∩ [z, z + 2l(Z)− 1].

This inclusion implies that∣∣Z +
(
W ∩ [z, z + l(Z)− 1]

)∣∣− |W ∩ [z, z + 2l(Z)− 1]|
≤ |
(
(Z +W ) \W

)
∩ [z, z + 2l(Z)− 1]|,
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and hence∣∣Z +
(
W ∩ [z, z + l(Z)− 1]

)∣∣ ≤|W ∩ [z, z + l(Z)− 1]|
+ |W ∩ [z + l(Z), z + 2l(Z)− 1]|
+
∣∣((Z +W ) \W

)
∩ [z, z + 2l(Z)− 1]

∣∣. (1)

On the other hand, we have that

l
(
W ∩ [z, z + l(Z)− 1]

)
≤ l
(
[z, z + l(Z)− 1]

)
< l(Z)

so, applying Theorem 2.1 to W ∩ [z, z + l(Z)− 1] and Z, we get that∣∣Z +
(
W ∩ [z, z + l(Z)− 1]

)∣∣ (2)

≥ |W ∩ [z, z + l(Z)− 1]|+ min{|W ∩ [z, z + l(Z)− 1]|+ |Z| − 2, l(Z)}.

The claim follows from (1) and (2). �

We shall need a combinatorial lemma.

Lemma 2.3. Let l, t ∈ N be such that t ≤ l, and let {rn}n∈N and {kn}n∈N be
sequences of nonnegative integers such that r :=

∑
n∈N rn is finite and rn ≥ knt

for all n ∈ N. If r ≥ l, then∑
n∈N

kn∑
k=0

min{l, rn − kt} ≤
(

2r − l
2t

+ 1

)
l.

P r o o f. Insomuch as rn ≥ knt for all n ∈ N,∑
n∈N

kn∑
k=0

min{l, rn − kt} ≤
∑
n∈N

b rnt c∑
k=0

min{l, rn − kt}. (3)

Now, we show by induction on b rt c that∑
n∈N

b rnt c∑
k=0

min{l, rn − kt} ≤
b rt c∑
k=0

min{l, r − kt}. (4)

Since t ≤ l ≤ r, the basis of induction will be b rt c = 1. If b rnt c = 0 for all
n ∈ N, then

∑
n∈N

b rnt c∑
k=0

min{l, rn − kt} =
∑
n∈N

rn = r ≤ l + r − t =

b rt c∑
k=0

min{l, r − kt}.

Assume that b rnt c > 0 for some n ∈ N; without loss of generality, assume that
b r1t c > 0. Since b rt c = 1, we get that b r1t c = 1 and b rnt c = 0 for all n > 1.
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Thus∑
n∈N

b rnt c∑
k=0

min{l, rn − kt} = l + r1 − t+
∑
n>1

rn = l + r − t =

b rt c∑
k=0

min{l, r − kt},

and this completes the proof of the basis of induction. Now, we assume that

b rt c > 1 and that (4) holds for all t, r′, r such that b r
′

t c < b
r
t c. If b rnt c = 0 for all

n ∈ N, then ∑
n∈N

b rnt c∑
k=0

min{l, rn − kt} =
∑
n∈N

rn

= r

=

b rt c-times︷ ︸︸ ︷
t+ t+ · · ·+ t+

(
r − t

⌊r
t

⌋)
≤

b rt c−1∑
k=0

min{l, r − kt}

+
(
r − t

⌊r
t

⌋)

=

b rt c∑
k=0

min{l, r − kt},

and this shows (4) in this case. Assume from now on that there is n ∈ N such
that b rnt c > 0; without loss of generality, assume that b r1t c > 0. Define

r′n :=

{
rn − t if n = 1,

rn, otherwise,

and define r′ :=
∑

n∈N r
′
n. From the hypothesis of induction,

∑
n∈N

b r
′
n
t c∑

k=0

min{l, r′n − kt} ≤
b r′t c∑
k=0

min{l, r′ − kt}. (5)

On the other hand,
min{l, r1} ≤ min{l, r}. (6)

Adding (5) and (6), we get (4) and this completes its proof.

We shall prove that
b rt c∑

k=b r−l
t c+1

(r − kt) +

b r−l
t c∑

k=0

l ≤ l
(

2r − l
2t

+ 1

)
(7)

by induction on b rt c. Since t ≤ l ≤ r, we have that b rt c ≥ 1. First assume that

b rt c = 1 so b r−lt c = 0 (since r < 2t ≤ t + l). Moreover, since t ≤ l ≤ r < 2t,
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we get that

r − t ≤ l
(

2r − l
2t

)
,

and therefore
b rt c∑

k=b r−l
t c+1

(r − kt) +

b r−l
t c∑

k=0

l = r − t+ l ≤ l
(

2r − l
2t

+ 1

)
.

Assume that b rt c > 1 and set r′ := r − t. Hence by induction

b rt c∑
k=b r−l

t c+1

(r − kt) +

b r−l
t c∑

k=0

l =

 b r′t c∑
k=b r′−l

t c+1

(r′ − kt) +

b r
′−l
t c∑

k=0

l

+ l

≤ l
(

2r′ − l
2t

+ 1

)
+ l

= l

(
2r − l

2t
+ 1

)
,

and this completes the proof of (7). Now we conclude the proof of the lemma

∑
n∈N

kn∑
k=0

min{l, rn − kt} ≤
∑
n∈N

b rnt c∑
k=0

min{l, rn − kt} (by (3))

≤
b rt c∑
k=0

min{l, r − kt} (by (4))

=

b rt c∑
k=b r−l

t c+1

(r − kt) +

b r−l
t c∑

k=0

l

≤ l
(

2r − l
2t

+ 1

)
. (by (7))

�

For any x ∈ Z, set [x,∞) := {z ∈ Z : z ≥ x} and (−∞, x] := {z ∈ Z : z ≤ x}.

Proposition 2.4. Let Z and W be nonempty subsets of Z such that Z and
(Z + W ) \W are finite, minZ = minW = 0, GCD(Z) = 1 and |Z| ≥ 3, and
let u ∈ [1, l(Z) − |Z| + 2]. If |W ∩ [z, z + l(Z) − 1]| ≥ u for all z ∈ [0,∞), then

|[0,∞) \W | ≤
(

2|(Z +W ) \W |
|Z| − 2

+
l(Z)− u

2(|Z| − 2)
+ 1

)(
l(Z)− u

)
.
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P r o o f. For each n ∈ N, set

Wn := W ∩ [(n− 1)l(Z), nl(Z)− 1],

Sn :=
(
(Z +W ) \W

)
∩ [(n− 1)l(Z), (n+ 1)l(Z)− 1].

For all z ∈ (Z +W ) \W , it is contained in at most two elements of {Sn}n∈N so∑
n∈N
|Sn| ≤ 2|(Z +W ) \W |. (8)

Since (Z + W ) \ W is finite, it is implied by (8) that there is n0 ∈ N such
that Sn = ∅ for all n > n0. For all n ∈ N, it is assumed that |Wn| ≥ u ≥ 1.
In particular Wn is not empty, and hence Lemma 2.2 applied to Z and Wn

leads to
|Wn+1| ≥ min{|Wn|+ |Z| − 2, l(Z)} − |Sn|, (9)

Also, since |Wn| ≥ u, we have that

l(Z)− |Wn| ≤ l(Z)− u. (10)

Define N = {n ∈ N : |Wn| < l(Z) − |Z| + 2}. Since Sn = ∅ for all n > n0 and

|Wn0
| ≥ u ≥ 1, we obtain from (9) that |Wn| > l(Z)−1 for all n > n0+ l(Z)−1

|Z|−2 +1;

thus N is finite. Let m := |(N + {1}) \ N | and p1, p2, . . . , pm, q1, q2, . . . , qm be
such that N =

⋃m
i=1[pi, qi], and define N ′ :=

⋃m
i=1[pi − 1, qi]; assume without

loss of generality that p1 < p2 < · · · < pm. For all n ∈ N \ N , we get that
|Wn|+ |Z| − 2 ≥ l(Z) and then (9) yields that

l(Z)− |Wn+1| ≤ |Sn|. (11)

For all i ∈ [1,m] and n ∈ [pi, qi], if (9) is applied n+ 1− pi-times, we get

|Wn+1| ≥ |Wpi
|+ (n+ 1− pi)(|Z| − 2) −

n∑
k=pi

|Sk|,

and therefore

l(Z)− |Wn+1| ≤ l(Z)− |Wpi | − (n+ 1− pi)(|Z| − 2) +

n∑
k=pi

|Sk|

≤ l(Z)− |Wpi
| − (n+ 1− pi)(|Z| − 2) +

qi∑
k=pi

|Sk|. (12)

We divide the conclusion of the proof into two cases:

• Assume that 1 ∈ N so p1 = 1. We have that for all n ∈ [0, q1]

l(Z)− |Wn+1| ≤ l(Z)− |W1| − n(|Z| − 2) +

q1∑
k=1

|Sk| (by (12))

≤ l(Z)− u− n(|Z| − 2) +

q1∑
k=1

|Sk|. (by (10))
(13)
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For all i > 1, note that pi− 1 ∈ N \N ; thus for all n ∈ [pi− 1, qi], we get that

l(Z)− |Wn+1| ≤ l(Z)− |Wpi | − (n+ 1− pi)(|Z| − 2) +

qi∑
k=pi

|Sk| (by (12))

≤ −(n+ 1− pi)(|Z| − 2) +

qi∑
k=pi−1

|Sk|. (by (11))

(14)

On the one hand, from (10), (13) and (14), we get that

m∑
i=1

qi∑
n=pi−1

(
l(Z)− |Wn+1|

)
≤(

q1∑
n=0

min

{
l(Z)− u− n(|Z| − 2) +

q1∑
k=1

|Sk|, l(Z)− u
})

+(
m∑
i=2

qi∑
n=pi−1

min

{
−(n+ 1− pi)(|Z| − 2) +

qi∑
k=pi−1

|Sk|, l(Z)− u
})

. (15)

On the other hand, from (10) and (11), we obtain that∑
n∈N\N ′

(
l(Z)− |Wn+1|

)
≤
∑

n∈N\N ′
min

{
|Sn|, l(Z)− u

}
. (16)

If we add (15) and (16), we deduce that

|[0,∞) \W |

=
∑
n∈N
|[(n− 1)l(Z), nl(Z)− 1] \Wn|

=
∑
n∈N

(l(Z)− |Wn|)

≤

(
q1∑

n=0

min

{
l(Z)− u− n(|Z| − 2) +

q1∑
k=1

|Sk|, l(Z)− u
})

+

(
m∑
i=2

qi∑
n=pi−1

min

{
−(n+ 1− pi)(|Z| − 2) +

qi∑
k=pi−1

|Sk|, l(Z)− u
})

+

( ∑
n∈N\N ′

min

{
|Sn|, l(Z)− u

})
. (17)
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Label the elements of N ′ as N ′ = {tm+1, tm+2, tm+3 . . .}. We want to apply
Lemma 2.3 to

rn =


l(Z)− u+

∑q1
k=0 |Sk| if n = 1,∑qn

k=pn−1 |Sk| if n ∈ [2,m],

|Stn | if n > m;

kn =

{
qn − pn + 1 if n ≤ m,

0 if n > m;

l = l(Z)− u;

t = |Z| − 2.

On the one hand,

l ≤
∑
n∈N

rn = l(Z)− u+
∑
n∈N
|Sn| ≤ l(Z)− u+ 2|(Z +W ) \W |,

then
∑

n∈N rn is finite by (8). On the other hand, l(Z)− |Wn| ≥ 0 for all n ∈ N;
hence (11), (13) and (14) imply that rn ≥ knt for all n ∈ N. Thus the assumptions
of Lemma2.3 are satisfied, and we obtain from it and (17) that

|[0,∞) \W | ≤
(
l(Z)− u+ 2

∑
n∈N |Sn|

2(|Z| − 2)
+ 1

)(
l(Z)− u

)
. (18)

Then

|[0,∞) \W | ≤
(
l(Z)− u+ 2

∑
n∈N |Sn|

2(|Z| − 2)
+ 1

)(
l(Z)− u

)
(by (18))

≤
(
l(Z)− u

2(|Z| − 2)
+

2|(Z +W ) \W |
|Z| − 2

+ 1

)(
l(Z)− u

)
. (by (8))

• Assume that 1 6∈ N . For all i ∈ [1,m], note that pi − 1 ∈ N \N ; thus for all
n ∈ [pi − 1, qi], we get that

l(Z)− |Wn+1| ≤ l(Z)− |Wpi
| − (n+ 1− pi)(|Z| − 2) +

qi∑
k=pi

|Sk| (by (12))

≤ −(n+ 1− pi)(|Z| − 2) +

qi∑
k=pi−1

|Sk|. (by (11))

(19)
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From (10) and (19), we get that
m∑
i=1

qi∑
n=pi−1

(
l(Z)− |Wn+1|

)
≤

m∑
i=1

qi∑
n=pi−1

min

{
−(n+ 1− pi)(|Z| − 2) +

qi∑
k=pi−1

|Sk|, l(Z)− u
}
. (20)

From (10) and (11), we obtain that∑
n∈N\N ′

(
l(Z)− |Wn+1|

)
≤
∑

n∈N\N ′
min

{
|Sn|, l(Z)− u

}
. (21)

Also, from (10),
l(Z)− |W1| ≤ l(Z)− u. (22)

If we add (20), (21) and (22), then we have that

|[0,∞) \W | =
∑
n∈N
|[(n− 1)l(Z), nl(Z)− 1] \Wn| =

∑
n∈N

l(Z)− |Wn|

≤

(
m∑
i=1

qi∑
n=pi−1

min

{
−(n+ 1− pi)(|Z| − 2) +

qi∑
k=pi−1

|Sk|, l(Z)− u
})

+

( ∑
n∈N\N ′

min{|Sn|, l(Z)− u}

)
+ l(Z)− u. (23)

Label the elements of N ′ as N ′ = {tm+2, tm+3, tm+4, . . .}. We want to apply
Lemma 2.3 to

rn =


∑qn

k=pn−1 |Sk| if n ∈ [1,m],

l(Z)− u if n = m+ 1,

|Stn | if n > m+ 1;

kn =

{
qn − pn + 1 if n ≤ m,
0 if n > m;

l = l(Z)− u;

t = |Z| − 2.

On the one hand,

l ≤
∑
n∈N

rn = l(Z)− u+
∑
n∈N
|Sn| ≤ l(Z)− u+ 2|(Z +W ) \W |;

then
∑

n∈N rn is finite by (8). On the other hand, l(Z)− |Wn| ≥ 0 for all n ∈ N;
hence (11), (19) and (22) imply that rn ≥ knt for all n ∈ N. Thus the assumptions
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of Lemma (2.3) are satisfied, and we get from it and (23) that

|[0,∞) \W | ≤
(
l(Z)− u+ 2

∑
n∈N |Sn|

2(|Z| − 2)
+ 1

)(
l(Z)− u

)
. (24)

Hence

|[0,∞) \W | ≤
(
l(Z)− u+ 2

∑
n∈N |Sn|

2(|Z| − 2)
+ 1

)(
l(Z)− u

)
(by (24))

≤
(
l(Z)− u

2(|Z| − 2)
+

2|(Z +W ) \W |
|Z| − 2

+ 1

)(
l(Z)− u

)
. (by (8))

�

Proposition 2.5. Let Z and W be nonempty subsets of Z such that Z and
(Z + W ) \ W are finite, minZ = minW = 0, GCD(Z) = 1 and |Z| ≥ 3.
Take u ∈ [0, l(Z)− |Z|+ 1] and x ∈ Z such that

|W ∩ [0, x]| >
(

2|(Z +W ) \W |
|Z| − 2

+
l(Z)− u− 1

2(|Z| − 2)
+ 1

)(
l(Z)− u− 1

)
.

If W ∩ [z, z + l(Z)− 1] 6= ∅ for all z ∈ [0,∞), then there is y ∈ [0, x] such that

|(Z +W ) ∩ [y, y + l(Z)− 1]| ≥ l(Z)− u.

P r o o f. Since |W ∩ [z, z + l(Z)− 1]| ≥ 1 for all z ∈ [0,∞), we get from Propo-
sition 2.4 applied to Z and W that

|[0,∞) \W | ≤
(

2|(Z +W ) \W |
|Z| − 2

+
l(Z)− 1

2(|Z| − 2)
+ 1

)(
l(Z)− 1

)
.

In particular, inasmuch as W ⊆ Z +W, note that [0,∞) \ (Z +W ) is finite. Set

S := {w ∈ Z : |[w,w + l(Z)− 1] ∩ (Z +W )| ≥ l(Z)− u}.

Insomuch as [0,∞) \ (Z +W ) is finite, S is not empty. Set y := minS and note
that it suffices to show that y ≤ x. Notice that

|[y − 1, y + l(Z)− 2] ∩ (Z +W )| < l(Z)− u;

thus, since |[y, y+l(Z)−1]∩(Z+W )| ≥ l(Z)−u, we have that y−1 ∈ Z\(Z+W ).
Define

W ′ :=
(
{y − 1} −

(
Z \ (Z +W )

))
∩ [0,∞).

Notice that W ′ ⊆ [0,∞) and minW ′ = 0 since y − 1 ∈ Z \ (Z +W ). Now,

Z +
(
{y − 1} −

(
Z \ (Z +W )

))
⊆ {y − 1} − (Z \W ), (25)

and

Z \W =
(
Z \ (Z +W )

)
∪
(

(Z \W ) \
(
Z \

(
(Z +W ) \W

)))
. (26)
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Hence

Z +W ′ = Z +

((
{y − 1} −

(
Z \ (Z +W )

))
∩ [0,∞)

)
⊆
(
Z +

(
{y − 1} −

(
Z \ (Z +W )

)))
∩ [0,∞)

⊆
(
{y − 1} − (Z \W )

)
∩ [0,∞) (by (25))

=

(
{y − 1} −

(
Z \ (Z +W )

)
∪
(
(Z \W ) \

(
Z \

(
(Z +W ) \W

))))
∩ [0,∞) (by (26))

=

((
{y − 1} −

(
Z \ (Z +W )

))
∩[0,∞)

)
∪
((
{y − 1} −

(
(Z \W ) \

(
Z \

(
(Z +W ) \W

))))
∩ [0,∞)

)
= W ′ ∪

((
{y − 1} −

(
(Z \W ) \

(
Z \

(
(Z +W ) \W

))))
∩ [0,∞)

)
.

(27)
Note that

(Z \W ) \
(
Z \

(
(Z +W ) \W

))
⊆ (Z +W ) \W ;

hence (
{y − 1} −

(
(Z \W ) \

(
Z \

(
(Z +W ) \W

))))
∩ [0,∞)

⊆
(
{y − 1} −

(
(Z +W ) \W

))
∩ [0,∞)

⊆ {y − 1} −
(
(Z +W ) \W

)
. (28)

From (27) and (28), we get that

|(Z +W ′) \W ′| ≤ |(Z +W ) \W |. (29)

For all w ∈ (−∞, y − 1], we have that |(Z +W ) ∩ [w,w + l(Z)− 1]| < l(Z)− u
so ∣∣(Z \ (Z +W )

)
∩ [w,w + l(Z)− 1]

∣∣ ≥ u+ 1.

The previous inequality implies that for all z ∈ [0,∞)

|W ′ ∩ [z, z + l(Z)− 1]|

=
∣∣∣(({y − 1} −

(
Z \ (Z +W )

))
∩ [0,∞)

)
∩ [z, z + l(Z)− 1]

∣∣∣
=
∣∣∣({y − 1} −

(
Z \ (Z +W )

))
∩ [z, z + l(Z)− 1]

∣∣∣
=
∣∣(Z \ (Z +W )

)
∩ [y − 1− z, y − 2− z + l(Z)]

∣∣∣
≥ u+ 1.
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This means that we can apply Proposition2.4 to Z,W ′ and u+ 1 to get

|[0,∞) \W ′| ≤
(

2|(Z +W ′) \W ′|
|Z| − 2

+
l(Z)− u− 1

2(|Z| − 2)
+ 1

)(
l(Z)− u− 1

)
,

and (29) yields that

|[0,∞) \W ′| ≤
(

2|(Z +W ) \W |
|Z| − 2

+
l(Z)− u− 1

2(|Z| − 2)
+ 1

)(
l(Z)− u− 1

)
. (30)

Since

|[0,∞) \W ′| =
∣∣{z ∈ [0,∞) : z 6∈ {y − 1} −

(
Z \ (Z +W )

)}∣∣
= |{z ∈ [0,∞) : y − 1− z ∈ Z +W}|
= |{w ∈ (−∞, y − 1] : w ∈ Z +W}|
= |(Z +W ) ∩ (−∞, y − 1]|
= |(Z +W ) ∩ [0, y − 1]| ,

we get from (30) that

|W ∩ [0, y − 1]| ≤ |(Z +W ) ∩ [0, y − 1]|
= |[0,∞) \W ′|

≤
(

2|(Z +W ) \W |
|Z| − 2

+
l(Z)− u− 1

2(|Z| − 2)
+ 1

)(
l(Z)− u− 1

)
< |W ∩ [0, x]|;

this means that y ≤ x, and it completes the proof. �

Let W be a nonempty subset of Z such that minW = 0 and z ∈ [0,∞). Define

Γ(W, z) := (W ∩ [0, z]) ∪ [z + 1,∞).

The properties of Γ(W, z) that will be needed later follow directly from its defi-
nition and we establish them in the following remark.

Remark 2.6. Let W and Z be a nonempty subset of Z such that minW =
minZ = 0 and Z is finite.

i) Let u ∈ [1, l(Z)] and z ∈ [0,∞). If |W ∩ [y, y + l(Z) − 1]| ≥ u for all
y ∈ [0, z− l(Z) + 1], then |Γ(W, z)∩ [y, y+ l(Z)− 1]| ≥ u for all y ∈ [0,∞).

ii) For all z ∈ [0,∞),(
Z + Γ(W, z)

)
\ Γ(W, z) =

(
(Z +W ) \W

)
∩ [0, z].

To conclude this section, we remark the following fact.
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Remark 2.7. Let W and Z be a nonempty finite subsets of Z. If there is
z ∈ [minW + 1,maxW − l(Z)] such that W ∩ [z, z + l(Z) − 1] = ∅, then

W1 := W ∩ (−∞, z − 1] and W2 := W ∩ [z + l(Z),∞)

satisfy that they are not empty, W = W1 ∪W2 and (Z + W1) ∩ (Z + W2) = ∅;
in particular, W is Z−disconnected.

3. Proof of the main theorems

In this section we complete the proof of the main theorems of this paper.
Before we show the main theorems, we prove some auxiliary results.

Lemma 3.1. Let X and Y be nonempty finite subsets of Z such that minX =
minY = 0 and z ∈ [−l(X) + 1,max(X + Y )]. Then

r(X,Y ) =|(X + Y ) ∩ [z, z + l(X)− 1]|+
∣∣((X + Y ) \ Y

)
∩ (−∞, z − 1]

∣∣
+
∣∣((X + Y ) \ ({maxX}+ Y )

)
∩ [z + l(X),∞)

∣∣− |X|.
P r o o f. Set

U ′ :=
(
(X + Y ) \ Y

)
∩ (−∞, z − 1],

U ′′ :=
(
(X + Y ) \ ({maxX}+ Y )

)
∩ [z + l(X),∞).

If z ∈ [−l(X), 0], then

(X + Y ) ∩ (−∞, z − 1] = U ′ = Y ∩ (−∞, z − 1] = ∅,
and therefore

|(X + Y ) ∩ (−∞, z − 1]| = |U ′|+ |Y ∩ (−∞, z − 1]| = 0.

If z ∈ [1,max(X + Y )], then 0 ∈ (−∞, z − 1]. Hence

|(X + Y ) ∩ (−∞, z − 1]| = |U ′|+ |Y ∩ (−∞, z − 1]|.
Thus, in any case,

|(X + Y ) ∩ (−∞, z − 1]| = |U ′|+ |Y ∩ (−∞, z − 1]|. (31)

Proceeding in a symmetric way,

|(X + Y ) ∩ [z + l(X),∞)| = |U ′′|+ |Y ∩ [z,∞)|. (32)

If we add |(X + Y ) ∩ [z, z + l(X)− 1]|, (31) and (32), we get

|X + Y | = |(X + Y ) ∩ [z, z + l(X)− 1]|+ |U ′|+ |U ′′|+ |Y |,
and therefore

r(X,Y ) = |(X + Y ) ∩ [z, z + l(X)− 1]|+ |U ′|+ |U ′′| − |X|. �

To apply the result of the previous section, we will need to apply some affine
transformations to our sets. We state the trivial properties of these transforma-
tions.
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Remark 3.2. Let Z be a nonempty finite subset Z of Z, and set Z ′ := Z −
{minZ} and Z ′′ := {maxZ} − Z. Then

i) minZ ′ = minZ ′′ = 0,

ii) GCD(Z ′) = GCD(Z ′′) = GCD∗(Z).

Lemma 3.3. Let X and Y be nonempty finite subsets of Z such that minX =
minY = 0 and z ∈ [−l(X) + 1,max(X + Y )]. Set

y′ := z − 1, X ′ := {maxX} −X,
y′′ := max(X + Y )−

(
z + l(X)

)
, Y ′ := {maxY } − Y.

i) Assume that z ∈ [1,max(X + Y )]. Then Γ(Y, y′) 6= ∅ and∣∣(X + Γ(Y, y′)
)
\ Γ(Y, y′)

∣∣ =
∣∣((X + Y ) \ Y

)
∩ (−∞, y′]

∣∣.
Moreover, if Y is X-connected, then Γ(Y, y′) ∩ [w,w + l(X) − 1] 6= ∅ for
all w ∈ [0,∞).

ii) Assume that z ∈ [−l(X) + 1,max(X+Y )− l(X)]. Then Γ(Y ′, y′′) 6= ∅ and∣∣(X ′ + Γ(Y ′, y′′)
)
\ Γ(Y ′, y′′)

∣∣ =∣∣((X + Y ) \ ({maxX}+ Y )
)
∩ [z + l(X),∞)

∣∣.
Moreover, if Y is X-connected, then Γ(Y ′, y′′) ∩ [w,w + l(X) − 1] 6= ∅
for all w ∈ [0,∞).

P r o o f. The proof of i) and ii) are symmetric; we will show only i). Since z−1 ∈
[0,max(X + Y )− 1], notice that 0 ∈ Y ∩ [0, y′] ⊆ Γ(Y, y′). From Remark 2.6 ii)
applied to X,Y and y′, we get that∣∣(X + Γ(Y, y′)

)
\ Γ(Y, y′)

∣∣ =
∣∣((X + Y ) \ Y

)
∩ [0, y′]

∣∣. (33)

Also we have the trivial equality∣∣((X + Y ) \ Y
)
∩ [0, y′]

∣∣ =
∣∣((X + Y ) \ Y

)
∩ (−∞, z − 1]

∣∣. (34)

Thus, from (33) and (34),∣∣(X + Γ(Y, y′)
)
\ Γ(Y, y′)

∣∣ =
∣∣((X + Y ) \ Y

)
∩ (−∞, z − 1]

∣∣.
Finally, if Y is X-connected, Remark 2.7 implies that Y ∩ [v, v + l(X)− 1] 6= ∅
for all v∈ [1,maxY−l(X)]; therefore Y∩[v, v+l(X)−1] 6= ∅ for all v∈ [−l(X)+1,
maxY ]. We get that |Y ∩ [w′, w′ + l(X)− 1]| ≥ 1 for all w′ ∈ [0, y′ − l(X) + 1].
Hence Remark 2.6 i) applied to Y implies that |Γ(Y, y′)∩ [w,w+ l(X)− 1]| ≥ 1
which is equivalent to the claim. �
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Now we show Theorem 1.3.

P r o o f. T h e o r e m 1.3. Translating if necessary, we assume that minX =
minY = 0. Set

X ′:= {maxX} −X, y′′ := max(X + Y )−
(
z + l(X)

)
,

Y ′ := {maxY } − Y, U ′ :=
(
(X + Y ) \ Y

)
∩ (−∞, z − 1],

y′ := z − 1, U ′′:=
(
(X + Y ) \ ({maxX}+ Y )

)
∩ [z + l(X),∞).

Lemma 3.1 yields that

|U ′|+ |U ′′| = r(X,Y )− |(X + Y ) ∩ [z, z + l(X)− 1]|+ |X|. (35)

We shall show that if z ∈ [1,max(X + Y )], then

|[0, y′] \ Y | ≤
(
l(X)− 1

)( 2|U ′|
|X| − 2

+
l(X)− 1

2(|X| − 2)
+ 1

)
. (36)

First note that the definition of Γ(Y, y′) yields that

Γ(Y, y′) ∩ [0, y′] = Y ∩ [0, y′]
so (

[0,∞) \ Γ(Y, y′)
)
∩ [0, y′] =

(
[0,∞) \ Y

)
∩ [0, y′]. (37)

Hence

|[0, y′] \ Y | ≤
∣∣([0,∞) \ Y

)
∩ [0, y′]

∣∣
=
∣∣([0,∞) \ Γ(Y, y′)

)
∩ [0, y′]

∣∣ (by (37))

≤
∣∣([0,∞) \ Γ(Y, y′)

)∣∣.
(38)

Insomuch as z ∈ [1,max(X + Y )], Γ(Y, y′) 6= ∅ by Lemma 3.3 i). Remark 3.1
leads to min Γ(Y, y′) = 0 and GCD∗(X) = 1. Also, from Lemma 3.3 i), we have∣∣(X + Γ(Y, y′)

)
\ Γ(Y, y′)

∣∣ = |U ′|. (39)

We have that
(
X+Γ(Y, y′)

)
\Γ(Y, y′) is finite by (35) and (39). Insomuch as Y is

X-connected, Lemma 3.3 i) implies that |Γ(Y, y′)∩ [w,w+ l(X)− 1]| ≥ 1 for all
w ∈ [0,∞). Thus the assumptions of Propositon 2.4 are satisfied by X,Γ(Y, y′)
and 1, and it implies that

|[0,∞) \ Γ(Y, y′)|≤
(
l(X)−1

)(2|(X+Γ(Y, y′)) \ Γ(Y, y′)|
|X| − 2

+
l(X)−1

2(|X|−2)
+1

)
. (40)

Moreover, from (39) and (40), we have that

|[0,∞) \ Γ(Y, y′)| ≤
(
l(X)− 1

)( 2|U ′|
|X| − 2

+
l(X)− 1

2(|X| − 2)
+ 1

)
. (41)

Hence (36) is a consequence of (38) and (41).

61



MARIO HUICOCHEA

Proceeding symmetrically, if

z ∈ [−l(X) + 1, max(X + Y )− l(X)],

then

|[y′ + 1,maxY ] \ Y | ≤
(
l(X)− 1

)( 2|U ′′|
|X| − 2

+
l(X)− 1

2(|X| − 2)
+ 1

)
. (42)

Set

t1 :=
4r(X,Y )− 4|(X + Y ) ∩ [z, z + l(X)− 1]|+ l(X) + 7

2(|X| − 2)
+ 3 ,

t2 :=
2r(X,Y )− 2|(X + Y ) ∩ [z, z + l(X)− 1]|+ l(X) + 3

|X| − 2
+ 4 .

The conclusion of the proof is divided into 3 cases:

• Assume that z ∈ [−l(X) + 1, 0]. On the one hand, z ≤ 0 so

|[0, y′] \ Y | = |U ′| = 0. (43)

On the other hand, 0 ≤ max(X +Y )− l(X) so z ∈ [0− l(X) + 1,max(X +Y )−
l(X)]. Thus

|[0,maxY ] \ Y | ≤ |[0, y′] \ Y |+ |[y′ + 1,maxY ] \ Y |

= |[y′ + 1,maxY ] \ Y | (by (43))

≤
(
l(X)− 1

)( 2|U ′′|
|X| − 2

+
l(X)− 1

2(|X| − 2)
+ 1

)
(by (42))

=
(
l(X)− 1

)
t1 . ((35), (43))

• Assume that z ∈ [max(X + Y )− l(X) + 1,max(X + Y )]. On the one hand,
z + l(X)− 1 ≥ max(X + Y ) so

|[y′ + 1,maxY ] \ Y | = |U ′′| = 0. (44)

On the other hand, z ∈ [1,max(X + Y )]. Thus

|[0,maxY ] \ Y | ≤ |[0, y′] \ Y |+ |[y′ + 1,maxY ] \ Y |
= |[0, y′] \ Y | (by (44))

≤
(
l(X)− 1

)( 2|U ′|
|X| − 2

+
l(X)− 1

2(|X| − 2)
+ 1

)
(by (36))

=
(
l(X)− 1

)
t1 . (by (35), (44))

• Assume that z ∈ [1,max(X + Y ) − l(X)]. Then z ∈ [1,max(X + Y )] and
z ∈ [−l(X) + 1,max(X + Y )− l(X)].
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Thus

|[0,maxY ] \ Y | ≤ |[0, y′] \ Y |+ |[y′ + 1,maxY ] \ Y |

≤
(
l(X)− 1

)(2(|U ′|+ |U ′′|)
|X| − 2

+
l(X)− 1

|X| − 2
+ 2

)
(by (36), (42))

=
(
l(X)− 1

)
t2 .

(by (35))

�
Now we prove Theorem 1.4.

P r o o f. T h e o r e m 1.4. Translating if necessary, assume that minX=minY=0.
Set

v := max(X + Y )− l(X),

U ′ :=
(
(X + Y ) \ Y

)
∩ (−∞, v − 1],

U ′′ :=
(
(X + Y ) \ ({maxX}+ Y )

)
∩ [v + l(X),∞).

First we show that there is z ∈ Z such that |(X+Y )∩[z, z+l(X)−1]| ≥ l(X)−u.
If |Y ∩ [maxY − l(X) + 1,maxY ]| ≥ l(X)− u, then

|(X + Y ) ∩ [v + 1, v + l(X)]| ≥ |({maxX}+ Y ) ∩ [v + 1, v + l(X)]| ≥ l(X)− u,

and we are done taking z = v + 1. Hence we assume from now on that

|Y ∩ [maxY − l(X) + 1,maxY ]| ≤ l(X)− u− 1. (45)

Insomuch as

|Y | >
(

2(r(X,Y ) + 1)

|X| − 2
+
l(X)− u− 1

2(|X| − 2)
+ 2

)(
l(X)− u− 1

)
,

we note from (45) that

|Y ∩ [0, l(Y )−l(X)]|= |Y |−|Y ∩ [maxY−l(X) + 1,maxY ]|

>

(
2(r(X,Y ) + 1)

|X|−2
+
l(X)−u−1

2(|X|−2)
+ 1

)(
l(X)− u− 1

)
. (46)

Since v ∈ [1,max(X + Y )], it is noted that Γ
(
Y, l(Y )− 1

)
6= ∅ by Lemma 3.3 i).

Furthermore, the definition of Γ(Y, l(Y )− 1) yields that

Γ(Y, l(Y )− 1) ∩ [0, l(Y )− 1] = Y ∩ [0, l(Y )− 1], (47)

and then (46) implies that∣∣Γ(Y, l(Y )− 1
)
∩ [0, l(Y )− l(X)]

∣∣
>

(
2(r(X,Y ) + 1)

|X| − 2
+
l(X)− u− 1

2(|X| − 2)
+ 1

)(
l(X)− u− 1

)
. (48)
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Lemma 3.3 i) leads to∣∣∣(X + Γ
(
Y, l(Y )− 1

))
\ Γ
(
Y, l(Y )− 1

)
| = |U ′

∣∣∣. (49)

From Lemma 3.1,

r(X,Y ) = |(X + Y ) ∩ [v, v + l(X)− 1]| − |X|+ |U ′|+ |U ′′|.

Thus (49) yields that∣∣∣(X+Γ
(
Y, l(Y )−1

))
\Γ
(
Y, l(Y )−1

)∣∣∣≤ r(X,Y )+|X|−|(X+Y )∩[v, v+l(X)−1]|.
(50)

Since
(X + {maxY }) ∩ [v, v + l(X)] ⊆ (X + Y ) ∩ [v, v + l(X)],

we get that

|(X + Y ) ∩ [v, v + l(X)]| ≥ |(X + {maxY }) ∩ [v, v + l(X)]| = |X|. (51)

Moreover, v + l(X) = max(X + Y ) ∈ X + Y , we have from (51)

|(X + Y ) ∩ [v, v + l(X)− 1]| ≥ |X| − 1,

and thus (50) yields that∣∣∣(X + Γ
(
Y, l(Y )− 1

))
\ Γ
(
Y, l(Y )− 1

)∣∣∣ ≤ r(X,Y ) + 1. (52)

Remark 3.1 leads to min Γ
(
Y, l(Y ) − 1

)
= 0 and GCD∗(X) = 1. Since Y is

X-connected, Lemma 3.3 i) yields that
∣∣Γ(Y, l(Y )− 1

)
∩ [w,w + l(X)− 1]

∣∣ ≥ 1

for all w ∈ [0,∞). Set t :=
(
l(X)− u− 1

)
. From (48) and (52),∣∣Γ(Y, l(Y )− 1

)
∩ [0, l(Y )− l(X)]

∣∣
>

(
2(r(X,Y ) + 1)

|X| − 2
+
l(X)− u− 1

2(|X| − 2)
+ 1

)
t

≥
(

2|(X + Γ(Y, l(Y )− 1)) \ Γ(Y, l(Y )− 1)|
|X| − 2

+
l(X)− u− 1

2(|X| − 2)
+ 1

)
t .

Thus the assumptions of Proposition 2.5 are satisfied by X,Γ
(
Y, l(Y ) − 1

)
and

l(Y ) − l(X). Then Proposition 2.5 implies the existence of y ∈ [0, l(Y ) − l(X)]
such that ∣∣∣(X + Γ

(
Y, l(Y )− 1

))
∩ [y, y + l(X)− 1]

∣∣∣ ≥ l(X)− u . (53)

Thus, from (47) and (53), we get

|(X + Y ) ∩ [y, y + l(X)− 1]| ≥ l(X)− u. (54)

Taking z := y, (54) leads to the claim.
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For the second claim, we take z ∈ Z such that

|(X + Y ) ∩ [z, z + l(X)− 1]| ≥ l(X)− u .
Then Lemma 3.1 yields that

r(X,Y ) = |(X + Y ) ∩ [z, z + l(X)− 1]| − |X|+ |U ′|+ |U ′′|
≥ |(X + Y ) ∩ [z, z + l(X)− 1]| − |X| ≥ l(X)− |X| − u . �

4. Applications and conclusions

We begin this section proving Corollary 1.5.

P r o o f. C o r o l l a r y 1.5. First we show i). Note that

r(X,Y ) = |X + Y | − |X| − |Y |

=

(
n∑

i=1

|X + Yi|

)
− |X| −

(
n∑

i=1

|Yi|

)

= (n− 1)|X|+
n∑

i=1

(|X + Yi| − |X| − |Yi|)

= (n− 1)|X|+
n∑

i=1

r(X,Yi) . (55)

From [13, Lemma 5.3], for all i ∈ [1, n], we have that

r(X,Yi) ≥ −1. (56)
Thus, from (55) and (56),

r(X,Y ) = (n− 1)|X|+
n∑

i=1

r(X,Yi) ≥ (n− 1)|X| − n ,

and thereby

n ≤ r(X,Y ) + 1

|X| − 1
+ 1.

Now we prove ii). If ui > l(X)− |X|+ 1, then the definition of ui yields that

|Yi| ≤
(

2(r(X,Yi) + 1)

|X| − 2
+

5

2

)
(|X| − 2) .

Assume from now on that ui ≤ l(X)−|X|+1. All the assumptions of Theorem 1.4
are satisfied by X,Yi and ui so there is z ∈ Z such that

|(X + Yi) ∩ [z, z + l(X)− 1]| ≥ l(X)− ui ≥ |X| − 1 ≥ 2. (57)

Hence (57) implies that [z, z + l(X) − 1] intersects X + Yi and thereby z ∈
[min(X + Yi) − l(X) + 1,max(X + Yi)]. Thus the assumptions of Theorem 1.3
are satisfied by X,Yi and z, and it implies that if wi := |(X+Yi)∩[z, z+l(X)−1]|,
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then

l(Yi) ≤ |Yi|+
(
l(X)− 1

)(2r(X,Yi)− 2wi + l(X) + 3

|X| − 2
+ 4

)
. (58)

Then (57) and (58) lead to

l(Yi) ≤ |Yi|+
(
l(X)− 1

)(2r(X,Yi)− l(X) + 2ui + 3

|X| − 2
+ 4

)
. �

We prove Corollary 1.6.

P r o o f. C o r o l l a r y 1.6. First we show by contradiction that

l(X) ≤ |X|+ r(X,Y ). (59)

Assume that l(X) ≥ |X|+ r(X,Y ) + 1. By assumption,

|Y | >
(
|X|+ r(X,Y )

)(5r(X,Y ) + |X|+ 3

2(|X| − 2)
+ 2

)
. (60)

Since l(X) − |X| − r(X,Y ) − 1 ≥ 0, we can apply Theorem 1.4 to X,Y and
l(X)− |X| − r(X,Y )− 1 by (60), and it yields that

r(X,Y ) ≥ l(X)− |X| −
(
l(X)− |X| − r(X,Y )− 1

)
= r(X,Y ) + 1

which is impossible. This proves (59).

Now we bound l(Y ). The assumption and (59) lead to

|Y | >
(
l(X)− 1

)(4r(X,Y ) + l(X) + 3

2(|X| − 2)
+ 2

)
.

Theorem 1.4 applied to X,Y and 0 implies the existence of z ∈ Z such that
|(X + Y ) ∩ [z, z + l(X)− 1]| = l(X). Setting u := |(X + Y ) ∩ [z, z + l(X)− 1]|,
Theorem 1.3 yields

l(Y ) ≤ |Y |+
(
l(X)− 1

)(2r(X,Y )− 2u+ l(X) + 3

|X| − 2
+ 4

)
= |Y |+

(
l(X)− 1

)(2r(X,Y )− l(X) + 3

|X| − 2
+ 4

)
. (61)

We conclude the proof as follows

l(Y ) ≤ |Y |+
(
l(X)− 1

)(2r(X,Y )− l(X) + 3

|X| − 2
+ 4

)
(by (61))

≤ |Y |+
(
l(X)− 1

)(2(r(X,Y ) + 1)

|X| − 2
+ 3

)
≤ |Y |+

(
|X|+ r(X,Y )− 1

)(2(r(X,Y ) + 1)

|X| − 2
+ 3

)
. (by (59))

�
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Now we show that, for arbitrary large values of r(X,Y ), the claims of The-
orem 1.3 and Theorem 1.4 (therefore also the claims of our corollaries) are not
trivial, however we do not know if they are optimal. Let r, x ∈ Z be such that
r, x ∈ [2,∞). Define

X3 := {0} ∪ [rx+ 1, (r + 1)x+ 1],

Y3 :=

(
r−1⋃
i=0

{i(rx+ 1)}

)
∪

(
2r⋃
i=r

[i(rx+ 1), i(rx+ 1) + (i− r)x]

)
,

z3 := 2r(rx+ 1) ,

X4 := [0, x] ∪ {(r + 1)x+ 1} ,

Y4 :=

(
r−1⋃
i=0

[i
(
(r + 1)x+ 1

)
, i
(
(r + 1)x+ 1

)
+ rx− 1]

)
,

∪

(
2r−1⋃
i=r

[
i
(
(r + 1)x+ 1

)
, i
(
(r + 1)x+ 1

)
+ (2r − i)x− 1

])
.

On the one hand, if x ≤ 3r+1
r−1 , then X3 and Y3 satisfy the properties of Theo-

rem 1.3 and

l(Y3) =|Y3|+
3r + 1

2
rx− 1

≥|Y3|+
r + 1

2
(3rx− x− 3)

=|Y3|+
(
l(X3)− 1

)
×
(

2r(X3, Y3)− 2|(X3 + Y3) ∩ [z3, z3 + l(X3)− 1]|+ l(X3)

2(|X3| − 2)

)
.

On the other hand, X4 and Y4 satisfy the properties of Theorem 1.4 and

|Y4| = r2x+
r(r + 1)

2
x = rx

(
3r + 1

2

)
≥ r + 1

2
(3rx− 2x− 5)

=
(
l(X4)− 1

)(2r(X4, Y4)− l(X4)

2(|X4| − 2)
− 1

2

)
,

but there is not z4 ∈ Z such that |(X4 + Y4) ∩ [z4, z4 + l(X4) − 1]| = l(X4).
Thus the pair (X3, Y3) (resp. (X4, Y4)) gives an example which shows that
Theorem 1.3 (resp. Theorem 1.4) is not trivial.
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