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ABSTRACT. Let q be an integer greater than or equal to 2, and let Sq(n) denote

the sum of digits of n in base q. For

α = [0; 1,m], m ≥ 2,

let Sα(n) denote the sum of digits in the Ostrowski α-representation of n. Let

m1,m2 ≥ 2 be integers with

gcd(q − 1,m1) = gcd(m,m2) = 1.

We prove that there exists δ > 0 such that for all integers r1, r2,

|{0 ≤ n < N : Sq(n) ≡ r1 (mod m1), Sα(n) ≡ r2 (mod m2)}|

=
N

m1m2
+O(N1−δ).

The asymptotic relation implied by this equality was proved by Coquet, Rhin &

Toffin and the equality was proved for the case α = [ 1 ] by Spiegelhofer.

Communicated by Werner Georg Nowak

1. Introduction

Let q be an integer greater than or equal to 2, and let Sq(n) denote the sum
of digits of n in base q. Much effort has been made to understand the behaviour
of this function. Bush [9] studied the asymptotic behaviour of its mean value. The
distribution of the values of this function has also been investigated [15]. There
has been a keen interest in the sum of digits of primes [18] and polynomials [4].
(We also refer to [5], [12] and the references there for other related results.)
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Throughout this paper, q, q1, q2,m1,m2 denote integers greater than or equal
to 2. Gel′fond [13] proved that if m1 is coprime to q−1, then the function Sq(n)
is uniformly distributed modulo m1. Further, he conjectured that if

gcd(q1, q2) = gcd(m1, q1 − 1) = gcd(m2, q2 − 1) = 1,

then there exists δ = δ(q1, q2,m1,m2) > 0 such that

|{0 ≤ n < N : Sq1(n) ≡ r1 (mod m1), Sq2(n) ≡ r2 (mod m2)}|

=
N

m1m2
+O(N1−δ)

for all integers r1, r2. The asymptotic relation implied in this conjecture was
proved by Bésineau [7]; while the conjecture was proved in its full strength
by Kim [16] (See also [5] for some recent improvements of Kim’s result).

In this paper we are concerned with the above problem for the sum of dig-
its functions of the base-q and Ostrowski representation of integers. In 1922,
Ostrowski [19] discovered a numeration system based on continued fractions.
He showed that the sequence of the denominators of the convergents to the sim-
ple continued fraction expansion of an irrational number forms the basis for a
numeration system. More precisely, he proved the following result.

Theorem 1.1. [1, Theorem 3.9.1] Let α be an irrational real number having
continued fraction expansion [a0; a1, . . .]. Let (qi)i≥0 be the sequence of the de-
nominators of the convergents to the continued fraction expansion. Then every
non-negative integer n can be expressed uniquely as

n =
∑

0≤i≤`

biqi, (1)

where the bi’s are integers satisfying

(i) 0 ≤ b0 < a1.

(ii) 0 ≤ bi ≤ ai+1 for i ≥ 1.

(iii) For i ≥ 1, if bi = ai+1, then bi−1 = 0.

In fact, the three conditions above are equivalent to the inequality

b0q0 + b1q1 + · · ·+ biqi < qi+1. (2)

Note that Condition (iii) states that the relation qi+1 = ai+1qi + qi−1 can-
not be used to replace a linear combination of summands with another sum-
mand. The expression given in (1) is called the Ostrowski α-representation of n.
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See [6] for a survey on the connections between the Ostrowski numeration sys-
tems and combinatorics of words, and [3] for a study of ergodic and topological-
dynamical properties of various dynamical systems associated to Ostrowski α-
-representations. We refer to [8] for an analysis of the asymptotic average of the
number of non-zero terms required in these representations.

If the Ostrowski α-representation of a positive integer n is given by

n =
∑

0≤i≤`

bi(n)qi, (3)

let

Sα(n) =
∑

0≤i≤`

bi(n)

be the sum of digits. In [10], Coquet, Rhin & Toffin studied the relation between
the functions Sq(n) and Sα(n). They proved the following theorem.

Theorem. Let q be an integer greater than or equal to 2 and let α be an irra-
tional real number. The sequence n→ xSq(n) + ySα(n) is uniformly distributed
modulo 1 if and only if at least one of x and y is irrational.

In [20], Spiegelhofer considered the case when

α =
1 +
√

5

2
= [1].

(Note that in this case, the sequence (qi) is the sequence of Fibonacci numbers
and that every non-negative integer can be uniquely expressed as a sum of non-
consecutive Fibonacci numbers. This representation is known as the Zeckendorf
representation of integers (see [23]).) He proved that if θ ∈ R and γ ∈ R \ Z,
then ∑

n<N

e
(
θSq(n) + γSα(n)

)
= O(N1−δ)

for some δ > 0. (Throughout this paper, e(x) denotes exp(2πix).) As a conse-
quence, he obtained

Theorem. [20, Corollary 5.3] Let α = (1 +
√

5)/2 and let q,m1,m2 ≥ 2
be integers with gcd(m1, q − 1) = 1. There exists δ > 0 such that for all
integers r1, r2,

|{0 ≤ n < N : Sq(n) ≡ r1 (mod m1), Sα(n) ≡ r2 (mod m2)}|

=
N

m1m2
+O(N1−δ).
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In [11], Coquet, Rhin & Toffin gave three sufficient conditions for the set

{n ∈ N : Sq(n) ≡ r1 (mod m1), Sα(n) ≡ r2 (mod m2)}

to have asymptotic density equal to 1/(m1m2). One of these conditions is that
the sequence (qk) be lacunary and gcd(ak,m2) be equal to one for infinitely
many indices k. Note that this condition is satisfied for

α = [0; 1,m] =
−m+

√
m2 + 4m

2
, m ≥ 2

as

qk+1

qk
≥

1 + qk−1

qk
≥ 1 + 1

m+1 if ak+1 = 1,

m+ qk−1

qk
≥ m+ 1

2 if ak+1 = m.

For these values of α, we improve the above asymptotic estimate to an estimate
with error term O(N1−δ). Let ‖x‖ = min

j∈Z
|x− j|. We prove

Theorem 1.2. Let q ≥ 2 be an integer and let

α = [0; 1,m], m ≥ 2.

Let θ, γ ∈ R with ‖mγ‖ 6= 0. Then there exists δ > 0 such that∑
n<N

e
(
θSq(n) + γSα(n)

)
= O(N1−δ).

As a consequence, we obtain

Corollary 1.3. Let q and α be as in Theorem 1.2 and let m1,m2 ≥ 2 be
integers with gcd(q − 1,m1) = gcd(m,m2) = 1. There exists δ > 0 such that for
all integers r1, r2,

|{0 ≤ n < N : Sq(n) ≡ r1 (mod m1), Sα(n) ≡ r2 (mod m2)}|

=
N

m1m2
+O(N1−δ).

The proof relies on Weyl’s and van der Corput’s method. In Section 2, we
introduce some notation and record some preliminary lemmas. Following [20],
we obtain a characterization of integers with the same initial digits in their
Ostrowski α-representations in Section 3. We then use it to obtain an ana-
logue of inverse discrete Fourier transform in this case and also derive a uniform
upper bound for the Fourier coefficients. Finally, we prove Theorem 1.2 and
Corollary 1.3 in Section 4.
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2. Preliminaries

Let q,m, α, θ, γ be as in the statement of Theorem 1.2. Let dxe denote the
smallest integer greater than or equal to x and {x} denote the fractional part
of x. Recall that the Vinogradov symbol f � F means that there is a constant
c such that the inequality |f | ≤ cF holds. The implied constant c can depend
on q,m, γ. We will repeatedly use the fact that for real numbers x, y and a
positive integer a, we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖ and hence ‖ax‖ ≤ a‖x‖.
Since

α = [0; 1,m],

we have q0 = q1 = 1 and

qi =

{
mqi−1 + qi−2 if i is even,

qi−1 + qi−2 if i is odd.

Let d = m2 + 4m and

ϕ =
m+ 2 +

√
d

2
. (4)

Then

q2` =
m+

√
d

2
√
d

ϕ` − m−
√
d

2
√
d

ϕ−`, (5)

q2`+1 =
1√
d
ϕ`+1 − 1√

d
ϕ−`−1.

By Theorem 1.1, the digits in the α-representation (3) of a positive integer n
satisfy b2`(n) ≤ 1 and b2`+1(n) ≤ m

for all non-negative integers `. Given an integer k ≥ 1, let tα(n; k) denote the
truncation of the sum in (3) after k digits, i.e.,

tα(n; k) =
∑

0≤i≤k−1

bi(n)qi

and let Sα,k(n) denote the sum of the first k digits, i.e.,

Sα,k(n) =
∑

0≤i≤k−1

bi(n).

By (2),

tα(n; k) < qk. (6)

Next, let

Sq,t(n) = Sq
(
n( mod qt)

)
.
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Let Gt(`) = Gt(`, θ) denote the discrete Fourier coefficients of the function
e
(
θSq(n)

)
, i.e.,

Gt(`, θ) =
1

qt

∑
u<qt

e
(
θSq(u)− `uq−t

)
.

Then

e
(
θSq,t(n)

)
=
∑
`<qt

e(`nq−t)Gt(`, θ), (7)

e
(
−θSq,t(n)

)
=
∑
`<qt

e(`nq−t)Gt(−`, θ). (8)

Note that, by Parseval’s identity,∑
`<qt

|Gt(`)|2 = 1. (9)

For negative integers n, we define

Sq(n) = Sα(n) = 0.

We now list some results needed in the proof. The following is an elementary
lemma on exponential sums.

Lemma 2.1. Let x ∈ R and N,R ≥ 0. Then

(i) [17, Lemma1] ∣∣∣∣∣∑
n<N

e(nx)

∣∣∣∣∣ ≤ min

(
N,

1

2‖x‖

)
.

(ii) ∑
|r|<R

(R− |r|)e(rx) =

∣∣∣∣∣∑
r<R

e(rx)

∣∣∣∣∣
2

.

We now record an estimate from [20], which is proved using a discrepancy
estimate for the sequence (nϕ), where ϕ has bounded partial quotients. We use
it for ϕ as given in (4).

Lemma 2.2. [20, Lemma 5.8] Let I be a finite interval in Z. Let K and a be
real numbers with K ≥ 1. Then∑

h∈I

min

(
K,

1

‖a+ hϕ‖2

)
�
√
Kλ(I) +K lnλ(I).

(Here, λ denotes the Lebesgue measure on R.)
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Next, we state the version of the Weyl-van der Corput inequality that will be
used later.

Lemma 2.3. [14, Lemma 2.5] Let z0, . . . , zN−1 be complex numbers. For all
positive integers R, we have∣∣∣∣∣

N−1∑
n=0

zn

∣∣∣∣∣
2

≤ N +R

R

∑
|r|<R

(
1− |r|

R

) ∣∣∣∣∣∣∣∣
∑

0≤n<N
0≤n+r<N

znzn+r

∣∣∣∣∣∣∣∣ .
The following lemma states that for most integers n, the representations of n

and n+ r may differ at digits corresponding to the first few base elements only.

Lemma 2.4. Let N, r, k, t be non-negative integers with k ≥ 2 and let θ, γ be real
numbers. Then

(i)
∣∣∣{n < N : e

(
θSq(n+ r)

)
e
(
θSq(n)

)
6= e
(
θSq,t(n+ r)

)
e
(
θSq,t(n)

)}∣∣∣
≤ Nr

qt
+ r.

(ii)
∣∣∣{n < N : e

(
γSα(n+ r)

)
e
(
γSα(n)

)
6= e
(
γSα,k(n+ r)

)
e
(
γSα,k(n)

)}∣∣∣
≤ Nr

qk−1
.

P r o o f.
See [20, Lemma 1.17] for a proof of (i) and [21, Lemma 2.6] for a proof of (ii). �

3. Lemmas

We first derive a characterization (Corollary 3.3) of integers n with the same
value of tα(n; k), for a given k. Later, we use this to obtain the discrete Fourier
transform for the function e

(
γSα,k(n)

)
. This is analogous to [20, Proposition 5.7

& Proposition 5.4].

Lemma 3.1. Let k ≥ 2 be an integer. Let pk(n) = (−1)knϕ, where ϕ is as in (4).
Define

A
(1)
k =


[
m−
√
d

2ϕk0
, 1
ϕk0

)
if k = 2k0, k0 ∈ N,[

−1
ϕk0+1 ,

−m+
√
d

2ϕk0

)
if k = 2k0 + 1, k0 ∈ N,

7



DIVYUM SHARMA

A
(2)
k =


[
m−
√
d

2ϕk0
, 1
ϕk0+1

)
if k = 2k0, k0 ∈ N,[

−1
ϕk0+1 ,

−m−1+
√
d

ϕk0

)
if k = 2k0 + 1, k0 ∈ N,

and

Rk(u) = pk(u) +

A
(1)
k if 0 ≤ u < qk−1,

A
(2)
k if qk−1 ≤ u < qk.

Then

pk(n) ∈ Rk
(
tα(n; k)

)
+ Z.

P r o o f. By (5) and the definition of tα(n; k),

nϕ− tα(n; k)ϕ

=
∑

`≥dk/2e

b2`(n)ϕ

(
m+

√
d

2
√
d

ϕ` − m−
√
d

2
√
d

ϕ−`

)

+
∑

`≥d(k−1)/2e

b2`+1(n)ϕ

(
ϕ`+1

√
d
− ϕ−`−1√

d

)
=

∑
`≥dk/2e

b2`(n)q2`+2

+
m−

√
d

2
√
d

∑
`≥dk/2e

b2`(n)(ϕ−`−1 − ϕ−`+1)

+
∑

`≥d(k−1)/2e

b2`+1(n)q2`+3

+
1√
d

∑
`≥d(k−1)/2e

b2`+1(n)(ϕ−`−2 − ϕ−`)

=
∑

`≥dk/2e

b2`(n)q2`+2

+
∑

`≥d(k−1)/2e

b2`+1(n)q2`+3

+
(−m+

√
d)

2

∑
`≥dk/2e

b2`(n)

ϕ`
−

∑
`≥d(k−1)/2e

b2`+1(n)

ϕ`+1
.

Note that the first two terms in the above expression are integers.
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We first consider the case when k is even. Write k = 2k0, k0 ∈ N. Now∑
`≥d(k−1)/2e

b2`+1(n)

ϕ`+1
≤ m

∑
`≥k0

1

ϕ`+1
=
−m+

√
d

2ϕk0

since 1

1− ϕ−1
=

2

−m+
√
d
.

Suppose that bk−1(n) = 0. Then

(−m+
√
d)

2

∑
`≥dk/2e

b2`(n)

ϕ`
≤ (−m+

√
d)

2

∑
`≥k0

1

ϕ`
=

1

ϕk0
.

If bk−1(n) 6=0, then by condition (iii) of Theorem 1.1, bk(n) 6=1. Hence bk(n)=0
and

(−m+
√
d)

2

∑
`≥dk/2e

b2`(n)

ϕ`
≤ (−m+

√
d)

2

∑
`≥k0+1

1

ϕ`
=

1

ϕk0+1
.

Further, note that if bk−1(n) = 0, then tα(n; k) = tα(n; k− 1) and hence by (6),

tα(n; k) = tα(n; k − 1) < qk−1.

If bk−1(n) 6= 0, then

tα(n; k) =
∑

0≤i≤k−1

bi(n)qi ≥ qk−1.

This proves the lemma when k is even. Next, we consider the case when k is odd.
Write k = 2k0 + 1, k0 ∈ N. Then

n(−ϕ)− tα(n; k)(−ϕ)

≡ (m−
√
d)

2

∑
`≥k0+1

b2`(n)

ϕ`
+
∑
`≥k0

b2`+1(n)

ϕ`+1
(mod 1).

Since ∑
`≥k0+1

b2`(n)

ϕ`
≤ 1

ϕk0+1

2

−m+
√
d
,

we get

(m−
√
d)

2

∑
`≥k0+1

b2`(n)

ϕ`
≥ − 1

ϕk0+1
.

Suppose that bk−1(n) = 0. Then∑
`≥k0

b2`+1(n)

ϕ`+1
≤ m

ϕk0+1

2

−m+
√
d

=
−m+

√
d

2ϕk0
.
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If bk−1(n) 6= 0, then by condition (iii) of Theorem 1.1, bk(n) 6= m. Hence∑
`≥k0

b2`+1(n)

ϕ`+1
≤ m− 1

ϕk0+1
+m

∑
`≥k0+1

1

ϕ`+1

=
m− 1

ϕk0+1
+
−m+

√
d

2ϕk0+1

=
−m− 1 +

√
d

ϕk0
.

As before, this proves the lemma when k is odd. �

Lemma 3.2. Fix an integer k ≥ 2. The sets

Rk(u) + Z, 0 ≤ u < qk,

form a partition of R.

P r o o f. For each integer u with 0 ≤ u < qk, let

R̃k(u) = Rk(u) mod 1.

This set is the union of at most two intervals. Further, the sum of the measures
of the sets R̃k(u) is 1. To prove this, we first consider the case when k is even.
Write k = 2k0. By Lemma 3.1, if 0 ≤ u < qk−1, then the measure of Rk(u)

1

ϕk0
− m−

√
d

2ϕk0
=

2−m+
√
d

2ϕk0
.

Further, the measure of R̃k(u) is equal to the measure of Rk(u) as

1

ϕk0
− m−

√
d

2ϕk0
< 1.

Similarly, if qk−1 ≤ u < qk, then the measure of R̃k(u) is

1

ϕk0+1
− m−

√
d

2ϕk0
=

1

2ϕk0

(
2ϕ−1 −m+

√
d
)

=
1

2ϕk0

(
m+ 2−

√
d−m+

√
d
)

=
1

ϕk0
.

10
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Hence, the sum of measures of the sets R̃k(u) is

2−m+
√
d

2ϕk0
qk−1 +

1

ϕk0
(qk − qk−1)

=
2−m+

√
d

2ϕk0
qk−1 +

1

ϕk0

(
(m− 1)qk−1 + qk−2

)
=
m+

√
d

2ϕk0
qk−1 +

1

ϕk0
qk−2

=
m+

√
d

2ϕk0

(
1√
d
ϕk0 − 1√

d
ϕ−k0

)
+

1

ϕk0

(
m+

√
d

2
√
d

ϕk0−1 − m−
√
d

2
√
d

ϕ−(k0−1)

)

=
m+

√
d

2
√
d

(1 + ϕ−1)

− 1

ϕ2k0

(
m+

√
d

2
√
d

+
m−

√
d

2
√
d

ϕ

)
= 1− 0 = 1.

A similar calculation shows that the sum of measures also equals one when k is
odd. Now we show that the sets R̃k(u) cover the interval [0, 1). If not, pick

x ∈ [0, 1)
∖ ⋃

0≤u<qk

R̃k(u).

Then, there exists ε > 0 such that the sets [x, x + ε] and
⋃
R̃k(u) are disjoint.

Since ϕ is irrational, the sequence ({pk(n)}) is dense in [0, 1) by Kronecker’s
theorem (see, for example, [2, Theorem 7.7]). Hence there is an integer n0 such
that {pk(n0)} ∈ [x, x+ ε]. Therefore

{pk(n0)} /∈
⋃

0≤u<qk

R̃k(u).

This contradicts Lemma 3.1. Thus the interval [0, 1) is the union of the sets R̃k(u).

Finally, we show that these sets are disjoint. If not, there exist x, v, w with
v 6= w, such that

x ∈ R̃k(v) ∩ R̃k(w).

Then there is an ε > 0 such that

λ
(
R̃k(v) ∩ R̃k(w)

)
≥ ε.

11
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Thus

1 = λ

 ⋃
0≤u<qk

R̃k(u)


= λ

(R̃k(v) \
(
R̃k(v) ∩ R̃k(w)

))
∪
⋃
u6=v

R̃k(u)


≤

∑
0≤u<qk

λ
(
R̃k(u)

)
− ε = 1− ε,

which is a contradiction. Therefore the sets R̃k(u) must be disjoint. �

As an immediate consequence of Lemmas 3.1 and 3.2, we get

Corollary 3.3. Let n ≥ 0, k ≥ 2 and 0 ≤ u < qk. Then

tα(n; k) = u

if and only if
(−1)knϕ ∈ Rk(u) + Z.

We now present an inversion formula as in (7) for the function e
(
γSα,k(n)

)
.

Lemma 3.4. Let γ ∈ R and h, n ∈ Z with n ≥ 0. Let H, k be positive integers
with k ≥ 2. Define

M
(1)
k (h, γ) =

∑
0≤u<qk−1

e
(
γSα(u)− hpk(u)

)
,

M
(2)
k (h, γ) =

∑
qk−1≤u<qk

e
(
γSα(u)− hpk(u)

)
,

where pk(u) is as defined in Lemma 3.1. For |h| ≤ H, there exist complex num-

bers b
(1)
H (h), b

(2)
H (h), c

(1)
H (h) and c

(2)
H (h) with

b
(1)
H (0) =


2−m+

√
d

2ϕk0
if k = 2k0, k0 ∈ Z,

1
ϕk0

if k = 2k0 + 1, k0 ∈ Z,

b
(2)
H (0) =


1
ϕk0

if k = 2k0, k0 ∈ Z,
−m+

√
d

2ϕk0
if k = 2k0 + 1, k0 ∈ Z,

and for i = 1, 2,

|b(i)H (h)| ≤ min

(
b
(i)
H (0),

1

|h|

)
if h 6= 0,

|c(i)H (h)| ≤ 2

12
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such that

e
(
γSα,k(n)

)
=

2∑
i=1

( ∑
|h|≤H

b
(i)
H (h)e

(
hpk(n)

)
M

(i)
k (h, γ)

)

+O

(
1

H

∑
|h|≤H

c
(1)
H (h)e

(
hpk(n)

) ∑
0≤u<qk−1

e
(
−hpk(u)

))

+O

(
1

H

∑
|h|≤H

c
(2)
H (h)e

(
hpk(n)

) ∑
qk−1≤u<qk

e
(
−hpk(u)

))
,

where the expressions within the O-parentheses are non-negative real numbers.

P r o o f. Let u ∈ [0, qk) be an integer and let

χu = χRk(u)+Z,

denote the indicator function of Rk(u) + Z. Using Corollary 3.3, we get

e
(
γSα,k(n)

)
= e
(
γSα

(
tα(n; k)

))
=
∑

0≤u<qk

e
(
γSα(u)

)
χu
(
pk(n)

)
=

∑
0≤u<qk−1

e
(
γSα(u)

)
χu
(
pk(n)

)
+

∑
qk−1≤u<qk

e
(
γSα(u)

)
χu
(
pk(n)

)
.

Using Vaaler’s [22] trigonometric polynomial approximation to the function
{x} − 1/2, one obtains (see [20, Eqn. (5.7)]),

χ[a,b)+Z(x) =
∑
|h|≤H

a′H(h)e
(
h(x− b)

)
+O

(
κH(x− b) + κH(x− a)

)
,

where
a′H(0) = b− a, |a′H(h)| ≤ min

(
b− a, 1

|h|

)
if h 6= 0 (10)

and
κH(t) =

1

2(H + 1)

∑
|h|≤H

(
1− |h|

H + 1

)
e(ht).

Further, κH(t) is a non-negative real number for all real numbers t. Write

Rk(u) = [pk(u) + c, pk(u) + d),

where the values of c and d can be seen from Lemma 3.1.

13
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Then, ∑
0≤u<qk−1

e
(
γSα(u)

)
χu
(
pk(n)

)
=
∑
|h|≤H

b
(1)
H (h)e

(
hpk(n)

) ∑
0≤u<qk−1

e
(
γSα(u)− hpk(u)

)

+O

 ∑
β∈{c,d}

∑
0≤u<qk−1

κH
(
pk(n)− pk(u)− β

) ,

where

b
(1)
H (h) = a′H(h)e(−hd).

Using (10), we get

b
(1)
H (0) = d− c

and ∣∣b(1)H (h)
∣∣ ≤ min

(
b
(1)
H (0),

1

|h|

)
if h 6= 0.

Let β ∈ {c, d}. Since κH(t) is a non-negative real number for all real numbers t,
we have ∣∣∣∣∣∣

∑
0≤u<qk−1

κH(pk(n)− pk(u)− β)

∣∣∣∣∣∣
≤ 1

H

∑
|h|≤H

(
1− |h|

H + 1

) ∑
0≤u<qk−1

e(h(pk(n)− pk(u)− β)).

Thus, we obtain the term with i = 1 claimed in the lemma with

c
(1)
H (h) =

(
1− |h|

H + 1

)(
e(−hc) + e(−hd)

)
,

whose absolute value is at most 2. Similarly, by considering the sum∑
qk−1≤u<qk

e
(
γSα(u)

)
χu
(
pk(n)

)
,

we obtain the term with i = 2. �

Lemma 3.5. Let γ ∈ R with ‖mγ‖ 6= 0. Then there exist C, η > 0 such that
for all β ∈ R and k ≥ 2, we have∣∣∣∣∣∣ 1

qk

∑
0≤u<qk

e(γSα(u) + βu)

∣∣∣∣∣∣ ≤ Ce−kη.
14
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P r o o f. Set
µk = µk(γ, β) =

1

qk

∑
0≤u<qk

e
(
γSα(u) + βu

)
,

M̃k = max(|µk|, |µk−1|) and ck = γ + βqk.

By [11, Lemma 4 & p. 333], (M̃k) is a decreasing sequence and for k ≥ 1,

M̃k+2 ≤ M̃k−1

(
1−min

(
1

12
,

3

20

(
1 +

1

ak
− 1

ak+1

)
a2k+1‖ck‖2

))
≤ M̃k−1

(
1−min

(
1

12
,

3

20m
‖ck‖2

))
=: M̃k−1ψk, (11)

as ai ∈ {1,m} for i ≥ 1. Observe that

‖ak+3γ‖ = ‖ak+3γ + β(ak+3qk+2 + qk+1 − qk+3)‖

≤ ‖ck+1‖+ ak+3‖ck+2‖+ ‖ck+3‖.

Thus

min(‖γ‖, ‖mγ‖) ≤ m
∑

1≤i≤3

‖ck+i‖,

implying that for every k, there exists i ∈ {1, 2, 3} such that

‖ck+i‖ ≥
min(‖γ‖, ‖mγ‖)

3m

and hence

ψk+i ≤ 1−min

(
1

12
,

min(‖γ‖, ‖mγ‖)2

60m3

)
= 1− min(‖γ‖, ‖mγ‖)2

60m3
=: ψ.

Since ‖mγ‖ 6= 0, ψ < 1. Fix k. Then there exists ki ∈ {k − 2, k − 3, k − 4} such

that ψki ≤ ψ. Using (11) and the fact that (M̃j) is a decreasing sequence, we get

M̃k ≤ M̃ki+2 ≤ M̃ki−1ψki ≤ M̃k−5ψ.

Applying this repeatedly, we get

M̃k ≤ M̃5ψ
k/5−2,

completing the proof of the lemma. �

15
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4. Proof of Theorem 1.2

With all the ingredients in place, the theorem follows as in [20]. We include
the details below. Set

R = bNa−ηa/(2 lnϕ)c, H = bN4a+ ηa/(2 lnϕ)c,
t = ba lnN/ ln qc, k = 1+b2a lnN/ lnϕc,

where η is as in Lemma 3.5, ϕ is as in (4) and a is sufficiently small. Let

gq(n) = e
(
θSq(n)

)
, gq,t(n) = e

(
θSq,t(n)

)
,

gα(n) = e
(
γSα(n)

)
, gα,k(n) = e

(
γSα,k(n)

)
and

g(n) = gq(n)gα(n).

By Lemma 2.3, we get∣∣∣∣∣∑
n<N

g(n)

∣∣∣∣∣
2

� N

R

∑
|r|<R

(
1− |r|

R

) ∣∣∣∣∣∣
∑

0≤n,n+r<N

g(n+ r)g(n)

∣∣∣∣∣∣ .
Removing the condition n+ r < N from the second sum gives an error which is

� N

R

∑
|r|<R

(
1− |r|

R

) ∣∣∣∣∣∣
∑

N≤n+r<N+R

g(n+ r)g(n)

∣∣∣∣∣∣
≤ N

R

∑
|r|<R

(
1− |r|

R

) ∑
N≤n+r<N+R

1

≤ N

R

∑
|r|<R

(
1− |r|

R

)
R =

N

R

∑
|r|<R

(R− |r|)� NR.

Thus∣∣∣∣∣∑
n<N

g(n)

∣∣∣∣∣
2

� N

R

∑
|r|<R

(
1− |r|

R

) ∣∣∣∣∣∣
∑

0≤n<N

g(n+ r)g(n)

∣∣∣∣∣∣+O(NR). (12)

We denote by N ′ the largest multiple of qt not exceeding N . Restricting the
second sum in (12) to N ′ gives an error which is

� N

R

∑
|r|<R

(
1− |r|

R

)
qt =

Nqt

R2

∑
|r|<R

(R− |r|)� Nqt.

16
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Hence ∣∣∣∣∣∑
n<N

g(n)

∣∣∣∣∣
2

� N

R

∑
|r|<R

(
1− |r|

R

) ∣∣∣∣∣∣
∑

0≤n<N ′
g(n+ r)g(n)

∣∣∣∣∣∣
+O(NR+Nqt). (13)

From the definitions of the functions g, gq, gα, we get

g(n+ r)g(n) = gq(n+ r)gα(n+ r)gq(n) gα(n)

= e
(
θSq(n+ r)

)
e
(
γSα(n+ r)

)
e
(
−θSq(n)

)
e
(
−γSα(n)

)
= e
(
θ
(
Sq(n+ r)− Sq(n)

))
e
(
γ
(
Sα(n+ r)− Sα(n)

))
.

Therefore for a fixed r, we have∣∣∣∣∣∣
∑

0≤n<N ′
g(n+ r)g(n)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

0≤n<N ′
e
(
θ
(
Sq(n+ r)− Sq(n)

))
e
(
γ
(
Sα(n+ r)− Sα(n)

))∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

0≤n<N ′
e
(
θ
(
Sq,t(n+ r)− Sq,t(n)

))
e
(
γ
(
Sα,k(n+ r)− Sα,k(n)

))∣∣∣∣∣∣
+

∑′

0≤n<N ′
1

=

∣∣∣∣∣∣
∑

0≤n<N ′
gq,t(n+ r)gq,t(n)gα,k(n+ r)gα,k(n)

∣∣∣∣∣∣+
∑′

0≤n<N ′
1,

where the second sum
∑′

runs over those integers n for which either

e
(
θ
(
Sq(n+ r)− Sq(n)

))
6= e
(
θ
(
Sq,t(n+ r)− Sq,t(n)

))
or

e
(
γ
(
Sα(n+ r)− Sα(n)

))
6= e
(
γ
(
Sα,k(n+ r)− Sα,k(n)

))
.

Substituting in (13), we get

17
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n<N

g(n)

∣∣∣∣∣
2

� N

R

∑
|r|<R

(
1− |r|

R

) ∣∣∣∣∣∣
∑

0≤n<N ′
gq,t(n+ r)gq,t(n)gα,k(n+ r)gα,k(n)

∣∣∣∣∣∣
+
N

R

∑
|r|<R

(
1− |r|

R

) ∑′

0≤n<N ′
1

+O(NR+Nqt). (14)

Now by Lemma 2.4, ∑′

0≤n<N ′
1 ≤

(
Nr

qt
+ r

)
+

Nr

qk−1
.

Therefore,

N

R

∑
|r|<R

(
1− |r|

R

) ∑′

0≤n<N ′
1

 ≤ N

R

∑
|r|<R

∑′

0≤n<N ′
1

≤ N

R

∑
|r|<R

(
Nr

qt
+ r +

Nr

qk−1

)
=
N

R

(
N

qt
+ 1 +

N

qk−1

) ∑
|r|<R

r

� N

R

(
N

qt
+ 1 +

N

qk−1

)
R2 =

N2R

qt
+NR+

N2R

qk−1
.

Substituting in (14), we obtain

∣∣∣∣∣∑
n<N

g(n)

∣∣∣∣∣
2

� N

R

∑
|r|<R

(
1− |r|

R

) ∣∣∣∣∣∣
∑

0≤n<N ′
gq,t(n+ r)gq,t(n)gα,k(n+ r)gα,k(n)

∣∣∣∣∣∣
+O

(
NR+Nqt +

N2R

qt
+
N2R

qk−1

)
.

From (5), it follows that ϕ(k−1)/2 � qk−1. Using this and the choice of R, t, k,
we find that

NR+Nqt +
N2R

qt
+
N2R

qk−1

� N1+a−ηa/(2 lnϕ) +Nqa lnq N +
N2Na−ηa/(2 lnϕ)

qa lnq N
+
N2Na−ηa/(2 lnϕ)

ϕa lnϕN

� N1+a +N2−ηa/(2 lnϕ).
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Thus∣∣∣∣∣∑
n<N

g(n)

∣∣∣∣∣
2

� N

R

∑
|r|<R

(
1− |r|

R

) ∣∣∣∣∣∣
∑

0≤n<N ′
gq,t(n+ r)gq,t(n)gα,k(n+ r)gα,k(n)

∣∣∣∣∣∣
+O

(
N1+a +N2−ηa/(2 lnϕ)

)
. (15)

We use the expressions for gq,t(n + r), gq,t(n), gα,k(n + r), gα,k(n) from (7), (8)
and Lemma 3.4. In the product gα,k(n+ r)gα,k(n), there are sixteen summands
of the following three kinds: four products of the main terms in the expressions
for gα,k(n + r) and gα,k(n), eight products of the main terms and error terms,
four products of the error terms. We now consider these three cases separately.

Case I. (Summands with both factors as main terms.)
Let h = h1 + h2 and ` = `1 + `2. We need to estimate

N

R2

∑
`1,`2<q

t

|h1|,|h2|≤H

Gt(`1)Gt(−`2)b
(i)
H (h1)b

(j)
H (−h2)M

(i)
k (h1, γ)M

(j)
k (−h2, γ)

×
∑
|r|<R

(R− |r|)e

(
r

(
`1
qt

+ h1(−1)kϕ

)) ∑
n<N ′

e

(
n

(
`

qt
+ (−1)khϕ

))
. (16)

We first consider the subcase when h = 0. If ` 6≡ 0 (mod qt), then∑
n<N ′

e
(
n`q−t

)
= 0

as qt|N ′. Hence we assume that ` ≡ 0 (mod qt). Therefore, Gt(−`2) = Gt(`1),
implying that

Gt(`1)Gt(−`2) = |Gt(`1)|2. (17)

We will estimate the sum over n trivially. By Lemma 2.1(ii) and (i),∑
|r|<R

(R− |r|)e

(
r

(
`1
qt

+ h1(−1)kϕ

))
=

∣∣∣∣∣∑
r<R

e

(
r

(
`1
qt

+ h1(−1)kϕ

))∣∣∣∣∣
2

≤

(
min

(
R,

1

2

∥∥`1q−t + h1(−1)kϕ
∥∥−1))2

≤ min

(
R2,

∥∥∥∥`1qt + h1(−1)kϕ

∥∥∥∥−2
)
. (18)

Next,
|M (j)

k (−h2, γ)| ≤ qk � qk−1 (19)

as
qk ≤ (m+ 1)qk−1.
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By Lemma 3.4, ∣∣b(j)H (0)
∣∣ ≤ 2

ϕk0
≤ 2

qk
,

since qk ≤ ϕk0 by (5). Again, by Lemma 3.4 and the fact that h = h1 + h2 = 0,
we get ∣∣b(j)H (−h2)

∣∣ =
∣∣b(j)H (h1)

∣∣� min

(
1

qk
,

1

|h1|

)
if h1 6= 0. (20)

Similarly, ∣∣b(i)H (h1)
∣∣� 1

qk
, (21)

implying that∣∣b(i)H (h1)M
(i)
k (h1, γ)

∣∣� 1

qk

∣∣∣∣∣∑
u

e
(
γSα(u)− hpk(u)

)∣∣∣∣∣ ,
where the sum either runs over u < qk−1 or qk−1 ≤ u < qk. Thus by the triangle
inequality∣∣b(i)H (h1)M

(i)
k (h1, γ)

∣∣
≤ 1

qk

∣∣∣∣∣ ∑
u<qk−1

e
(
γSα(u)− hpk(u)

)∣∣∣∣∣+
1

qk

∣∣∣∣∣∑
u<qk

e
(
γSα(u)− hpk(u)

)∣∣∣∣∣
≤ Ce−(k−1)η + Ce−kη � e−(k−1)η, (22)

where the last step follows from Lemma 3.5 and the inequality qk−1 ≤ qk.
Combining the estimates (17)-(20) and (22), we find that the expression in (16) is

� N2qk−1
eη(k−1)R2

∑
`1<qt

|Gt(`1)|2
∑
|h1|≤H

min

(
1

qk
,

1

|h1|

)
min

(
R2,

∥∥∥∥`1qt + h1(−1)kϕ

∥∥∥∥−2).
Using (9), the above expression is

� N2qk−1
eη(k−1)R2

sup
`1∈Z

∑
|h|≤H

min

(
1

qk
,

1

|h|

)
min

(
R2, ‖`1q−t + |h|ϕ‖−2

)
.

Write
|h| = sqk + h̃, 0 ≤ h̃ < qk.

Then
|h|−1 ≤ (sqk)−1 and min

(
1/(sqk), 1/qk

)
= 1/(sqk).

Hence the preceeding expression is

� N2qk−1
eη(k−1)R2

∑
s≤H/qk

1

sqk
× sup

`1∈Z

∑
h̃<qk

min
(
R2, ‖`1q−t + (sqk + h̃)ϕ‖−2

)
.
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By Lemma 2.2 and the inequality
∑
s≤x s

−1 � lnx, we obtain the bound

� N2

eη(k−1)R2
lnH(Rqk +R2 ln qk)� N2

eη(k−1)
lnH(qk−1R

−1 + ln qk−1).

By the choice of H,R, k and the fact that qk−1 ≤ ϕ(k−1)/2 (from (5)), the con-
tribution in this subcase is

�
(

4a+
ηa

2 lnϕ

)
N2 lnN

eη(2a lnN/ lnϕ)

(
ϕa lnϕN

Na−ηa/(2 lnϕ)
+ lnϕa lnϕN

)
=

(
4a+

ηa

2 lnϕ

)
lnN

(
N2−3ηa/(2 lnϕ) + aN2−2ηa/ lnϕ lnN

)
.

Next, we consider the case when h 6= 0. Since ϕ is badly approximable,
there is a constant c1 such that for all integers `′, h′ with h′ 6= 0,∣∣∣∣ϕ+

`′

h′qt

∣∣∣∣ > c1
(h′qt)2

.

Thus

‖hϕ+ `q−t‖ = min
j∈Z
|hϕ− j + `q−t| = min

j∈Z
|h|
∣∣∣ϕ− jqt − `

hqt

∣∣∣
> |h| c1

(hqt)2
=

c1
|h|q2t

. (23)

We estimate Gt and the sum over r trivially. Next, as in (21), |b(i)H (h1)|�q−1k .

Further, since |M (i)
k (h1, γ)| ≤ qk, we get that |b(i)H (h1)M

(i)
k (h1, γ)| � 1. Similarly,

|b(j)H (−h2)M
(j)
k (−h2, γ)| � 1.

Thus we obtain that the expression in (16) is

� Nq2t
∑

|h1|,|h2|≤H
h1+h2 6=0

sup
`∈Z

∣∣∣∣∣ ∑
n<N ′

e
(
n
(
`q−t + (−1)khϕ

))∣∣∣∣∣ .
Let h∈Z with 1≤|h| ≤ 2H. The number of pairs (h1, h2) with (−1)k(h1+h2)=h
is 2H + 1− |h|. Hence the above expression equals

Nq2t
∑

1≤|h|≤2H

(2H + 1− |h|) sup
`∈Z

∣∣∣∣∣ ∑
n<N ′

e
(
n(`q−t + hϕ)

)∣∣∣∣∣
� Nq2t

∑
1≤|h|≤2H

(2H + 1− |h|) sup
`∈Z

(
min

(
N,

1

2‖`q−t + hϕ‖

))
� NHq2t

∑
1≤|h|≤2H

|h|q2t � NH3q4t,

by Lemma 2.1 and (23).
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Further, by the choice of H, t, the contribution in this subcase is

� N1+12a+3ηa/(2 lnϕ)q4a lnq N = N1+16a+3ηa/(2 lnϕ).

Case II. (Summands with exactly one factor as main term.)
Suppose that the main term comes from the expression for gα,t(n + r).
(The other case is similar.) Then, we need to estimate

N

R

∑
|r|<R

(
1− |r|

R

)∣∣∣∣∣ ∑
n<N ′

∑
`1,`2<q

t

|h1|≤H

e
(
`1(n+ r)q−t + `2nq

−t + h1pk(n+ r)
)

Gt(`1, θ)Gt(−`2, θ)b(i)H (h1)M
(i)
k (h1, γ)×

O

(
1

H

∑
|h2|≤H

c
(j)
H (h2)e

(
h2pk(n)

)∑
u

e
(
−h2pk(u)

))∣∣∣∣∣.
Recall that the expression in the error term is a non-negative real number. We use

the inequality |M (i)
k (h1, γ)| ≤ qk, and estimate Gt and the sum over r trivially.

Using Lemma 3.4, we obtain the following upper bound.

Nq2tqk
H

∑
|h1|≤H

min

(
b
(i)
H (0),

1

|h1|

)

×
∑
|h2|≤H

∣∣∣∣∣∑
u

e(−h2pk(u))

∣∣∣∣∣
∣∣∣∣∣ ∑
n<N ′

e(h2pk(n))

∣∣∣∣∣
� Nq2tqk lnH

H

∑
|h2|≤H

∣∣∣∣∣∑
u

e(−h2pk(u))

∣∣∣∣∣
∣∣∣∣∣ ∑
n<N ′

e(h2pk(n))

∣∣∣∣∣ , (24)

where the last step follows from the inequality
∑
s≤x

s−1 � lnx. By Lemma 2.1,

the above expression is

� Nq2tqk lnH

H

∑
|h2|≤H

min

(
qk,

1

||h2ϕ||

)
min

(
N,

1

||h2ϕ||

)

� Nq2tqk lnH

H

∑
|h2|≤H

min

(
qkN,

1

||h2ϕ||2

)

� N3/2q2tq
3/2
k lnH +N2q2tq2k

(lnH)2

H
,
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where the last inequality follows from Lemma 2.2. By the choice of H, t, k and
the fact that qk ≤ ϕk/2, we find that the contribution in this case is

�
(

4a+
ηa

2 lnϕ

)
N3/2q2a lnq Nϕ(3a lnϕN)/2 lnN

+

(
4a+

ηa

2 lnϕ

)2
N2q2a lnq Nϕ2a lnϕN

(lnN)2

N4a+ηa/(2 lnϕ)

≤
(

4a+
ηa

2 lnϕ

)
N (3+7a)/2 lnN +

(
4a+

ηa

2 lnϕ

)2

N2−ηa/(2 lnϕ)(lnN)2.

Case III. (Summands with both factors as error terms.)
We need to estimate

N

R

∑
|r|<R

(
1− |r|

R

)∣∣∣∣∣ ∑
n<N ′

∑
`1,`2<q

t

e
(
`1(n+ r)q−t + `2nq

−t)
Gt(`1, θ)Gt(−`2, θ)

×O
(

1

H

∑
|h1|≤H

c
(i)
H (h1)e

(
h1pk(n+ r)

)∑
u

e
(
−h1pk(u)

))

×O
(

1

H

∑
|h2|≤H

c
(j)
H (h2)e

(
h2pk(n)

)∑
u

e
(
−h2pk(u)

))∣∣∣∣∣.
We estimate one of the error terms trivially by qk. Further, we estimate Gt and
the sum over r trivially to get

� Nq2tqk
H

∑
|h2|≤H

∣∣∣∣∣∑
u

e
(
−h2pk(u)

)∣∣∣∣∣
∣∣∣∣∣ ∑
n<N ′

e
(
h2pk(n)

)∣∣∣∣∣ .
This is the product of the expression in (24) with (lnH)−1. Therefore, proceeding
as in Case II, we obtain the bound

� N3/2q2tq
3/2
k +N2q2tq2k

lnH

H

� N (3+7a)/2 +

(
4a+

ηa

2 lnϕ

)
N2−ηa/(2 lnϕ) lnN.

Combining the three cases and (15), we get∣∣∣∣∣∑
n<N

g(n)

∣∣∣∣∣
2

� N2−2δ for some δ > 0.

�
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P r o o f o f C o r o l l a r y 1.3.
We first recall an estimate of Gel′fond [13]: If k1,m1, q are positive integers with

m1 ≥ 2, k1 < m1 and gcd(m1, q − 1) = 1,

then there exists δ1 > 0 such that for every a ∈ R, we have∑
n<N

e

(
an+

k1
m1

Sq(n)

)
= O

(
N1−δ1

)
. (25)

Now, since

1

b

∑
0≤`<b

e
(a
b
`
)

= 1 or 0

according to whether b divides a or not, we have

|{0 ≤ n < N : Sq(n) ≡ r1 (mod m1), Sα(n) ≡ r2 (mod m2)}|

=
∑
n<N

1

m1

∑
0≤k1<m1

e

(
k1
Sq(n)− r1

m1

)
1

m2

∑
0≤k2<m2

e

(
k2
Sα(n)− r2

m2

)

=
1

m1m2

∑
0≤k1<m1
0≤k2<m2

e

(
−k1r1
m1
− k2r2

m2

) ∑
n<N

e

(
k1
m1

Sq(n) +
k2
m2

Sα(n)

)

=
N

m1m2
+O

(
1

m1m2

∑
1≤k1<m1

∣∣∣∣∣∑
n<N

e

(
k1
m1

Sq(n)

)∣∣∣∣∣
+

1

m1m2

∑
0≤k1<m1
1≤k2<m2

∣∣∣∣∣∑
n<N

e

(
k1
m1

Sq(n) +
k2
m2

Sα(n)

)∣∣∣∣∣
)

=
N

m1m2
+O

(
N1−δ′),

where the last equality follows from (25) and Theorem 1.2. �
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