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CYCLOTOMIC EXPRESSIONS FOR

REPRESENTATION FUNCTIONS

Charles Helou

Pennsylvania State University, Media, PA, USA

ABSTRACT. Given a subset A of the natural numbers N = {0, 1, 2, · · · } (resp.
of the ring Z/NZ of residue classes modulo a positive integer N), we introduce

certain sums of roots of unity associated with A. We study some of their proper-
ties, and we use them to obtain new expressions for the classical functions that

characterize A, i.e. of the representation function, the counting function and the

characteristic function of A. We also give an example of computations of the
representation function using such expressions.

Communicated by Werner Georg Nowak

1. Introduction

Let A denote a subset of the semi-group N = {0, 1, 2, . . .} of natural numbers
(resp. of the quotient ring Z/NZ ' {0, 1, . . . , N − 1}, whose elements are iden-
tified to their minimal non-negative residues modulo N , where N is a positive
integer). For every n ∈ N, let An = A ∩ [0, n] be the set of all elements a ≤ n in
A. The counting function of A is A(n) = |An|, the number of elements in An,
while the representation function of A is defined by

rA(n) = |{(a, b) ∈ A×A : a+ b = n}|,
and the characteristic function of A is given by χA(n) = 1 if n ∈ A, and χA(n) =
0 if n /∈ A. All three functions characterize A, with the most important one being
rA(n). Representation functions have been studied extensively [2, 3, 4, 9, 12, 15,
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16, 17, 18, 19, 20], and many conjectures and open problems about them remain
the subject of intensive research [5, 6, 7, 8, 10, 20, 21, 22, 23].

Let m be a positive integer, and ζm = e
2πi
m be the standard primitive mth

root of unity in the field C of complex numbers. We introduce the exponential
sums

Sk(A,m, n) =
∑
a∈An

ζkam , (1.1)

where k ∈ Z is a rational integer, and n ∈ N is a natural number. We study
some of their properties, and we establish, in their terms, expressions for the
three characterizing functions

rA(n), A(n) and χA(n) of A.

We thus prove that if m > n (resp. m = N), then

rA(n) =
1

m

m−1∑
k=0

ζ−knm Sk(A,m, n)2. (1.2)

Moreover, for A ⊂ N and for m > n, we also have

A(n) =
1

m

m−1∑
k=0

|Sk(A,m, n)|2. (1.3)

On the other hand, for any integer n > 0,

rA(n) =
1

n

n−1∑
k=0

Sk(A,n, n)2 − χA(0)− χA(n), (1.4)

A(n) =
1

n

n−1∑
k=0

|Sk(A,n, n)|2 − 2χA(0)χA(n), (1.5)

and

χA(n) =
1

n

n−1∑
k=0

Sk(A,n, n)− χA(0). (1.6)

Two further expressions for the representation function are given by

rA(n) =
1

m

∑
d|m

TrQ(ζd)|Q
(
ζ−nd S1(A, d, n)2

)
, (1.7)

where m > n (resp. m = N), and TrQ(ζd)|Q is the trace form in the field extension
Q(ζd)|Q, with d ranging over the set of positive integers dividing m (resp. N),
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and

rA(n) =
1

m

∑
(a,b)∈An×An

∑
d|m

µ

(
d

(d, a+ b− n)

)
ϕ(d)

ϕ
(

d
(d,a+b−n)

) , (1.8)

where m > n (resp. m = N), µ is the Möbius function, and ϕ is the Euler
totient function.

We also give an example of computations with those expressions.

2. Orthogonality Relations

The following results concerning character sums are well-known (e.g., [1],
Chapter 6).

Lemma 2.1. For any integers m > 0 and x ∈ Z, we have

m−1∑
k=0

ζkxm =

{
m if m | x,

0 if m - x.
(2.1)

In particular,

Corollary 2.2. For a, b, n ∈ N, we have

m−1∑
k=0

ζk(a+b−n)m =

{
m if a+ b ≡ n (mod m),

0 if a+ b 6≡ n (mod m).
(2.2)

Corollary 2.3. If |a+ b− n| < m, and in particular if a, b ≤ n < m, then

m−1∑
k=0

ζk(a+b−n)m =

{
m if a+ b = n,

0 if a+ b 6= n.
(2.3)

If |a+ b− n| ≤ m, then

m−1∑
k=0

ζk(a+b−n)m =

{
m if a+ b = n, or a+ b = n±m,

0, otherwise.
(2.4)

Corollary 2.4. For a, b, n ∈ N such that n > 0 and a, b ≤ n, we have

n−1∑
k=0

ζk(a+b−n)n =

{
n if a+ b = n, or a = b = 0, or a = b = n,

0, otherwise.
(2.5)
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3. Exponential Sums

Let A ⊂ N (resp. A ⊂ Z/NZ ' {0, 1, . . . , N − 1}, where N is a positive
integer). For any integers k ∈ Z, m,n ∈ N, with m > 0, let

Sk(A,m, n) =
∑
a∈An

ζkam . (3.1)

Remark 3.1. If m | k, then

Sk(A,m, n) = S0(A,m, n) =
∑
a∈An

1 = A(n).

Lemma 3.2. For any integers k, k′ ∈ Z, m,n ∈ N, with m > 0,

– If k′ ≡ k (mod m), then Sk′(A,m, n) = Sk(A,m, n). (3.2)

– If k′ ≡−k (mod m), then Sk′(A,m, n) = Sk(A,m, n), (3.3)

where z is the complex conjugate of z in C.

P r o o f. Indeed, in the first case

ζk
′a
m = ζkam ,

and in the second case,
ζk
′a
m = ζ−kam = ζkam ,

for any a ∈ An. The results follow by summation over a. �

Lemma 3.3. Let A′ = N \ A (resp. A′ = (Z/NZ) \ A) be the complement set
of A in N (resp. in Z/NZ). Then, for any k ∈ Z and any m,n ∈ N, with m > 0,
we have

Sk(A′,m, n) =


1− ζkMm
1− ζkm

− Sk(A,m, n) if m - k,

M −A(n) if m | k,
(3.4)

where M = n+ 1 (resp. M = N).

P r o o f.

Sk(A′,m, n) =
∑
a∈A′n

ζkam

=

M−1∑
a=0

ζkam −
∑
a∈An

ζkam =

M−1∑
a=0

ζkam − Sk(A,m, n).

If m - k, then
∑M−1
a=0 ζkam =

1−ζkMm
1−ζkm

. If m | k, then
∑M−1
a=0 ζkam =

∑M−1
a=0 1=M and

Sk(A,m, n) = A(n), by Remark 3.1. The result follows. �
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Lemma 3.4. For any two subsets A,B of N (resp. of Z/NZ), any k ∈ Z and
any m,n ∈ N, with m > 0, we have

Sk(A ∪B,m, n) = Sk(A,m, n) + Sk(B,m, n)− Sk(A ∩B,m, n). (3.5)

P r o o f. Since A ∪B is the union of the three pairwise disjoint sets

A− = A \ (A ∩B), B− = B \ (A ∩B) and (A ∩B),

and since

A = A− ∪ (A ∩B) and B = B− ∪ (A ∩B),

the result follows by simple summations. �

4. Relations with the Characterizing Functions

Lemma 4.1. Let A ⊂ N (resp. A ⊂ Z/NZ ' {0, 1, . . . , N − 1}). For any k ∈ Z
and m,n ∈ N, with m > 0 (resp. m = N), we have

Sk(A,m, n)2 =
∑
c

rAn(c)ζkcm , (4.1)

where 0 ≤ c ≤ 2n (resp. c ∈ Z/NZ).

P r o o f.

Sk(A,m, n)2 =
∑

a,b∈An

ζk(a+b)m

=
∑
c

 ∑
(a,b)∈An×An:

a+b=c

1

 ζkcm =
∑
c

rAn(c)ζkcm ,

where 0 ≤ c ≤ 2n, since rAn(c) = 0 if c > 2n (resp. c ∈ Z/NZ, since m = N). �

Proposition 4.2. Let A ⊂ N (resp. A ⊂ Z/NZ ' {0, 1, . . . , N − 1}). For any
m,n ∈ N, with m > n (resp. m = N and n mod N denoting the residue class
of n in Z/NZ), we have

rA(n) =
1

m

m−1∑
k=0

ζ−knm Sk(A,m, n)2 (4.2)

respectively,

rAn(n mod N) =
1

N

N−1∑
k=0

ζ−knN Sk(A,N, n)2. (4.3)
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P r o o f. By Lemma 4.1, with m > n (resp. m = N),

m−1∑
k=0

ζ−knm Sk(A,m, n)2 =

m−1∑
k=0

ζ−knm

∑
c

rAn(c)ζkcm

=
∑
c

rAn(c)

m−1∑
k=0

ζk(c−n)m ,

where 0 ≤ c ≤ 2n (resp. c ∈ Z/NZ). By Lemma 2.1,

m−1∑
k=0

ζk(c−n)m =

{
m, if c ≡ n (mod m),

0, if c 6≡ n (mod m).

Therefore,

m−1∑
k=0

ζ−knm Sk(A,m, n)2 =
∑

c≡n (mod m)

rAn(c)m.

Moreover, c ≡ n (mod m) with 0 ≤ c ≤ 2n and m > n (resp. with c ∈ Z/NZ '
{0, 1, . . . , N − 1} and m = N) if and only if c = n. So the last sum above is
reduced to just one term, namely, rAn(n)m. Thus

m−1∑
k=0

ζ−knm Sk(A,m, n)2 = mrAn(n).

Moreover, in the case where A ⊂ N, we clearly have rAn(n) = rA(n). Hence the
result. �

Remark 4.3. The formula in Proposition 4.2 is quite similar to the finite Fourier
inversion formula as given in ([1], Theorem 8.4).

Lemma 4.4. For A ⊂ N (resp. A ⊂ Z/NZ ' {0, 1, . . . , N − 1}), and m,n ∈ N,
with m > 0 (resp. m = N), we have

m−1∑
k=0

Sk(A,m, n)2 = m
∑

0≤q≤ 2n
m

rAn(qm), (4.4)

respectively,
N−1∑
k=0

Sk(A,N, n)2 = NrAn(0). (4.5)
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P r o o f. By Lemma 4.1 and Lemma 2.1,

m−1∑
k=0

Sk(A,m, n)2 =

m−1∑
k=0

∑
c

rAn(c)ζkcm

=
∑
c

rAn(c)

m−1∑
k=0

ζkcm =
∑
c:m|c

rAn(c)m,

where 0 ≤ c ≤ 2n (resp. c ∈ Z/NZ), so that∑
c:m|c

rAn(c)m = m
∑

0≤q≤ 2n
m

rAn(qm) (resp. = NrAn(0).) �

Corollary 4.5. For A ⊂ N, and for any positive integer n,

χA(n) =
1

2n

2n−1∑
k=0

Sk(A, 2n, n)2 − χA(0). (4.6)

P r o o f. By Lemma 4.4 with m = 2n,

2n−1∑
k=0

Sk(A, 2n, n)2 = 2n
(
rAn(0) + rAn(2n)

)
.

And, clearly, rAn(0) = rA(0) = χA(0). Moreover, the only possible represen-
tation of 2n as a sum of two elements of An is 2n = n + n, provided n ∈ A.
So rAn(2n) = 1 if n ∈ A and rAn(2n) = 0 if n 6∈ A, i.e., rAn(2n) = χA(n). Thus

2n−1∑
k=0

Sk(A, 2n, n)2 = 2n
(
χA(0) + χA(n)

)
,

and the result follows. �

Remark 4.6. Another expression for χA(n), in the case where A ⊂ N and
n > 0, can be obtained directly, by similarly establishing that

n−1∑
k=0

Sk(A,n, n) =
∑
a∈An

n−1∑
k=0

ζakn =
∑

a∈An:n|a

n = n
(
χA(0) + χA(n)

)
,

which gives

χA(n) =
1

n

n−1∑
k=0

Sk(A,n, n)− χA(0). (4.7)
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Proposition 4.7. Let A be a subset of N. For any positive integer n, we have

rA(n) =
1

n

n−1∑
k=0

Sk(A,n, n)2 − χA(0)− χA(n) (4.8)

=
1

n

n−1∑
k=0

Sk(A,n, n)2 − 1

2n

2n−1∑
k=0

Sk(A, 2n, n)2. (4.9)

P r o o f. By Lemma 4.4 with m = n,

n−1∑
k=0

Sk(A,n, n)2 = n
∑

0≤q≤2

rAn(qn) = n
(
rAn(0) + rAn(n) + rAn(2n)

)
.

As it is indicated in the previous proof,

rAn(0) = rA(0) = χA(0), and rAn(2n) = χA(n).

Moreover, rAn(n) = rA(n), since if n = a + b with a, b ∈ A, then a, b ≤ n,
i.e., a, b ∈ An. Thus

n−1∑
k=0

Sk(A,n, n)2 = n
(
χA(0) + rA(n) + χA(n)

)
.

This gives the first equality. The second equality follows from the first one and
from Corollary 4.5. �

Proposition 4.8. Let A ⊂ N and m,n ∈ N such that m > n, then

A(n) =
1

m

m−1∑
k=0

|Sk(A,m, n)|2. (4.10)

P r o o f.
m−1∑
k=0

|Sk(A,m, n)|2 =

m−1∑
k=0

Sk(A,m, n)Sk(A,m, n)

=

m−1∑
k=0

(∑
a∈An

ζkam

)(∑
b∈An

ζ−kbm

)

=

m−1∑
k=0

∑
a,b∈An

ζk(a−b)m =
∑

a,b∈An

m−1∑
k=0

ζk(a−b)m

=
∑

a,b∈An:a≡b (mod m)

m = m · |An| = m ·A(n),
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where in the last line of equalities, we used Lemma 2.1, and the fact that m > n,
so that, for a, b ∈ An, a ≡ b (mod m) if and only if a = b. �

Remark 4.9. If, in the preceding Proposition, we take m = n > 0 (instead of
m > n), then, for a, b ∈ An, a ≡ b (mod n) if and only if a = b or (a, b) = (0, n)
or (a, b) = (n, 0), provided 0 and n lie in A. Therefore, in this case,

n−1∑
k=0

|Sk(A,n, n)|2 = n
(
A(n) + 2χA(0)χA(n)

)
.

Thus

A(n) =
1

n

n−1∑
k=0

|Sk(A,n, n)|2− 2χA(0)χA(n). (4.11)

Lemma 4.10. Let A ⊂ N (resp. A ⊂ Z/NZ ' {0, 1, . . . , N − 1}), and m,n ∈ N,
with m > 0 (resp. m = N). For any integer r ∈ Z, we have

m−1∑
k=0

ζ−krm Sk(A,m, n) = m
∑

− r
m≤j≤

n−r
m

χA(jm+ r), (4.12)

respectively,
N−1∑
k=0

ζ−krm Sk(A,N, n) = N · χAn(r mod N). (4.13)

P r o o f. In the case where A ⊂ N, by Lemma 2.1

m−1∑
k=0

ζ−krm Sk(A,m, n) =

m−1∑
k=0

ζ−krm

∑
a∈An

ζkam

=
∑
a∈An

m−1∑
k=0

ζk(a−r)m

= m · |{a ∈ An : a ≡ r (mod m)}|.

Moreover, a ≡ r (mod m) if and only if a = jm + r for some j ∈ Z, and
a = jm + r ∈ An if and only if χA(jm + r) = 1 and 0 ≤ jm + r ≤ n,
i.e., − r

m ≤ j ≤
n−r
m . Hence

|{a ∈ An : a ≡ r (mod m)}| =
∑

− r
m≤j≤

n−r
m

χA(jm+ r),

which implies the first formula.
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Similarly, in the case where A ⊂ Z/NZ ' {0, 1, . . . , N − 1} and m = N ,

N−1∑
k=0

ζ−krN Sk(A,N, n) =

N−1∑
k=0

ζ−krN

∑
a∈An

ζkaN

=
∑
a∈An

N−1∑
k=0

ζ
k(a−r)
N

= N · |{a ∈ An : a ≡ r (modN)}|.

Moreover, |{a ∈ An : a ≡ r (mod N)}| is equal to 1 if the congruence class
of r mod N lies in An, and to 0 otherwise, i.e.,

|{a ∈ An : a ≡ r (mod N)}| = χAn(r mod N).

Hence the second formula. �

Corollary 4.11. Let A ⊂ N (resp. A ⊂ Z/NZ ' {0, 1, . . . , N − 1}), and
m,n ∈ N, with m > 0 (resp. m = N), we have

m−1∑
k=0

Sk(A,m, n) = m
∑

0≤j≤ n
m

χA(jm). (4.14)

respectively,
N−1∑
k=0

Sk(A,N, n) = N · χA(0). (4.15)

P r o o f. This is the special case r = 0 of the previous Lemma, taking into
account that χAn(0) = χA(0). �

5. Cyclotomic Expressions

We still denote by A a subset of N (resp. of Z/NZ ' {0, 1, . . . , N − 1}),
by m a positive integer, while n ∈ N and k ∈ Z.

From the definition of ζm = e
2πi
m , it easily follows that if d is a positive integer

dividing m, then ζdm = ζm
d
. (5.1)

If d = gcd(k,m), and m = dm1, k = dk1, where k1 ∈ Z, and the integers
d,m1 > 0 with gcd(k1,m1) = 1, then

Sk(A,m, n) = Sk1(A,m1, n). (5.2)
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Indeed,

Sk(A,m, n) =
∑
a∈An

ζkam =
∑
a∈An

ζdk1am

=
∑
a∈An

ζk1am1
= Sk1(A,m1, n).

Thus, considering the sums Sk(A,m, n), we may assume that gcd(k,m) = 1.

The sums
Sk(A,m, n) =

∑
a∈An

ζkam

are cyclotomic integers, i.e., they lie in the ring of integers Z[ζm] of the cyclotomic
field Q(ζm).

The field extension Q(ζm)|Q is an abelian extension of degree ϕ(m), where ϕ
is Euler’s totient function. The Galois group Gm of Q(ζm)|Q is isomorphic to the
multiplicative group (Z/mZ)∗ of invertible elements of the ring Z/mZ of residue
classes of integers modulo m. The elements of Gm are the Q-automorphisms
σm,k of Q(ζm) defined by

σm,k(ζm) = ζkm, for k̇ ∈ (Z/mZ)∗,

where k̇ = k + mZ is the congruence class of k modulo m, i.e., for k ranging
through a reduced residue sytem of integers modulo m. Moreover, the irreducible
polynomial of ζm over Q is the mth cyclotomic polynomial

Φm(X) =
∏

1≤k≤m:

gcd(k,m)=1

(X − ζkm),

of degree ϕ(m), and having integer coefficients ([14]).

Lemma 5.1. For any integers h, k ∈ Z and m,n ∈ N, with m > 0, such that
gcd(k,m) = 1, we have

σm,k
(
Sh(A,m, n)

)
= Skh(A,m, n). (5.3)

P r o o f. Indeed,

σm,k(Sh(A,m, n)) = σm,k

(∑
a∈An

ζham

)
=
∑
a∈An

ζkham = Skh(A,m, n).

�

Corollary 5.2. In particular, for any natural numbers m,n ∈ N, with m > 0,
and any integer k ∈ Z such that gcd(k,m) = 1, we have

Sk(A,m, n) = σm,k
(
S1(A,m, n)

)
. (5.4)
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Remark 5.3. It follows from (5.2) and (5.4), setting (k,m) = gcd(k,m), that

Sk(A,m, n) = S k
(k,m)

(
A,

m

(k,m)
, n
)

= σ m
(k,m)

, k
(k,m)

(
S1

(
A,

m

(k,m)
, n
))
. (5.5)

Thus, in order to determine all the sums Sk(A,m, n), it is enough just to deter-
mine the sums

S1(A,m, n) =
∑
a∈An

ζam.

Proposition 5.4. Let A be a subset of N (resp. of Z/NZ ' {0, 1, . . . , N − 1}),
and let m,n ∈ N such that m > n (resp. let m = N and n mod N be the residue
class of n in Z/NZ), then

rA(n) =
1

m

∑
d|m

TrQ(ζd)|Q
(
ζ−nd S1(A, d, n)2

)
, (5.6)

respectively,

rA(n mod N) =
1

N

∑
d|N

TrQ(ζd)|Q
(
ζ−nd S1(A, d, n)2

)
, (5.7)

where TrQ(ζd)|Q is the trace form in the field extension Q(ζd)|Q, and d ranges
over the set of positive integers dividing m (resp. N).

P r o o f. Using Proposition 4.2, Remark 3.1, (5.1) and Corollary 5.2 successively,
we get

rA(n) =
1

m

m−1∑
k=0

ζ−knm Sk(A,m, n)2

=
1

m

m∑
k=1

ζ−knm Sk(A,m, n)2

=
1

m

∑
e|m

∑
1≤k≤m:

gcd(k,m)=e

ζ−knm Sk(A,m, n)2

=
1

m

∑
e|m

∑
1≤k≤m:

gcd(k,m)=e

ζ
− ken
m
e

S k
e

(
A,

m

e
, n
)2

=
1

m

∑
e|m

∑
1≤k≤m:

gcd(k,m)=e

σm
e ,

k
e

(
ζ−nm
e
S1

(
A,

m

e
, n
)2)

.
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Setting d = m
e and h = k

e , noting that gcd(d, h) = 1, and substituting into the
latter sum, we obtain

rA(n) =
1

m

∑
d|m

∑
1≤h≤d:

gcd(d,h)=1

σd,h
(
ζ−nd S1(A, d, n)2

)

=
1

m

∑
d|m

TrQ(ζd)|Q
(
ζ−nd S1(A, d, n)2

)
,

since, for each d | m, ∑
1≤h≤d:

gcd(d,h)=1

σd,h
(
ζ−nd S1(A, d, n)2

)

is the sum of all the conjugates in Q(ζd)|Q of ζ−nd S1(A, d, n)2, which is, by

definition, the trace in Q(ζd)|Q of ζ−nd S1(A, d, n)2.

The same proof works in the case where A ⊂ Z/NZ ' {0, 1, . . . , N − 1} and
m = N , just replacing rA(n) by rA(n mod N) and m by N . �

Lemma 5.5. For any positive integer n and any integer h ∈ Z, if d = gcd(h, n),
then

TrQ(ζn)|Q(ζhn) = µ
(n
d

) ϕ(n)

ϕ
(
n
d

) = µ

(
n

(h, n)

)
ϕ(n)

ϕ
(

n
(h,n)

) , (5.8)

where µ is the Möbius function defined by

µ(n) =


1 if n = 1,

0 if n has a prime square factor,

(−1)s if n is the product of s distinct primes.

(5.9)

In particular, if h and n are relatively prime, then TrQ(ζn)|Q(ζhn) = µ(n).

P r o o f. This results from ([11], p. 427, IV), in the special case of the trivial
character. �

Proposition 5.6. Let A be a subset of N (resp. of Z/NZ ' {0, 1, . . . , N − 1}),
and let m,n ∈ N such that m > n (resp. let m = N and n mod N be the residue
class of n in Z/NZ), then
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rA(n) =
1

m

∑
(a,b)∈An×An

∑
d|m

µ

(
d

(d, a+ b− n)

)
ϕ(d)

ϕ
(

d
(d,a+b−n)

) . (5.10)

respectively,

rA(n mod N) =
1

N

∑
(a,b)∈An×An

∑
d|N

µ

(
d

(d, a+ b− n)

)
ϕ(d)

ϕ
(

d
(d,a+b−n)

) . (5.11)

P r o o f. By Proposition 5.4,

rA(n) =
1

m

∑
d|m

TrQ(ζd)|Q
(
ζ−nd S1(A, d, n)2

)
.

Moreover,

ζ−nd S1(A, d, n)2 = ζ−nd

(∑
a∈An

ζad

)2

=
∑

(a,b)∈An×An

ζa+b−nd ,

and by Corollary 5.5,

TrQ(ζd)|Q
(
ζa+b−nd

)
= µ

(
d

(d, a+ b− n)

)
ϕ(d)

ϕ
(

d
(d,a+b−n)

) .
Hence

rA(n) =
1

m

∑
d|m

∑
(a,b)∈An×An

TrQ(ζd)|Q
(
ζa+b−nd

)
=

1

m

∑
(a,b)∈An×An

∑
d|m

µ

(
d

(d, a+ b− n)

)
ϕ(d)

ϕ
(

d
(d,a+b−n)

) .
The same proof works in the case where A ⊂ Z/NZ ' {0, 1, . . . , N − 1} and

m = N , just replacing rA(n) by rA(n mod N) and m by N . �

6. Example

Let p be an odd prime number. In Fp = Z/pZ ' {0, 1, . . . , p− 1}, let

A = {x2 : x ∈ Fp}.
Fix

n ∈ Fp ' {0, 1, . . . , p− 1}.
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By Proposition 5.6

rA(n) =
1

p

∑
a,b∈An

∑
d|p

µ

(
d

(d, a+ b− n)

)
ϕ(d)

ϕ
(

d
(d,a+b−n)

)
=

1

p

∑
a,b∈An

µ

(
1

(1, a+ b− n)

)
ϕ(1)

ϕ
(

1
(1,a+b−n)

)
+

1

p

∑
a,b∈An

µ

(
p

(p, a+ b− n)

)
ϕ(p)

ϕ
(

p
(p,a+b−n)

)
=

1

p

∑
a,b∈An

1 +
1

p

∑
a,b∈An:
a+b=n

µ(1)
ϕ(p)

ϕ(1)
+

1

p

∑
a,b∈An:
a+b6=n

µ(p)
ϕ(p)

ϕ(p)

=
1

p
A(n)2 +

p− 1

p

∑
a,b∈An:
a+b=n

1− 1

p

∑
a,b∈An:
a+b 6=n

1

=
1

p

(
A(n)2 + (p− 1)|Rn(A)| − |An ×An \Rn(A)|

)
= |Rn(A)|, (6.1)

where

Rn(A) = {(a, b) ∈ An ×An : a+ b = n}

= {0 ≤ a ≤ n : a ∈ A and n− a ∈ A}

=

{
0 ≤ a ≤ n :

(a
p

)
=
(n− a

p

)
= 1,

or a = 0, n ∈ A, or a = n ∈ A ∪ {0}
}
, (6.2)

with
(
·
p

)
denoting the Legendre symbol.

Moreover, for any 0 ≤ a ≤ n,

(
1 +

(
a

p

))(
1 +

(
n− a
p

))
=


4 if a, n− a ∈ A, a 6= 0, n,

2 if (a = 0 6= n ∈ A), or (0 6= a = n ∈ A),

1 if a = n = 0,

0 if a 6∈ A, or (n− a) 6∈ A,
(6.3)
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and

1 +

(
n

p

)
=


2 if n ∈ A,n 6= 0,

1 if n = 0,

0 if n 6∈ A.
(6.4)

It follows that

rA(n) =
1

4

∑
a∈Fp:a 6=0,n

(
1 +

(
a

p

))(
1 +

(
n− a
p

))
+ 1 +

(
n

p

)

=
1

4

∑
a∈Fp

(
1 +

(
a

p

))(
1 +

(
n− a
p

))
+ δn,0

+
1

2

(
1+

(
n

p

))

=
1

4

p−1∑
a=0

(
1 +

(
a

p

)
+

(
n− a
p

)
+

(
a(n− a)

p

))
+
δn,0

4
+

1

2

(
1 +

(
n

p

))

=
1

4

(
p+ δn,0 +

p−1∑
a=0

(
a(n− a)

p

))
+

1

2

(
1 +

(
n

p

))
, (6.5)

where δn,0 is equal to 1 if n = 0, and to 0 otherwise. It is added to the second line
of the above equalities to compensate for the fact that, just in the case n = 0,
without it, the second line would be equal to rA(0)− 1

4 , due to the third case in
the equality 6.3. We also tacitly used the fact that

p−1∑
a=0

(
a

p

)
=

p−1∑
a=0

(
n− a
p

)
= 0,

since the number of non-zero quadratic residues is equal to that of non-residues.

Now, by ([13], Theorem 8.2, p. 174), if n 6= 0, then

p−1∑
a=0

(
a(n− a)

p

)
=

(
−1

p

) p−1∑
a=0

(
a2 − na

p

)
=

(
−1

p

)
(−1) = (−1)

p+1
2 . (6.6)

While if n = 0, then, trivially,

p−1∑
a=0

(
a(n− a)

p

)
=

(
−1

p

) p−1∑
a=1

(
a2

p

)
= (−1)

p−1
2 (p− 1). (6.7)
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It follows from 6.6 and 6.7 that
p−1∑
a=0

(
a(n− a)

p

)
= (−1)

p−1
2 (δn,0p− 1). (6.8)

Substituting 6.8 into 6.5 gives

rA(n) =
1

4

(
p+ δn,0 +

p−1∑
a=0

(
a(n− a)

p

))
+

1

2

(
1 +

(
n

p

))

=
1

4

(
p+ δn,0 + (−1)

p−1
2 (δn,0p− 1)

)
+

1

2

(
1 +

(
n

p

))

=
1

4

(
p+ (−1)

p+1
2 + δn,0

(
(−1)

p−1
2 p+ 1

))
+

1

2

(
1 +

(
n

p

))
, (6.9)

i.e.,

rA(n) =


1
4

(
p+ (−1)

p+1
2

)
+ 1

2

(
1 +

(
n
p

))
, if n 6= 0,

1 + 1
4

(
1 + (−1)

p−1
2

)
(p− 1), if n = 0.

(6.10)

Acknowledgement. I would like to thank the referee, whose suggestions
helped simplify some proofs.
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[7] The class of Erdős-Turán sets, Acta Arithmetica, 117 (2005), 81–105.

[8] Representation functions, Sidon sets and bases, Acta Arithmetica 130 (2007), no.

2, 149–156.

[9] Supremum of representation functions, Integers 11 (2011), A30, 14 pp.
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