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ABSTRACT. This paper studies the distributional asymptotics of the slowly

changing sequence of logarithms (logb n) with b ∈ N \ {1}. It is known that

(logb n) is not uniformly distributed modulo one, and its omega limit set is

composed of a family of translated exponential distributions with constant log b.

An improved upper estimate
(√

logN/N
)

is obtained for the rate of convergence

with respect to (w. r. t.) the Kantorovich metric on the circle, compared to the

general results on rates of convergence for a class of slowly changing sequences

in the author’s companion in-progress work. Moreover, a sharp rate of conver-

gence (logN/N) w. r. t. the Kantorovich metric on the interval [0, 1], is derived.

As a byproduct, the rate of convergence w.r.t. the discrepancy metric (or the

Kolmogorov metric) turns out to be (logN/N) as well, which verifies that an up-

per bound for this rate derived in [Ohkubo,Y.—Strauch,O.: Distribution

of leading digits of numbers, Unif. Distrib. Theory,11 (2016), no.1, 23–45.] is sharp.
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1. Introduction

Given a sequence of real numbers (xn), associate with it a sequence(
νN (xn)

)
N≥1 of finitely supported probability measures

νN (xn) :=
1

N

N∑
n=1

δ〈xn〉,

where δ〈xn〉 stands for the Dirac measure concentrated at 〈xn〉, the natural pro-
jection of xn onto the circle T = R/Z. Here and throughout, we write νN for
νN (xn) when (xn) is clear from the context. Note that (νN ) is a sequence in the
space P(T) of all Borel probability measures on T. As a set, P(T) can be iden-
tified with the subspace {µ ∈ P(I) : µ({1}) = 0} of P(I), where I denotes the
compact unit interval [0, 1]. Lowercase Greek letters µ, ν are used henceforth
to denote elements of both P(T) and P(I), but it will always be clear from the
context which space of measures is meant. Recall that a sequence (xn) in R is
uniformly distributed modulo one (u.d. mod 1) [6, Ch.1] if νN converges weakly
in P(T) to the uniform distribution λT on T. Denote λI the uniform distribution
on I, and let dK denote the discrepancy (or Kolmogorov) metric on P(I), i.e.,

dK(µ, ν) = supx∈I |µ([0, x])− ν([0, x])| , ∀ µ, ν ∈ P(I).

Recall from [6, Cor.2.1.1] that (xn) is u.d. mod 1 if and only if limN→∞ dK(νN ◦
ι−1, λI) = 0, where ι : T → I is the natural inclusion; see Section 2 for details.
It is well known [6, Cor.2.1.2&Thm.2.2.2] that dK(νN ◦ ι−1, λI) ≥ 1

2N for every
positive integer N ; in fact, given any (xn) there exists a constant c > 0 such
that dK(νN ◦ ι−1, λI) > c logN/N for infinitely many N .

There is a vast literature on the estimation of discrepancy, especially for u.d.
mod 1 sequences. For instance, for the sequence (an), where a ∈ R is irrational
with bounded partial quotients, [6, Thm.2.3.4] asserts that

dK(νN ◦ ι−1, λI) = O(logN/N), (1)

and (1) also holds for Van der Corput sequence [6, Thm.2.3.5]. However, much
less research seems to have been undertaken on sequences that are not u.d.
mod 1, for example, on slowly changing sequences [5].

Given a sequence (xn) in R, an improved notion with regard to the distribu-
tional asymptotics of xn is the Omega limit set Ω[xn], defined as

Ω[xn] =
{
µ ∈ P(T) : νNk(xn)

k→∞−−−−→ µ weakly for some sequence (Nk) in N
}
.
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It is not hard to see that Ω[xn] is non-empty, closed and connected [11].
For sequences (xn) that are slowly changing in the sense that

lim
n→∞

n(xn+1 − xn) = ξ ∈ R,

it was shown in [5] that (xn) is not u.d. mod 1; moreover, the elements of Ω[xn],
have been described in terms of asymptotic distribution functions. Similar results
for slowly changing sequences in the literature include logarithms of natural num-
bers or prime numbers, iterated logarithms, and monotone functions of prime
numbers [3, 5–12]. As far as the author knows, however, there were virtually
no results, in the case of slowly changing sequences, on the rate(s) of conver-
gence for subsequences of (νN ) to Ω[xn], not even for very basic sequences such
as (logb n) with b ∈ N \ {1}, prior to [13]. Only recently did the author learn
that [9] establishes an upper bound (logN/N) for the latter, as well as their
asymptotic distribution functions. Even there, however, the sharpness of the
bound (logN/N) remains obscure. This article aims at resolving this obscurity.
Specifically, for sequences (logb n), every limit point in Ω[xn] is clearly identified,
and (logN/N) is shown to be the sharp rate of convergence w. r. t. dK.

While the discrepancy metric (on P(T), as induced by dK) has been used
in uniform distribution theory for decades, its usage for sequences that are
not u.d. mod 1 appears debatable. In fact, when analyzing such sequences, it
may be more natural to study Ω[xn] with a metric metrizing the weak topol-
ogy of P(T) such as, for instance, the Kantorovich (or transport) metric dT.
In a recent work [14], the author obtained several results in this regard, includ-
ing an upper bound (logN/N) for dT-convergence. As is shown in this article,
however, this bound is not sharp, and better bounds are provided to replace it for
(xn) = (logb n). From the arguments presented, it will also become evident that
finding a good lower bound remains a formidable challenge, even for sequences
as simple as (logb n).

2. Preliminaries and notations

Let R, Z, and N be the set of real numbers, integers, and positive integers,
respectively. Recall that T = R/Z can be thought of geometrically as the unit
circle

{
e2πix : x ∈ R

}
in the complex plane, with its usual topology. For −∞ <

a < b ≤ ∞, let [a, b[:= {y ∈ R : a ≤ y < b}; intervals [a, b], ]a, b], ]a, b[
are defined analogously. Let bxc, dxe, and 〈〈x〉〉 = x − bxc be the floor (i.e., the
largest integer ≤ x), the ceiling (i.e., the smallest integer ≥ x), and the fractional
part of x ∈ R, respectively. In what follows, it will prove useful to denote by
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π : R → T, with π(x) = 〈x〉 = x + Z, and by ι : T → I, with ι(〈x〉) = 〈〈x〉〉, the
natural projection and inclusion, respectively. Arguably the most fundamental
maps on T are rotations: Given any θ ∈ R, let Rθ be the (counter-clockwise)
rotation of T by 2πθ, that is, Rθ(〈x〉) = 〈x+θ〉 for all 〈x〉 ∈ T. With this, clearly
Rkθ = Rkθ = R〈〈kθ〉〉 for all θ ∈ R and k ∈ Z.

Let (X, ρX) be a compact metric space, and P(X) the space of all Borel
probability measures on X, endowed with the weak topology. Recall that P(X)
is compact and metrizable. The Kantorovich distance on X is

dX(µ, ν) = infγ

∫
X×X

ρX(x, y)dγ(x, y), ∀ µ, ν ∈ P(X),

where the infimum is taken over all Borel probability measures γ on X×X with
marginals µ and ν. Note that dX metrizes the weak topology of PX . For X = I
and X = T, let ρI = |x− y|, and ρT(x, y) = min{|ι(x)− ι(y)|, 1− |ι(x)− ι(y)|},
∀ x, y ∈ X, respectively. Note also that µ 7→ µ ◦ π−1 maps P(I) continuously

onto P(T); when restricted to P̃(I) := {µ ∈ P(I) : µ({1}) = 0}, a dense Gδ-
set in P(I), this even yields a continuous bijection, but not a homeomorphism,

as P̃(I) is not compact. In the opposite direction, µ 7→ µ ◦ ι−1 establishes a

measurable bijection from P(T) onto P̃(I). Note also that µ 7→ µ ◦ R−1θ defines
a homeomorphism of P(T).

Recall that dI can be expressed explicitly as

dI(µ, ν) =

1∫
0

|Fµ(x)− Fν(x)|dx, ∀ µ, ν ∈ P(I), (2)

where Fν is the distribution function of ν. A method of computing dT has been
developed in [1]; only the following simple upper bound will be used here.

Proposition 2.1. [1, Cor.3.8]. Assume that µ, ν ∈ P(T). Then

dT(µ, ν) ≤ infy∈I

1∫
0

∣∣(Fµ◦ι−1(x)− Fν◦ι−1(x)
)
−
(
Fµ◦ι−1(y)− Fν◦ι−1(y)

)∣∣dx
≤ dK

(
µ ◦ ι−1, ν ◦ ι−1

)
.

For every a > 0, consider the negative exponential distribution −Exp(a) on
R with parameter a, that is,

F−Exp(a)(x) = eax, ∀ x ≤ 0,
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and let Ea = −Exp(a) ◦ π−1 ∈ P(T). Thus

FEa◦ι−1(x) =
eax − 1

ea − 1
, ∀ x ∈ I.

Rotated versions of Ea, that is, probabilities Ea ◦ R−1θ with θ ∈ R, play an
important role in this article. For such probabilities, observe that

FEa◦R−1
θ
◦ ι−1 =


e〈〈θ〉〉(e

ax−1)

ea−1 if x ∈ [0, 1− 〈〈θ〉〉],

1 + e
〈〈θ〉〉(ea(x−1)−1)

ea−1 if x ∈ [1− 〈〈θ〉〉, 1[.

Henceforth, our analysis focuses on the sequences (xn) = (logb n) with b ∈
N\{1}, and the associated discrete measures νN = νN (logb n) ∈ P(T). A simple
calculation yields an explicit formula for the distribution function of νN ◦ ι−1.

Proposition 2.2. Assume that b ∈ N \ {1} and N ∈ N. Then, with

L = blogbNc,

FνN◦ι−1(x) =

L+1+
∑L
j=0

(
bib−jc−bL−j

)
N

if x ∈
[
logb

i

bL
, logb

i+ 1

bL

[
,

i = bL, . . . , N − 1,

1+
L+1+

∑L
j=0

(
bbNb−1cb−jc−bL−j

)
N

if x ∈
[
logb

N

bL
, logb

bbNb−1c+ b

bL

[
,

1+
L+1+

∑L
j=0

(
bib−jc−bL−j

)
N

if x ∈
[
logb

bi

bL
, logb

b(i+ 1)

bL

[
,

i = bNb−1c+ 1, . . . , bL − 1.

(3)

3. Rates of convergence

In this section, we study the rate of convergence for subsequences of

(νN )N≥1 w. r. t. dT, dI, and dK.

Throughout, for ease of exposition, all proofs are given for b = 10, but all
arguments can easily be adjusted to any other base b ∈ N \ {1}.
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3.1. Upper bound for the rate of convergence w.r.t. dT

We first present our main result regarding an upper bound for the rate of
convergence w. r. t. dT.

Theorem 3.1. Assume b ∈ N \ {1}. Then

lim sup
N→∞

N√
logN

dT

(
νN , Elog b ◦R−1− logbN

)
< +∞. (4)

P r o o f. Recall that b = 10 is assumed throughout; for every N ∈ N, let n =
blog10Nc+ 1 for convenience, and thus 10n−1 ≤ N ≤ 10n − 1, as well as

ηN = ElogbN ◦R
−1
− logbN

∈ P(T).

By Proposition 2.1, it suffices to estimate

1∫
0

∣∣∣(FνN◦ι−1(x)− FηN◦ι−1(x)
)
−
(
FνN◦ι−1(y)− FηN◦ι−1(y)

)∣∣∣dx,
for an appropriate 0 ≤ y < 1.

Utilizing Proposition 2.2 we first simplify the latter expression as follows:
For every y∈ [0, log10N−n+1[ , let i0 =b10y+n−1c. Then 10n−1≤ i0 ≤ N−1 and
y ∈ [log10 i0 − n+ 1, log10(i0 + 1)− n+ 1[ . Similarly, for 10n−1≤ i≤10n−1 and
x ∈ I,

x ∈ [log10 i− n+ 1, log10(i+ 1)− n+ 1[ ⇔ i = b10x+n−1c. (5)

With this, it follows from Proposition 2.2 that

1∫
0

∣∣∣(FνN◦ι−1(x)− FηN◦ι−1(x)
)
−
(
FνN◦ι−1(y)− FηN◦ι−1(y)

)∣∣∣dx
=

N−1∑
i=10n−1

log10(i+1)−n+1∫
log10 i−n+1

∣∣∣∣∣
∑n−1
j=0

(
bi10−jc−bi010−jc

)
N

− 10n (10x− 10y)

9N

∣∣∣∣∣dx

+

log10(bN/10c+1)−n+2∫
log10(N/10)−n+2

∣∣∣∣∣
∑n−1
j=0

(
bbN/10c10−jc−bi010−jc

)
N

− 10n(10x−1− 10y)

9N

∣∣∣∣∣dx

+

10n−1−1∑
i=bN/10c+1

log10(i+1)−n+2∫
log10 i−n+2

∣∣∣∣∣
∑n−1
j=0

(
bi10−jc − bi010−jc

)
N

− 10n(10x−1− 10y)

9N

∣∣∣∣∣dx
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=

N−1∑
i=bN/10c+1

log10(i+1)−n+1∫
log10 i−n+1

∣∣∣∣∣
∑n−1
j=0

(
bi10−jc−bi010−jc

)
N

− 10n(10x−10y)

9N

∣∣∣∣∣dx

+

log10(bN/10c+1)−n+1∫
log10(N/10)−n+1

∣∣∣∣∣
∑n−1
j=0

(
bbN/10c10−jc−bi010−jc

)
N

− 10n(10x − 10y)

9N

∣∣∣∣∣dx.
Since

∣∣FνN◦ι−1(x)− FηN◦ι−1(x)
∣∣ ≤ 1 for all x ∈ I, it easily follows that

log10(bN/10c+1)−n+1∫
log10(N/10)−n+1

∣∣∣∣∣
∑n−1
j=0 (bbN/10c10−jc−bi010−jc)

N
− 10n(10x−10y)

9N

∣∣∣∣∣dx =

O
(
N−1

)
.

From (5) and i0 = b10y+n−1c, it is readily verified that∑n−1
j=0 (bi10−jc − bi010−jc)

N
− 10n(10x − 10y)

9N

=

∑n−1
j=0

(
(i010−j − bi010−jc)− (i10−j − bi10−jc)

)
N

+
10
(
(b10x+n−1c − 10x+n−1)− (b10y+n−1c − 10y+n−1)

)
9N

− 101−n(b10x+n−1c − b10y+n−1c)
9N

.

From∣∣∣∣∣10
(
(b10x+n−1c − 10x+n−1)− (b10y+n−1c − 10y+n−1)

)
9N

−

101−n(b10x+n−1c − b10y+n−1c)
9N

∣∣∣∣ = O
(
N−1

)
,

for y ∈ [0, log10N − n+ 1[ , it follows that

1∫
0

∣∣∣(FνN◦ι−1(x)−FηN◦ι−1(x)
)
−
(
FνN◦ι−1(y)−FηN◦ι−1(y)

)∣∣∣dx =

1

N

N−1∑
i=bN/10c+1

log10

(
1+

1

i

)
·

∣∣∣∣∣∣
n−1∑
j=0

(
(i010−j−bi010−jc)−(i10−j−bi10−jc)

)∣∣∣∣∣∣ +
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O
(
N−1

)
. (6)

In the following, we further estimate the right hand side of (6). The elementary
inequality

x− x2/2 ≤ log(x+ 1) ≤ x, ∀ x ≥ 0

yields
1

i log 10
− 1

2i2 log 10
≤ log10

(
1+

1

i

)
≤ 1

i log 10
;

moreover,

1

N

N−1∑
i=bN/10c+1

1

2i2 log 10

∣∣∣∣∣∣
n−1∑
j=0

(
(i010−j − bi010−jc)− (i10−j − bi10−jc)

)∣∣∣∣∣∣ =

O
(
N−2 logN

)
.

Hence

1∫
0

∣∣∣(FνN◦ι−1(x)− FηN◦ι−1(x)
)
−
(
FνN◦ι−1(y)− FηN◦ι−1(y)

)∣∣∣dx =

1

N log 10

N−1∑
i=bN/10c+1

1

i

∣∣∣∣∣∣
n−1∑
j=0

(
i010−j − bi010−jc)− (i10−j − bi10−jc)

)∣∣∣∣∣∣ +

O
(
N−1

)
.

From
1

N log 10

1

i

∣∣∣∣∣∣
n−1∑
j=0

(
(i010−j − bi010−jc)− (i10−j − bi10−jc)

)∣∣∣∣∣∣
≤ 2n

NbN/10c log 10
, for i = bN/10c and i = N,

it follows that

1∫
0

∣∣∣(FνN◦ι−1(x)− FηN◦ι−1(x)
)
−
(
FνN◦ι−1(y)− FηN◦ι−1(y)

)∣∣∣dx =

1

N log 10

N∑
i=bN/10c

1

i

∣∣∣∣∣∣
n−1∑
j=0

(
(i010−j − bi010−jc)− (i10−j − bi10−jc)

)∣∣∣∣∣∣ +

O
(
N−1

)
. (7)
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Completely analogous arguments show that (7) holds also for

y ∈ [log10N − n+ 1, 1[ with i0 = b10y+n−2c.

Thus it suffices to determine the constant order of amplitude of

N∑
i=bN/10c

1

i

∣∣∣∣∣∣
n−1∑
j=0

(
(i010−j − bi010−jc)− (i10−j − bi10−jc)

)∣∣∣∣∣∣ .
To get rid of the absolute value, one can use the Cauchy-Schwarz inequality:

N∑
i=bN/10c

1

i

∣∣∣∣∣∣
n−1∑
j=0

(
(i010−j − bi010−jc)− (i10−j − bi10−jc)

)∣∣∣∣∣∣

2

≤
N∑

i=bN/10c

1

i2

N∑
i=bN/10c


n−1∑
j=0

(
(i010−j−bi010−jc)−(i10−j−bi10−jc)

)
2

. (8)

Note that
N∑

i=bN/10c

1

i2
= 9N−1 +O(N−2). (9)

It remains to estimate

N∑
i=0

(n−1∑
j=0

(
(i010−j − bi010−jc)− (i10−j − bi10−jc)

))2
,

which can be rewritten as

N∑
i=0


n−1∑
j=0

(
(i010−j − bi010−jc)− (i10−j − bi10−jc)

)
2

= (N + 1)

n−1∑
j=0

(i010−j − bi010−jc)

2 +

N∑
i=0

n−1∑
j=0

(i10−j − bi10−jc)

2

− 2

n−1∑
j=0

(i010−j − bi010−jc)
N∑
i=0

n−1∑
j=0

(i10−j − bi10−jc). (10)

In the following, we consider each term on the right-hand side of (10) sepa-
rately.

113



CHUANG XU

First we consider
∑N
i=0

∑n−1
j=0 (i10−j − ib10−jc), by switching the order of the

summations. For every i = 0, . . . , N and j = 0, . . . , n−1, there exist nonnegative
integers k, l with l ≤ 10j − 1 such that i = k10j + l, and hence

i10−j − bi10−jc = l10−j .

Therefore,

{i : 0 ≤ i ≤ N}

=
{
k10j + l : 0 ≤ k ≤ bN10−jc − 1, 0 ≤ l ≤ 10j − 1

}
∪
{
bN10−jc10j + l : 0 ≤ l ≤ N − bN10−jc10j

}
.

Let N = an−1 · · · a0 =
∑n−1
j=0 aj10j with 0 ≤ aj ≤ 9 for all 0 ≤ j ≤ n − 1.

Notice that

bN10−jc = N10−j −
j−1∑
r=0

ar10r−j , ∀ j = 1, . . . , n− 1. (11)

From the simple observations

n−1∑
j=0

(1− 10−j) = n+O(1)

and
n−1∑
j=1

10−j
j−1∑
r=0

ar10r = O(n),

it is tedious but straightforward to deduce that

N∑
i=0

n−1∑
j=0

(
i10−j − bi10−jc

)

=
1

2

(
n− 10

9

)
N − 1

2

n−1∑
j=1

j−1∑
r=0

ar10r +
1

2

n−1∑
j=1

10−j

(
j−1∑
r=0

ar10r

)2
+O(n).

(12)

Next, we deal with
∑N
i=0

(∑n−1
j=0 (i10−j − bi10−jc)

)2
, which can be expanded as

114



THE DISTRIBUTIONAL ASYMPTOTICS MOD 1 OF (logb n)

N∑
i=0

n−1∑
j=0

(i10−j − bi10−jc)

2

= 2

N∑
i=0

n−1∑
j=1

(i10−j−bi10−jc)
j−1∑
r=0

(i10−r−bi10−rc)+

N∑
i=0

n−1∑
j=0

(i10−j−bi10−jc)2.

(13)

For every 1 ≤ j ≤ n− 1, let Kj = N − bN10−jc10j for notational convenience.
Then similarly,

{i : 0 ≤ i ≤ N}

=
{
k10j + p10r + l : 0 ≤ k ≤ bN10−jc − 1, 0 ≤ p ≤ 10j−r − 1, 0 ≤ l ≤ 10r − 1

}
∪
{
bN10−jc10j + p10r + l : 0 ≤ p ≤ bKj10−rc − 1, 0 ≤ l ≤ 10r − 1

}
∪
{
bN10−jc10j + bKj10−rc10r + l : 0 ≤ l ≤ Kj − bKj10−rc10r

}
,

from which it follows that

N∑
i=0

n−1∑
j=1

(i10−j − bi10−jc)
j−1∑
r=0

(i10−r − bi10−rc)

=

n−1∑
j=1

j−1∑
r=0

bN10−jc−1∑
k=0

10j−r−1∑
p=0

10r−1∑
l=0

(p10r + l) · 10−j l10−r

+

bKj10−rc−1∑
p=0

10r−1∑
l=0

(p10r + l)10−j l10−r

+

Kj−bKj10−rc10r∑
l=0

(
bKj10−rc10r + l

)
10−j l10−r

 .

(14)

From (11) and (14), a lengthy but elementary calculation leads to

N∑
i=0

n−1∑
j=0

(i10−j − bi10−jc)
j−1∑
r=0

(i10−r − bi10−rc)

=

(
n2

8
− 85n

216

)
N − 1

4

n−1∑
j=1

j

j−1∑
l=0

al10l +
1

4

n−1∑
j=1

j10−j

(
j−1∑
l=0

al10l

)2
+O(N).
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Analogously, one obtains also
∑N
i=0

∑n−1
j=0 (i10−j − bi10−jc)2 = nN

3 + O(N).

Note that (13) immediately leads to

N∑
i=0

(
n−1∑
j=0

(i10−j − bi10−jc)

)2

=

(
n2

4
− 49

108
n

)
N− 1

2

n−1∑
j=0

j

j−1∑
l=0

al10l+
1

2

n−1∑
j=0

j10−j

(
j−1∑
l=0

al10l

)2
+O(N). (15)

The rest of the proof consists of choosing an appropriate i0 (or equivalently,
y = 〈〈log10 i0〉〉) to obtain a sufficiently precise bound for (10): Let

i0 = 10n−1 − 10bn/2c−1 + 1 if 10n−1 ≤ N ≤ 10n − 10bn/2c,

and
i0 = 10n − 10bn/2c if 10n− 10bn/2c< N ≤ 10n− 1.

Note that bN/10c+ 1 ≤ i0 ≤ N − 1, and it is straightforward to verify that

n−1∑
j=0

(i010−j − bi010−jc) =
n

2
+ c+O

(
N−1/2

)
for some finite constant c. (16)

Combining (12), (15) and (16) yields

N∑
i=0


n−1∑
j=0

(
(i10−j − bi10−jc)− (i010−j − bi010−jc)

)
2

=
11

108
nN+

1

2

n−1∑
j=0

(n− j)

(
j−1∑
l=0

al10l

)(
1−

j−1∑
l=0

al10l−j

)
+O(N).

Next, observe that

1

2

n−1∑
j=0

(n− j)

(
j−1∑
l=0

al10l

)(
1−

j−1∑
l=0

al10l−j

)
=O(N),

which implies that

N∑
i=0


n−1∑
j=0

(
(i10−j − bi10−jc)− (i010−j − bi010−jc)

)
2

=
11

108
nN +O(N),
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and hence

N∑
i=bN/10c


n−1∑
j=0

(
(i10−j − bi10−jc)− (i010−j − bi010−jc)

)
2

(17)

≤ 11 logN

108 log 10
N +O(N).

Let y = 〈〈log10 i0〉〉. Combining (7), (8), (9) and (17) yields

1∫
0

∣∣∣(FνN◦ι−1(x)− FηN◦ι−1(x)
)
−
(
FνN◦ι−1(y)− FηN◦ι−1(y)

)∣∣∣dx
≤ 1

6 log 10

√
33

log 10

√
logN

N
+O

(
N−1

)
;

and hence with Proposition 2.1, it follows at long last that

lim sup
N→∞

N√
logN

dT (νN , ηN ) ≤ 1

6 log 10

√
33

log 10
.

�

Note that Theorem 3.1 describes the asymptotics of
(
νN (logb n)

)
N≥1, in that

it not only gives the rate of convergence, but also identifies the exponential
distribution with specific rotation that (νN ) asymptotically approaches.

Remark 3.2. (i) It follows from a general result in [14] that

lim sup
N→∞

N

logN
dT
(
νN , Elog b ◦R−1− logbN

)
< +∞

for every b ∈ N \ {1}. Obviously, this is weaker than (4).

(ii) From Zador’s theorem on asymptotic quantization error in P(T) [4, Thm.1.4],
it follows that

lim inf
N→∞

NdT
(
νN , Elog b ◦R−1− logbN

)
> 0.

This shows that (
dT
(
νN , Elog b ◦R−1− logbN

))
N≥1

cannot decay faster than
(
N−1

)
, and [1, Cor.3.8] suggests that it may be chal-

lenging to improve this lower bound.

(iii) Even if the inequality (8) is replaced by the following Hölder inequality,
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N∑
i=bN/10c

1

i

∣∣∣∣∣∣
n−1∑
j=0

(
(i010−j−bi010−jc)−(i10−j−bi10−jc)

)∣∣∣∣∣∣≤
 N∑
i=bN/10c

1

i4/3

3/4×
 N∑
i=bN/10c

n−1∑
j=0

(
(i010−j − bi010−jc)− (i10−j − bi10−jc)

)4

1/4

,

the upper bound for the rate of convergence does not improve. Indeed, a tedious
computation similar to the one in the proof of Theorem 3.1 yields

lim sup
N→∞

N√
logN

dT
(
νN , Elog b ◦R−1− logbN

)
≤ c, (18)

where the constant c may be smaller than 1
6 log 10

√
33

log 10 but still is positive.

From this, one may optimistically conjecture that for all b > 1 (not necessarily
integers), the sequence(

N√
logN

dT

(
νN , Elog b ◦R−1− logbN

))
N≥2

is bounded above and below by positive constants. Especially for non-integer b,
this is speculation only, since many of the explicit calculations and estimates
leading to (4) do not apply directly.

3.2. Sharp rates of convergence w.r.t. dI and dK

In this subsection, we complement the results of Subsection 3.1 by character-
izing the sharp rate of convergence of

(
νN (logb n)

)
N≥1 w. r. t. both dI and dK.

Theorem 3.3. Assume b ∈ N \ {1}. Then

lim
N→∞

N

logN
dI

(
νN ◦ ι−1, Elog b ◦R−1− logbN

◦ ι−1
)

=
1

2 log b
.

P r o o f. Recall that b = 10. As in the proof of Theorem 3.1, by formula (2),
it is easy to verify that for 10n−1 ≤ N ≤ 10n − 1,

dI

(
νN ◦ ι−1, Elog b ◦R−1− logbN

◦ ι−1
)

=
1

N log 10

N∑
i=bN/10c

1

i

n−1∑
j=0

(
i10−j − bi10−jc

)
+O

(
N−1

)
.

(19)
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Like the expression for
N∑
i=0

n−1∑
j=0

(i10−j − bi10−jc)

as in the proof of Theorem 3.3, it is readily checked that
N∑

i=bN/10c

1

i

n−1∑
j=0

(i10−j − bi10−jc) =

n−1∑
j=0

 10j−1∑
l=bN/10c−bbN/10c10−jc10j

l10−j

bbN/10c10−jc10j + l
+

bN10−jc−1∑
k=bbN/10c10−jc+1

10j−1∑
l=0

l10−j

k10j + l
+

N−bN10−jc10j∑
l=0

l10−j

bN10−jc10j + l

 ,

which implies that

N∑
i=bN/10c

1

i

n−1∑
j=0

(i10−j − bi10−jc)

≥
n−1∑
j=0

 10j−1∑
l=bN/10c−bbN/10c10−jc10j

l10−j

bbN/10c10−jc10j + 10j

+

bN10−jc−1∑
k=bbN/10c10−jc+1

10j−1∑
l=0

l10−j

k10j + 10j
+

N−bN10−jc10j∑
l=0

l10−j

N


=

1

2

n−1∑
j=0

(
1− 10−j + bN/10c10−j − bbN/10c10−jc

bbN/10c10−jc+ 1
(20)

×
(
1− bN/10c10−j + bbN/10c10−jc

)
+
N10−j − bN10−jc

N

×
(
N10−j − bN10−jc+ 1

)
10j + (1− 10−j)

bN10−jc−1∑
k=bbN/10c10−jc+1

1

k + 1

)
.

Note that

1

2

n−1∑
j=0

(
1− 10−j + bN/10c10−j − bbN/10c10−jc

bbN/10c10−jc+ 1
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× (1− bN/10c10−j + bbN/10c10−jc)

+
(N10−j − bN10−jc)

N
(N10−j − bN10−jc+ 1)10j

)
= O(1).

Moreover, it is tedious but straightforward to confirm that

1

2

n−1∑
j=0

(1− 10−j)

bN10−jc−1∑
k=bbN/10c10−jc+1

1

k + 1
=

1

2
logN +O(1),

with which (20) takes the form
N∑

i=bN/10c

1

i

n−1∑
j=0

(i10−j − bi10−jc) ≥ 1

2
logN +O(1). (21)

Analogously, one can also show that (21) holds with ≥ replaced by ≤, and hence

N∑
i=bN/10c

1

i

n−1∑
j=0

(i10−j − bi10−jc) =
1

2
logN +O(1).

The conclusion now follows from (19). �

The following corollary is immediately obtained from Theorem 3.3, together
with [9, Thm.5] and the fact that dI ≤ dK.

Corollary 3.4. Assume b ∈ N \ {1}. Then

0 < lim inf
N→∞

N

logN
dK
(
νN ◦ ι−1, Elog b ◦R−1− logbN

◦ ι−1
)

≤ lim sup
N→∞

N

logN
dK
(
νN ◦ ι−1, Elog b ◦R−1− logbN

◦ ι−1
)
< +∞.

Comparing Theorems 3.1 and 3.3, as well as Corollary 3.4, notice how(
dT
(
νN , Elog b ◦R−1− logbN

))
N≥1

decays somewhat faster than both(
dI
(
νN ◦ ι−1, Elog b ◦R−1− logbN

◦ ι−1
))
N≥1

and (
dK
(
νN ◦ ι−1, Elog b ◦R−1− logbN

◦ ι−1
))
N≥1

.

Moreover, the ratio
dI
(
νN ◦ ι−1, Elog b ◦R−1− logbN

◦ ι−1
)

dK
(
νN ◦ ι−1, Elog b ◦R−1− logbN

◦ ι−1
)
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is bounded above and below by positive constants. This is remarkable since

infµ6=ν, µ,ν∈P(T)
dI
(
µ ◦ ι−1, ν ◦ ι−1

)
dK (µ ◦ ι−1, ν ◦ ι−1)

= 0.
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