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ABSTRACT. Let f(z) be a monic polynomial with integer coefficients and 0 <
ry <--- <7y < p its roots modulo a prime p. We generalize a conjecture on the
distribution of roots r; with additional congruence relations r; = R; mod L from
the case that f has no non-trivial linear relation among roots to the case that f
has a non-trivial linear relation.

Communicated by Shigeki Akiyama

In this note, a polynomial means always a monic one over the ring Z of integers
and the letter p denotes a prime number, unless specified. Let

f@)y=a"+an12" "+ +ao (1)
be a polynomial of degree n. As in the previous paper, we put
Splx (f) :={p < X | f(x) is fully splitting modulo p}

for a positive number X and Spl(f) := Spl,, (f). Moreover, we require the fol-
lowing conditions on the local roots r1,...,7, (€ Z) of f(x) = 0 mod p for a

prime p € Spl(f):

n

flx) = H(a: —r;) mod p, (2)

=1
0<r <rg < <1y <p. (3)

The condition is the definition of p € Spl(f). We can determine local
roots r; uniquely with the global ordering . If f(x), f'(x) are relatively prime
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in Z/pZ[x] and ap Z 0 mod p, then is equivalent to 0 < 7y < -+ < 1y, < Pp.
From now on, local roots r; are supposed to satisfy conditions and .

Let aq,...,a, (€ C) be roots of a polynomial f in and we fix their num-
bering once and for all. Define a vector space LR over Q by

i lio; = zn+1}. (4)

i=1
The vector (1,...,1,—a,—_1) is always in LR, hence ¢ := dimg LR > 1. We say
that a polynomial f has a non-trivial linear relation among roots if ¢ > 1. Put

_ #peSplx(f) | (r1/p,...,mn/p) € D}
Pro(£,X) = - #Splx (f) ’

PI‘D(f) = )(h—I)nooPrD(f,X)’ (5)

for a set D C [0,1)" with D = D°. Here we assume the existence of the limit,
and so on. We stated the following Expectations 1, 1/, 17, 2 in [K1] :

LR := {(11; o lnp1) €QM

EXPECTATION 1. If f has no non-trivial linear relation among roots, then
vol(DND,

Prp(f) = (1(@))7

where VOEn

D, = {(:cl...,xn)E[0,1)”|0§x1§~~§xn<1,2z162}.

i=1

Here, ©,, is contained in the union of hyperplanes {(z1,...,2,) € R™ |
>oi, x; € Z} and vol is the volume as an (n—1)-dimensional set. Let us consider
a general polynomial, that is a polynomial which may have a non-trivial linear
relation among roots, i.e. t > 1. Let

m; = (mj’l,...,mjm,mj) (] = ].,...,t)

be a Z-basis of LRNZ"*! and put m; := (m;1,...,m; ). Since the conditions
(l1,...,lpny1) € LR and l4,...,l, € Z imply l,,41 € Z by roots «; being algebraic
integers, the set of vectors my,...,m; is a Z-basis of

i liOéi S Q}
=1

Proposition 1 in [KI] says that for a sufficiently large prime p € Spl(f), there is
at least one permutation o € S,, dependent on p such that

{(ll,...,ln)eZ”

ij,ira(i) =m;modp (1<7j<), (6)
=1
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DISTRIBUTION OF ROOTS OF A POLYNOMIAL

hence we have for some permutation ¢ and integers k; (j = 1,...,t) dependent
on a prime p n
ij,ﬂ'a(i) =m; + kjp (1 < Vj < t). (7)
i=1

Once we take and fix bases ™, the possibility of integers k; is finite by 0 <r; <p.
If f has no non-trivial linear relation, then t =1, m; =(1,...,1,—a,) and
(7) is, for a sufficiently large p € Spl(f),

Zh‘ =—ap-1+kp (1<k<n).
i
Correlating with @, we put, for a permutation o € S,,,

n
ij,ir[,(i) =m; modp (1<) < t)} (8)

i=1

Splx (f,0) = {p € Splx (f)

and

D(f,0) = {(ml,xn) efo,1)"

0<z <<y, <1, 9
S Mt €Z (1< <t) [

It is obvious that dim®D(f,0) < n — ¢. If f has no non-trivial linear relation
among roots, then it is easy to see that Splyx (f, o) = Splx(f) and D(f,0) =9,
for any permutation o. The following is a generalization of Expectation 1.

EXPECTATION 1.

Prp(f,0):= lim #{p € Splx (f.0) | (r1/p, ... ,rn/p) € D}

X—o0 #SplX (f7 0)

_ vol(D ND(f,0)) (10)
vol(D(f,))

for a permutation o if dim®D(f, o) =n — ¢, and vol is the volume as an (n — ¢)-

-dimensional set.

The expectation on the density of the set Spl(f, o) is
EXPECTATION 1”.
li #SplX (f7 U)

Pr(f,o):= o #Splx (f)

where the constant ¢ is independent of o.

=c ' vol(D(f,0)), (11)

The explicit value of ¢ is given in Proposition [4] in the subsection [2.3| and
by using it, Expectation 1 is generalized to a polynomial with a non-trivial
linear relation among roots (see in the subsection 2.4).
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To state the distribution of roots r; with congruence conditions
r,=RimodL (i=1,...,n) (12)
for given integers L (>2) and R;, we introduced notations
_ #{peSplx(f) |ri=Rimod L (1< Vi <n)}

Pr (f’Lv {Rz}) = XIE;HOO PrX(faL’ {Rl})v (14)

and proposed the following to a polynomial without non-trivial linear relation
among roots.

and

EXPECTATION 2.

1
Ln=t kzq [Q(¢L) : QUf) NQCrya))
where k, ¢ run over a set of integers satisfying
1<k<n-1,d:=(kL),

(15)

and
q € (Z/LZ)™,

an—1+ Y iy Ri=kqmod L,
[[g]] = [[1]] on Q(f) NQ(¢Lya)-

Here B, (k) is the volume of the set {z € [0,1)" ! |k—1 < a1+ +xp_1 <k}
and it is also given as F,(k) = A(n — 1,k)/(n — 1)!, using Eulerian numbers
A(n, k) (1 <k <n) defined recursively by

AL ) =1, A(n, k) =(n—k+1)A(n— 1,k — 1)+ kEA(n — 1, k).

And (g, is a primitive Lth root of unity, and Q(f) is a Galois extension of the
rational number field Q generated by all roots «; of f. Lastly for an abelian field F'
in Q(¢.) and an integer m relatively prime to ¢, [[m]] denotes an automorphism
of F' induced by ¢, — ¢".

In the first section of this note, we review Expectation 2 and generalize it
to a polynomial with a non-trivial linear relation among roots: Restricting a
prime p € Spl(f) by the condition (7)), we introduce a more natural density
Pr(f,o,{k;}, L,{R;}) than Pr(f,L,{R;}) in (14)), which seems to take the same
value independent of integers {R;} fixing a permutation ¢ and integers k; in ,
if it does not vanish. In case of deg f = 1, it is essentially equivalent to Dirichlet’s
prime number theorem on arithmetic progressions.

90



DISTRIBUTION OF ROOTS OF A POLYNOMIAL

In the second section, we give several miscellaneous remarks on Spl(f, o),
D(f,o) and the constant ¢ in Expectation 1”.

To state the conjecture, we introduce following notations according to condi-

tions @, , :

Sply(f.0) = {p € SpL (/)| > myiraey = my mod p <Vj>}, (f. @)

i=1

Z My ite(i)y = My + k;p (vj)},

=1

Sply (£, 0, {k;}) i= {p € Sply(f.0)

Splx (f,0,{k;}, L, {Ri}) = {P € Splx (f,0,{k;}) | i = R; mod L(Vi)},

Pr(fv U) - Xlgnoo m’

A R . #SplX(fa g, {k]})
Prh et = I S ()
. #SplX(fv g, {kj}aLv {RZ})
Pr(f,o,{k;},L,{R;}) := lim ,
(f,0{kj}, L, {Ri}) == lim 4 Sply (>0 (1)
where for the last two, the denominators # Splx (f, o), # Splx (f, 0, {k;}) of the
right-hand sides are supposed to tend to the infinity.

(cf- (1))

The density Pr(f, o) is given by (11]), where the constant ¢ will be given by
Proposition [4 in the subsection (11) implies that the density of Spl (f, o)
is positive if and only if the geometric condition dimD(f,0) = n — ¢ holds. It
seems that two conditions # Spl(f,o) = oo and Pr(f,o) > 0 are equivalent.
What is the number of permutations o with Pr(f, o) > 0 or dim®(f,0) = n—1t?

Putting

D(o, {k;}) == {(azl,...,zn)

’ij,i%(i) — k| <1/3( = 1,---,75)}7
=1

we see that for a sufficiently large p € Spl__(f, o), the condition (r1/p, ..., /D)
€ D(o,{k;}) is equivalent to (7). Hence the density Pr(f,o, {k;}) is equal to the
density Prp(f, o) in Expectation 1’ with D = D(o, {k;}), thus we have
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Pr(f,0: 1) = Pro, g (o) = S b DS

vol({(z1,...,2n) |0 <@y < <@y < 1, my im0y = kj (V5)})

B 16
vol(D(f,0)) (16)
by Expectation 1’.
Lastly, assume # Spl.(f, o, {k;}) = oo; then we expect that
Pr(f,o,{k;}, L,{R;})
1
if #Sploo 105 k;j 7L7 R;}) = oo,
= { #R(f,0.{k;}. L) (f,0,{k;}, L, {R:}) 1
0 otherwise, (17)

where
fﬁ(f» g, {kj}vL) = {{RZ} € [OvL - l}n | #Sploo(fv g, {kj}va {Rl}) = OO}
It is not easy to see whether # Spl_(f,o0,{k;},L,{R;}) = oo or not. Suppose
#Spl(f,0,{k;j},L,{R;}) = oo; then there is a large prime p € Spl(f) such
that ), mjire;) = my + kjp and r; = R; mod L, hence ), m; i R, = mj +
kijpmod L (j =1,...,t). Thus the following condition (C) is satisfied:
(C1) = (kj, L) = (32, myiRe@) — my, L)(= dj say) and there is an
integer ¢ which is independent of j, relatively prime to L and satisfies
that 7. m; R, —m; = k;j - qmod L and [[¢]] = [[1]] on Q(f) N
Q(CLya;)-

Data suggest that the condition (C1) is also a sufficient condition, that is putting
£H/(f7 g, {kj}7 L) = {{Rz} € [Oa L— 1]71 | (Cl)} (D m(f) g, {kj}a L))7

we expect that
E)%(fa g, {kj}7 L) = m,(.ﬁ g, {kj}v L) if # Sploo(fa g, {kj}) = OoQ. (18)

EXAMPLE 1. Let us see the case of degree 1, i.e. f(x) = x —a: Then we see that
the permutation o is the identity, ¢ = 1, m; = (1,a), and the local root r; is
equal to a+ k1p for k1 = 0,1 according to a > 0, a < 0 if p > |a|. Hence we have
#8Spl (f,id, k1) < oo unless k1 = 0,1 according to a > 0, a < 0. We consider
only such an integer k1 (= 0 or 1) and neglect a finite number of primes p less
than or equal to |al; then we see that

Splx (f,id) = {p < X},
SplX(fvlda k17L7R1) = {p S X | a+ klp = Rl mod L}7
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hence
Pr(f,id) = Pr(f,id, k1) =1
and
1 ifa>0,a=R; mod L,
0 ifa>0,a# Ry mod L,
%) ifa<0,(Ry —a,L)=1,
ifa<0,(Ry —a,L)#1

PI‘(f, id, k‘l, L, Rl) =

S 6

by Dirichlet’s theorem, and
1
#R(f,id, k1, L) =
e(L)

Thus the conjecture is nothing but Dirichlet’s theorem. Since the condition
(Ch)is:dy:=(Ry—a,L) = (k1,L) = L or 1 according to a > 0 or a < 0, and
there is an integer ¢ such that (¢,L) =1, Ry — a = k1q mod L, it is easy to see
that is true.

EXAMPLE 2. Let us see that Expectation 2 follows from the conjectures ,
. Suppose that a polynomial f has no non-trivial linear relation among roots.
So, we have t =1, m; = (1,...,1,—a,—1). The equation in Expectation 2
is equivalent to

En (k1)
(faL {R } Ln 1 Z CL/d (@(f)m(@(CL/d)]7 (19)

ifa >0,
if a <0.

where k; satisfies that
1 S kl S n — 17 d = <an_1 +ZR“L) = (kl,L),

and that there is an integer ¢ such that (¢,L) = 1, (ap—1 + > R;)/d = k1/d -
g mod L/d and [[¢]] = [[1]] on Q(f) NQ({L/q), since the number of such integers
q is [Q(¢r) : Q(Cryq)] if there exists. We see that for any permutation o

SplX(fao-akl) = {pesplx f7 ‘Zrz:_an—l+klp}a
Sply (f, 0, k1, L, {R;}) = {p € Sply(f,0,k1) | 7 = R; mod L(Vi)}.
The identity Pr(f,o) =1 is obvious. Since we know

vol({m €D i = k1}> Jvol(D,,) = By (ky),
we have

Pr(faa7kl):En(kl) by '
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We see that the density in is
lim #{p € Splx(f) | ri = R; mod L}

X o0 #Splx (f)

_ g I #{p € Sply (f) | ri = Zsr;ld( f)’ S ri = —an—1 + kip}
_ ;_: Jim 250 gé;’fi}f’ {R:})

-5 S £l

where Y/ means that k; satisfies the condition #Spl(f, o, k1, L,{R;}) = oo,
ie. {R;} € R(f,0,k1, L), then #Spl_(f,0,k1) = oo is satisfied

=N " 'Pr(f,0,k1, L, {R;})Pr(f, 0, k1)

{3 e e

Put dy := (k1, L) and suppose (> R; + an—1,L) = di. Making use of (> R; +
an-1)/d1 = ki/dy - pmod L/dy, the mapping {R;} — [[p]] € Gal(Q(¢r/q,)/Q)
tells us #R'(f,0,k1,L) = L" ' [Q(Cr/ay) : Q(f) N Q(¢L/a,)]- Hence under the
assumption , we obtain in Expectation 2.

Putting

CUL LK) = ;Jn(k)

eG4 ®D),

Ln=1Q(Crya

we have checked for polynomials
2?4+, 2842, et + 2+ +1, 28 +2, 8+ttt 41,

which have no non-trivial linear relation among roots that there is a large number
X(<10'?) and L < 7 such that

#SplX(f7 g, kv La {Rl})
#5Splx (f)
it #Sply (f, 0.k, L, {R;}) > 10.

— C(f, L, k)| < C(f, L,k)/10
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ExXAMPLE 3. Suppose that a polynomial f(z) = (22 + ax)? + b(z? + az) + ¢ is
irreducible. It is an irreducible polynomial of the least degree with a non-trivial
linear relation. For roots 81, B2 of 2+ bx+c, denote roots of z2+ax = B; by Qg j

( = 1,2). Then we can take linear equations «; 1 + a2 = —a (i = 1,2) as a
basis of linear relations among roots of f(z) ([K1l). By putting a1 = a1,1,a2 =
01,003 = Q22,04 = (1,2, the relations oy + oy = ag + a3 = —a are a basis,

hence we see that ¢ = 2 and rm; = (1,0,0,1,—a), o = (0,1,1,0,—a). Let p
be a large prime in Spl(f) and r; local roots, which are supposed to satisfy
0 <ry < -+ < ryg < p by the assumption. Then, the induced local linear
relations @ among them are r1 +74 = —a+p,ro+r3 = —a+p for a large prime
p, hence a permutation o with #Spl(f,o) = oo satisfies {o(1),0(4)} = {1,4}
or {2,3} with k; = ko = 1. For such permutations o and k; = ko = 1, we see
that Splx (f, o, {k;}) = Splx(f) and Splx(f,o,{k;}, L,{R:}) = {p € Splx(f) |
r; = R; mod L}, neglecting a finite number of small primes. Our expectation
with is, for R = R'(f,0,{k;}, L)

Pr(f,0,{k:i}, L, {R:}) = 1/#R if (Ry,...,Ry) € R,

0, otherwise.

We have checked for 2 < L < 40 and for polynomials in the following table below

| [abc | G| Max. abelian subfield | Cond |
[10,5,7] |D[a*—22+1 12
[10,2,3] | D|az*+1 8
[4,4,5] |D|[a*+322+1 20
9,-3,3] |D|a2*—2®—22—-2x+4 21
[-3,0,9] |B|a*—22+1 12
[-2,1,4] |B|2*—a2*+222+2+1 15
[~4,0,9] | B|a2*+1 8
[-3,4,9] |B|a*+322+1 20
[0,0,1] B|2*+1 8
[-1,3,1] | Cla*—a3+22—2+1 5
[-9,3,-9] | C |2 —2%—42? +42x+1 15
[~6,8,—4] | C |2 —5z2+5 20
[-1,7,9] | C|a*—a3+222 +42+3 13
[-8,-8,8] | C |t~ 4a; +2 16
[6,1,—4] | C|a*t—2®—622+2+1 17
[—4,-2,—4] | C | 2* — 10x + 20 40
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that there is a number X (< 10'?) such that |Prx (f, o, {ki}, L, {R;}) —1/#R'| <
1/(10#R') if (Ry,...,Ry4) € K. In the table, [a,b, c] means a polynomial f :=
(22 4+ az)? + b(2? + ax) + ¢, and G is the Galois group Gal(Q(f)/Q): D is the
dihedral group of order 8, B is Z/2Z x Z/2Z, and C means Z/4Z. “Max. abelian
subfield” is a defining polynomial of the maximal abelian subfield of Q(f), which
is of degree 4. “Cond” is its conductor.

EXAMPLE 4. Let us give another example of a polynomial with a non-trivial
linear relation among roots. Let

fx) = 2% 4 225 + 4a* + 23 4 22% — 32 + 1,
whose roots are

v=(GE+ G, GH+G, E-G-E-G-1
G+ G+Ga, C-E-E-&-1)

and the basis of linear relations among roots are v1+v, +v3=—1, v44v5+vg =—1.
Hence we have t = 2 and is

To() T To@) T Te@) = =1+ k1D, To@) + Toi) + Toe) = —1 + kap.

We have only to consider the case 1 € {o(1),0(2),0(3)}, and then possible
permutations o and a pair [k, ko] of integers are following (1),...,(9.3):

permutation, [k1, ko]

(1):[1,2,3,4,5,6],[1,2],
(2):[1,2,4,3,5,6],[1,2],
(3):[1,2,5,3,4,6],[1,2],

(4.1): [1,2,6,3,4, 5], [1,1],

(4.2) : [1,2,6,3,4, 5], [1,2],

(4.3):[1,2,6,3,4,5],[2,2],
(5) : [1,3,4,2,5,6],[1,2],

(6.1) : [1,3,6,2,4,5],[1,1],

(6.2) : [1,3,6,2,4,5],[2,2],

(7.1) : [1,4,5,2,3,6],[1,1],

(7.2) : [1,4,5,2,3,6],[2,2],

(8.1):[1,4,6,2,3,5],[1,1],

(8.2):[1,4,6,2,3,5],[2,2],

(9.1) : [1,5,6,2,3,4],[1,1],

(9.2) : [1,5,6,2,3,4],[2,1],

(9.3) : [1,5,6,2,3,4],[2, 2],
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where a permutation o is identified with the 6-tuple [o(1),...,0(6)] of images.
Then Pr(f,o) is numerically 10/144, 24/144, 15/144, 13/144, 15/144, 18/144,
18/144,18/144, 13/144 in order of permutations (1), (2), (3), (4),...,(9), and
Pr(f,o,{k;}) is 1, 1,1, 8/13,4/13,1/13, 1, 2/3, 1/3, 1/2, 1/2, 1/3, 2/3, 1/13,
4/13,8/13 in order of pairs of a permutation and [k1,k2] (1), (2), (3),(4.1),
(4.2),...,(9.3). We checked that there is a large integer X (< 10'2) such that

#SplX(fv Uv{kj}vLa {Rl}) _ PI‘(f, g, {k]}) < Pr(fvov {kj})
#SplX(f7 U) #m(fv a, {k]}7L) 1O#m(f7 g, {k]}7L)
for {R;} satistying #Splx (f, o, {k;}, L, {R:}) > 10 in the case of L < 8. Data say

that #R(f, 0, {k;},8) = #R'(f,0,{k;},8) = 8192 if [k, ko] = [2,2], otherwise
16384.

2.

Let us give several miscellaneous remarks on D(f, o), Spl(f, o), the constant
¢ in Expectation 1”7 and Prp(f) of (5)) in the case that f has a non-trivial linear
relation. We put for & = (x1,...,2,),z € R and a permutation o € S,

o @) = (To1)s -+ Tomy)s 0 ((2,2)) := (07 (@), 2), (20)
2.1.
By definition @D, we see

(f,0)

I PR yepp ] 0SS S am <,
=qxr=(21...,2n ) (mj70—1($))eror1§Vj§t
O<£C1<"'<xn<]-7
=z =(v1....z,) €O, )" , 7 : 2!
{w (x1...,2,) €10,1) (J(mj)@)erorlSV]St} 21

The aim in this subsection is

PROPOSITION 1. Suppose that vol(D(f,0)) > 0, i.e. dimD(f,0) =n —t; then
for a permutation p, we have the equivalence

vol(D(f.0) N D(f,) >0 = D(f, ) = D(f. )
— <U(m1)7 s 7U(mt)>Z = </1'(m1)7 s 7N(mt)>Z
— ploeG:={ves, | wim),. . . ,vim))z = (mq,...,m)z}.

In particular, D(f,0) = D(f,ov) holds if and only if v € G.
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Proof. Define a mapping ¢ from D(f,o0) to Z*' by ¢(x); = (cr(mj),a:)7 and
take an inverse image x of k, i.e. ¥(xg) = k. If (x) = ¥(y) holds for x,y €
D(f,0), then we have (c(m;),x — y) = 0. Therefore we have

@(f, U) = Ukew(g(f)g)) {fbn n {LEk + <0’(m1), ey a(mt)>§}} (22)
Suppose that vol(D(f,c)) > 0; if the property vol(D(f, o) ND(f, 1)) > 0 holds,
then implies (o(my),...,0(my))x = (u(my),..., u(my))z, ie.
(0(m1), .y o(ma))e = (a(ma), ., ().

Since the matrix whose jth row is m; is integral with every elementary divisor
being 1, the above is equivalent to

(o(ma),...,0(my))z = (ulma), ..., p(my))z.
Conversely, suppose that the above is true. Then it is easy to see that

x€D(f,0) < x€D(f,pn) by (21),
hence D(f,0) =D(f, p). O

Remark The condition v € G is equivalent to
Vﬁl(ml) ma
. = A .
y_l(mt) my
and if a polynomial f has no non-trivial linear relation among roots, then we
have G = S,, obviously.

COROLLARY 1. We have

> vol(D(f, 1)) = #G - vol(Upes, D(f, 1)) (23)

HESy

Proof. Put
5 = {o €Sy, |vol(D(f,0)) > 0}.

Then we have

Z vol(D(f, ) :Z vol(D(f,0)) = Z Z vol(D(f, o))

g€Sy, oeS’ neS’ /G oepG

= #G Z vol(D(f, 1)) = #G - vol(Upes jaD(f, 1))

pnes’/G
= #G - vol(Upes, D(f, 1)). O
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2.2.
Put A :
G = {u es, ijyl,(i)ai =m; (j = 1,...,t)}.
i
Since vectors My, ..., M, are a basis of linear relations LR (cf. ), there is an
integral matrix A for v € G such that, by the definition
1/’1(7?11) Thl
=4 7
vt () my
i.e.
mly,,(l) N m17y(n) mq myi1 ... min M1
=Al @
mtﬂj(l) e mt7u(n) mye mm e mt,n my

Since the matrix whose jth row is 7n; is primitive, the left-hand side is also
primitive, hence A € GL(Z). Conversely, (24)) implies easily v € G. Therefore,
the condition is equivalent to v € G and we see that

G={vesS,| i), .. vin))z=(my,...,m)z)
is a subgroup of G.

REMARK. If my = --- = m; = 0, then G = G is obvious. If a polynomial f is
irreducible, then ) . m; ,;ya; = my implies (3, m;,@))tr(a1) = nm;, and so
the identity

Jov(i

Mivp@) -+ M1yn) mi ... Mig
: =A
Mip(1) - Miw(n) me1 ... Mip
implies
my mi
= A : ,
my my

multiplying ®(tr(ai)/n,...,tr(c1)/n) from the right. Therefore, if f is irre-
ducible, then we have G=aG. However, it is not necessarily true for a reducible
polynomial. For example, let a polynomial f be (2% + z + 1)(2? + 2z + 2) with
roots a1 = (—14++v/=3)/2,a0 = (=1 —+v/=3)/2,a3 = —1+/~1,a4 = —1—+/—1.
Then we may choose obviously mi; = (1,1,0,0,—1),mo = (0,0,1,1, —2), thus a
permutation v = (1,3)(2,4) is in G, but not in G.
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To prove the next proposition, we introduce one more notation. For a prime
p € Spl(f), we take and fix a prime ideal p of the field Q(f) = Q(aa,...,an)
lying above p, and put

M, :={peSpl(f)|a;=r,umodp (i=1,...,n)}.

It is clear that #(M, N M,) = oo implies a,-1,;) = a; (i = 1,...,n), hence
o tue G, ie oG = ,ué . The aim of this subsection is to show

PROPOSITION 2. We have
Spl(fa U) = (U}LMH) UT, (25)

where |1 runs over the set of permutations satisfying p € oG and #M,, = oo,
and T, is a finite set.

Proof. Since Spl(f,0) = Uues, (SpI(f,o) N M,) by Spl(f) = Uues, M, we
have only to show that #(Spl(f,o) N M,) = oo if and only if uG = oG and
#M,, = oo, and then M, C Spl(f,o). Suppose that #(Spl(f, o) N Mu) = oo.
The property #M,, = oo is clear. For p € Spl(f,o) N M, we have

merg(i) =m; mod p, r; = a,-1(; mod p,

which implies ), m; -1, = m; mod p for infinitely many primes in p €
Spl(f,o) N M, thus ), mj a1,y = m;. It means plo e G, e puG = oG.

Conversely, suppose that uG’ = oG and #M, = oo hold; then we have
YoMy, -1, = myj. Hence, for p € M,, we see ), mjr,; = mj mod p,
that is, p € Spl(f, o) and so M, C Spl(f,o), thus #(Spl(f,o) N M,) = oc.

Therefore, the condition #(Spl(f, o)N Mu) = 00 is equivalent to #M, = co
and ué’ = 0G. And then, we have M,, C Spl(f,o) as above. This completes the
proof. ([l

REMARK. The proposition says that the condition #Spl(f,id) = oo holds if and
only if #M, = oo for some p € G. Suppose that Q(ar1) is a Galois extension
of Q, and we take the prime ideal p := (a3 — r1,p) as a prime ideal to define
the set M,,. Using a polynomial g; € Q[z] defined by a; = gi(a1), we have
p €M, < gi(r1) =r,, mod p.
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COROLLARY 2. We have

#SplX f7 _ A
X~>oo Z #SplX N #G (26)

Proof. Suppose #Spl(f, o) = oo. Let us see that the following three conditions
are equivalent: (i) oG’ = v, (i) there is a finite set T such that

Spl(f,a')\T:Spl(f,l/)\T7

(iii) #(Spl(f,a) N Spl(f, 1/)) = o0. The condition (iii) implies that there are
permutations jup, ) such that py € oG, p) € vG and #(M,, N My,) = oo,
which implies 111G = 1} G, hence oG = v, i.e. (i). Suppose (i); then (ii) holds
for T =T, UT,. (ii) implies obviously (iii). Thus we have

Z #Splx f7
Xﬂoo #Splx (f

_ 46 m Z #Splx(f,0) f,

X~>oo W/G #Splx
#(uges 16Splx (£.0))
= #G i -
=# Xgnoo #Splx (f)
= #G. O

PROPOSITION 3. Let o,v be permutations, and suppose that v € G. Then we
have, neglecting a finite set of primes

Spl(f, U) = Spl(f7 JV_I)y
Sp(f, o, {k;}) = Spl(f,ov ™", {k}}), (27)
Spl(f, a, {kj}’ L, {Rj}) = Spl(f, UV_I’ {k;}a L, {Rj})7 (28)

where (kY ..., k;) = A-"(k1,..., k) for the integral matriz A = (a;j) € GL(Z)
given at . In particular, we have

Pr(f,0) = Pr(f,ov™"),
Pr(fv o, {k]}) = Pr(f7 UV_1’ {k;})a
Pr(fv g, {kj}aLv {RZ}) = Pr(fv JV_la {k;}aLv {RZ})
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Proof. The first equation follows from the equivalence in the proof of the corol-
lary above. Let p be a prime in Spl(f, o, {k;}); then we see

Z m;jiTe@) =m;+k;jp and so Z ap; Z My T (i) = Z ag ;m; +Z ar ;k;p,
i J i J J

that is,
Z M) o) = M+ kip,
[

which implies 1 ey
pe Spl(f70'1/ 7{kj})u

that is, Spl(f, o, {k;}) is included in Spl(f, ov~", {k}}). Since A~ is also integral,

we have the converse inclusion
Spl(f,ov ™", {k}}) € Spl(f, 0, {k;})
similarly, hence , . O
2.3.
We give the constant c in explicitly.
PROPOSITION 4.
c=1[G: G| vol(Uses, D(f,0)).
Proof. Suppose that ( is true; then we have

#SplX f7 e
e Z ESplo(f) D vl(® (29)

oeS,

Applying Corollary we see
c=[G:G]vol(Uyes, D(f,0)). O
2.4.

If a polynomial f may have a non-trivial linear relation, then Expectation 1
is generalized as follows:

For a subset D = D° C [0,1)", we have

vol(DND(f,0))
Prolf #G 2 WUpes. D, ) )
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Because, we see that Prp(f) is, by definition equal to
i 72 € SPlx (f) [ (r1/p, ..., ra/p) € D}

X—00 #Splx (f)
b 5 ,#{p € Splx(f,0) | (r1/p,...,ma/p) € D}
; oyl #Splx (f)
Z #SplX fv #{peSplX(f’J)|(Tl/pv"'vrn/p)ED}
#Sply (f #Splx (f,0)
1 ,vol(D(f,0)) vol(DND(f,0))
= #é hmz . . vol(D(f,0)) by ’

1 Y,es, vol(DND(f,0))
" #G vol(Uses, D(f,0)

where > means that permutations o € S,, with #Spl__(f, o) < oo are omitted.

APPLICATON 1. Let us consider the case of a decomposable polynomial of de-
gree 4. Let a polynomial f(x) = (22 + az)? + b(2? + ax) + ¢ be irreducible.
Referring to Example 3 in the previous section, we see that

{o | #5pl(f,0) = 0o} = {o [ {o(1),0(4)} = {14} or {23}}=C=0C.

Only for such permutations, D(f,0) > 0 and D(f,0) = D(f,id) are easy, hence

we have, by

vol(D ND(f,id))
vol(D(f,id))

Let us see that this implies the traditional equi-distribution of the sequence

of ri/p,...,r4/pin [0,1). (cf. [K2] in the case that there is no non-trivial linear
relation.)

Prp(f) =

(31)

Because, we have only to show
ZPESpIX(f) #{1<i<4|r;/p<A}
44Splx (f)

By putting D; = {(21,...,24) | & < A} ND(f,id), tells us that the
left-hand side tends to

—-A (0<A<]).

1 vol(Dy)
2 1vol® (i)’ (32)
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using Sply (f) = Splx (f,id). By D(f,id)={(x1,...,24) | 0<21<...<x4 < 1]
x1+ x4 = 1,29 + 23 = 1} we have
D(f,id) = {(z1, 22,1 — 2,1 — 1) | 0 < 71 < w2 < 1/2},

Dy ={(z1,29,1 — 29,1 — 1) | 0 < 2y <9 <1/2,27 < A},

Dy ={(z1,22,1 — 22,1 —21) | 0 < 27 <29 <min(1/2,A)},

D3 ={(z1,22,1 —xo,1 —21) |0 <1 <29 <1/2,1 — g < A},

Dy ={(z1,22,1 —x2,1 —21) |0< 21 <29 <1/2)1 — 1 < A},

and projecting them on the (z1, z2)-plane, we see

vol(pr(@(f7 zd))) =1/8,

vol(pr(Dy)) = {

AJ2— A2)2 it A<1)2,
1/8 itA>1/2,

A2)2 i A<1)2,
vol(pr(D2)) = {1/8 itA>1/2

vol(pr(Ds)) = {0 if A< 1/2,

(A—1/2)/2—-(A—1/2)?)2 if A>1/2,
0 if A<1/2,

vol(pr(Dy)) = ) _
(A—1/2)2/2 if A>1/2.

Thus we see that is equal to A.
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