

DOI: 10.2478/udt-2019-0006 Unif. Distrib. Theory **14** (2019), no.1, 87-104

NOTES ON THE DISTRIBUTION OF ROOTS MODULO A PRIME OF A POLYNOMIAL II

Yoshiyuki Kitaoka

Author is retired, Asahi, JAPAN

ABSTRACT. Let f(x) be a monic polynomial with integer coefficients and $0 \leq r_1 \leq \cdots \leq r_n < p$ its roots modulo a prime p. We generalize a conjecture on the distribution of roots r_i with additional congruence relations $r_i \equiv R_i \mod L$ from the case that f has no non-trivial linear relation among roots to the case that f has a non-trivial linear relation.

Communicated by Shigeki Akiyama

In this note, a polynomial means always a monic one over the ring \mathbb{Z} of integers and the letter p denotes a prime number, unless specified. Let

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_0 \tag{1}$$

be a polynomial of degree n. As in the previous paper, we put

$$\operatorname{Spl}_X(f) := \{ p \le X \mid f(x) \text{ is fully splitting modulo } p \}$$

for a positive number X and $\operatorname{Spl}(f) := \operatorname{Spl}_{\infty}(f)$. Moreover, we require the following conditions on the local roots $r_1, \ldots, r_n \ (\in \mathbb{Z})$ of $f(x) \equiv 0 \mod p$ for a prime $p \in \operatorname{Spl}(f)$:

$$f(x) \equiv \prod_{i=1}^{n} (x - r_i) \bmod p, \tag{2}$$

$$0 \le r_1 \le r_2 \le \dots \le r_n < p. \tag{3}$$

The condition (2) is the definition of $p \in \text{Spl}(f)$. We can determine local roots r_i uniquely with the global ordering (3). If f(x), f'(x) are relatively prime

^{© 2019} BOKU-University of Natural Resources and Life Sciences and Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 11K.

Keywords: distribution, polynomial, roots modulo a prime.

Licensed under the Creative Commons Atribution-NC-ND 4.0 International Public License.

in $\mathbb{Z}/p\mathbb{Z}[x]$ and $a_0 \neq 0 \mod p$, then (3) is equivalent to $0 < r_1 < \cdots < r_n < p$. From now on, local roots r_i are supposed to satisfy conditions (2) and (3).

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be roots of a polynomial f in (1) and we fix their numbering once and for all. Define a vector space LR over \mathbb{Q} by

$$LR := \left\{ (l_1, \dots, l_{n+1}) \in \mathbb{Q}^{n+1} \middle| \sum_{i=1}^n l_i \alpha_i = l_{n+1} \right\}.$$
 (4)

The vector $(1, \ldots, 1, -a_{n-1})$ is always in LR, hence $t := \dim_{\mathbb{Q}} LR \ge 1$. We say that a polynomial f has a non-trivial linear relation among roots if t > 1. Put

$$\Pr_D(f, X) := \frac{\#\{p \in \operatorname{Spl}_X(f) \mid (r_1/p, \dots, r_n/p) \in D\}}{\#\operatorname{Spl}_X(f)},$$
$$\Pr_D(f) := \lim_{X \to \infty} \Pr_D(f, X),$$
(5)

for a set $D \subset [0,1)^n$ with $D = \overline{D^{\circ}}$. Here we assume the existence of the limit, and so on. We stated the following Expectations 1, 1', 1", 2 in [K1] :

EXPECTATION 1. If f has no non-trivial linear relation among roots, then $\operatorname{vol}(D \cap \widehat{\mathfrak{D}}_{+})$

$$\Pr_D(f) = \frac{\operatorname{vol}(D + \mathcal{D}_n)}{\operatorname{vol}(\hat{\mathfrak{D}}_n)},$$

where
$$\hat{\mathfrak{D}}_n := \left\{ (x_1 \dots, x_n) \in [0, 1)^n \mid 0 \le x_1 \le \dots \le x_n < 1, \sum_{i=1}^n x_i \in \mathbb{Z} \right\}.$$

Here, $\hat{\mathfrak{D}}_n$ is contained in the union of hyperplanes $\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i \in \mathbb{Z}\}$ and vol is the volume as an (n-1)-dimensional set. Let us consider a general polynomial, that is a polynomial which may have a non-trivial linear relation among roots, i.e. $t \geq 1$. Let

$$\hat{\boldsymbol{m}}_j := (m_{j,1}, \dots, m_{j,n}, m_j) \ (j = 1, \dots, t)$$

be a \mathbb{Z} -basis of $\operatorname{LR} \cap \mathbb{Z}^{n+1}$ and put $m_j := (m_{j,1}, \ldots, m_{j,n})$. Since the conditions $(l_1, \ldots, l_{n+1}) \in \operatorname{LR}$ and $l_1, \ldots, l_n \in \mathbb{Z}$ imply $l_{n+1} \in \mathbb{Z}$ by roots α_i being algebraic integers, the set of vectors m_1, \ldots, m_t is a \mathbb{Z} -basis of

$$\left\{ (l_1, \ldots, l_n) \in \mathbb{Z}^n \middle| \sum_{i=1}^n l_i \alpha_i \in \mathbb{Q} \right\}.$$

Proposition 1 in [K1] says that for a sufficiently large prime $p \in \text{Spl}(f)$, there is at least one permutation $\sigma \in S_n$ dependent on p such that

$$\sum_{i=1}^{n} m_{j,i} r_{\sigma(i)} \equiv m_j \mod p \quad (1 \le {}^{\forall} j \le t),$$
(6)

hence we have for some permutation σ and integers k_j (j = 1, ..., t) dependent on a prime p _____n

$$\sum_{i=1} m_{j,i} r_{\sigma(i)} = m_j + k_j p \quad (1 \le {}^\forall j \le t).$$

$$\tag{7}$$

Once we take and fix bases \hat{m}_j , the possibility of integers k_j is finite by $0 \le r_i < p$.

If f has no non-trivial linear relation, then t = 1, $\hat{m}_1 = (1, \ldots, 1, -a_{n-1})$ and (7) is, for a sufficiently large $p \in \text{Spl}(f)$,

$$\sum_{i} r_i = -a_{n-1} + kp \quad (1 \le k < n).$$

Correlating with (6), we put, for a permutation $\sigma \in S_n$,

$$\operatorname{Spl}_X(f,\sigma) := \left\{ p \in \operatorname{Spl}_X(f) \middle| \sum_{i=1}^n m_{j,i} r_{\sigma(i)} \equiv m_j \mod p \ (1 \le \forall j \le t) \right\}$$
(8)

and

$$\mathfrak{D}(f,\sigma) := \left\{ (x_1 \dots, x_n) \in [0,1)^n \middle| \begin{array}{l} 0 \le x_1 \le \dots \le x_n < 1, \\ \sum_{i=1}^n m_{j,i} \, x_{\sigma(i)} \in \mathbb{Z} \ (1 \le {}^\forall j \le t) \end{array} \right\}.$$
(9)

It is obvious that $\dim \mathfrak{D}(f, \sigma) \leq n - t$. If f has no non-trivial linear relation among roots, then it is easy to see that $\operatorname{Spl}_X(f, \sigma) = \operatorname{Spl}_X(f)$ and $\mathfrak{D}(f, \sigma) = \hat{\mathfrak{D}}_n$ for any permutation σ . The following is a generalization of Expectation 1.

EXPECTATION 1'.

$$\Pr_{D}(f,\sigma) := \lim_{X \to \infty} \frac{\#\{p \in \operatorname{Spl}_{X}(f,\sigma) \mid (r_{1}/p, \dots, r_{n}/p) \in D\}}{\#\operatorname{Spl}_{X}(f,\sigma)}$$
$$= \frac{\operatorname{vol}(D \cap \mathfrak{D}(f,\sigma))}{\operatorname{vol}(\mathfrak{D}(f,\sigma))}$$
(10)

for a permutation σ if dim $\mathfrak{D}(f, \sigma) = n - t$, and vol is the volume as an (n - t)-dimensional set.

The expectation on the density of the set $\operatorname{Spl}_{\infty}(f, \sigma)$ is **EXPECTATION 1''.** $\operatorname{Pr}(f, \sigma) := \lim_{X \to \infty} \frac{\# \operatorname{Spl}_X(f, \sigma)}{\# \operatorname{Spl}_X(f)} = c^{-1} \cdot \operatorname{vol}(\mathfrak{D}(f, \sigma)),$

where the constant c is independent of σ .

The explicit value of c is given in Proposition 4 in the subsection 2.3 and by using it, Expectation 1 is generalized to a polynomial with a non-trivial linear relation among roots (see (30) in the subsection 2.4).

(11)

To state the distribution of roots r_i with congruence conditions

$$r_i \equiv R_i \mod L \quad (i = 1, \dots, n) \tag{12}$$

for given integers $L \geq 2$ and R_i , we introduced notations

$$\Pr_X(f, L, \{R_i\}) := \frac{\#\{p \in \operatorname{Spl}_X(f) \mid r_i \equiv R_i \mod L \ (1 \le {}^{\forall}i \le n)\}}{\#\operatorname{Spl}_X(f)}$$
(13)

and

$$\Pr\left(f, L, \{R_i\}\right) := \lim_{X \to \infty} \Pr_X(f, L, \{R_i\}),\tag{14}$$

and proposed the following to a polynomial without non-trivial linear relation among roots.

EXPECTATION 2.

$$\Pr\left(f, L, \{R_i\}\right) = \frac{1}{L^{n-1}} \sum_{k, q} \frac{E_n(k)}{\left[\mathbb{Q}(\zeta_L) : \mathbb{Q}(f) \cap \mathbb{Q}(\zeta_{L/d})\right]},\tag{15}$$

where k, q run over a set of integers satisfying

$$1 \le k \le n-1, \ d := (k, L),$$

and

$$\begin{cases} q \in (\mathbb{Z}/L\mathbb{Z})^{\times}, \\ a_{n-1} + \sum_{i=1}^{n} R_i \equiv kq \mod L, \\ [[q]] = [[1]] \text{ on } \mathbb{Q}(f) \cap \mathbb{Q}(\zeta_{L/d}). \end{cases}$$

Here $E_n(k)$ is the volume of the set $\{x \in [0,1)^{n-1} \mid k-1 < x_1 + \cdots + x_{n-1} \leq k\}$ and it is also given as $E_n(k) = A(n-1,k)/(n-1)!$, using Eulerian numbers A(n,k) $(1 \leq k \leq n)$ defined recursively by

$$A(1,1) = 1, A(n,k) = (n-k+1)A(n-1,k-1) + kA(n-1,k).$$

And ζ_L is a primitive *L*th root of unity, and $\mathbb{Q}(f)$ is a Galois extension of the rational number field \mathbb{Q} generated by all roots α_i of *f*. Lastly for an abelian field *F* in $\mathbb{Q}(\zeta_c)$ and an integer *m* relatively prime to *c*, [[m]] denotes an automorphism of *F* induced by $\zeta_c \to \zeta_c^m$.

In the first section of this note, we review Expectation 2 and generalize it to a polynomial with a non-trivial linear relation among roots: Restricting a prime $p \in \text{Spl}(f)$ by the condition (7), we introduce a more natural density $\Pr(f, \sigma, \{k_j\}, L, \{R_i\})$ than $\Pr(f, L, \{R_i\})$ in (14), which seems to take the same value independent of integers $\{R_i\}$ fixing a permutation σ and integers k_j in (7), if it does not vanish. In case of deg f = 1, it is essentially equivalent to Dirichlet's prime number theorem on arithmetic progressions.

In the second section, we give several miscellaneous remarks on $Spl(f, \sigma)$, $\mathfrak{D}(f, \sigma)$ and the constant c in Expectation 1".

1.

To state the conjecture, we introduce following notations according to conditions (6), (7), (12):

$$\operatorname{Spl}_{X}(f,\sigma) = \left\{ p \in \operatorname{Spl}_{X}(f) \middle| \sum_{i=1}^{n} m_{j,i} r_{\sigma(i)} \equiv m_{j} \mod p(\forall j) \right\}, \quad (cf.(8))$$
$$\operatorname{Spl}_{X}(f,\sigma,\{k_{j}\}) := \left\{ p \in \operatorname{Spl}_{X}(f,\sigma) \middle| \sum_{i=1}^{n} m_{j,i} r_{\sigma(i)} = m_{j} + k_{j} p(\forall j) \right\},$$
$$\operatorname{Spl}_{X}(f,\sigma,\{k_{j}\},L,\{R_{i}\}) := \left\{ p \in \operatorname{Spl}_{X}(f,\sigma,\{k_{j}\}) \mid r_{i} \equiv R_{i} \mod L(\forall i) \right\},$$

$$\Pr(f, \sigma) = \lim_{X \to \infty} \frac{\# \operatorname{Spl}_X(f, \sigma)}{\# \operatorname{Spl}_X(f)}, \quad (cf. (11))$$
$$\Pr(f, \sigma, \{k_j\}) := \lim_{X \to \infty} \frac{\# \operatorname{Spl}_X(f, \sigma, \{k_j\})}{\# \operatorname{Spl}_X(f, \sigma)},$$
$$\Pr(f, \sigma, \{k_j\}, L, \{R_i\}) := \lim_{X \to \infty} \frac{\# \operatorname{Spl}_X(f, \sigma, \{k_j\}, L, \{R_i\})}{\# \operatorname{Spl}_X(f, \sigma, \{k_j\})},$$

where for the last two, the denominators $\# \operatorname{Spl}_X(f, \sigma), \# \operatorname{Spl}_X(f, \sigma, \{k_j\})$ of the right-hand sides are supposed to tend to the infinity.

The density $\Pr(f, \sigma)$ is given by (11), where the constant c will be given by Proposition 4 in the subsection 2.3. (11) implies that the density of $\operatorname{Spl}_{\infty}(f, \sigma)$ is positive if and only if the geometric condition $\dim \mathfrak{D}(f, \sigma) = n - t$ holds. It seems that two conditions $\#\operatorname{Spl}_{\infty}(f, \sigma) = \infty$ and $\Pr(f, \sigma) > 0$ are equivalent. What is the number of permutations σ with $\Pr(f, \sigma) > 0$ or $\dim \mathfrak{D}(f, \sigma) = n - t$?

Putting

$$D(\sigma, \{k_j\}) := \left\{ (x_1, \dots, x_n) \middle| \Bigl| \sum_{i=1}^n m_{j,i} x_{\sigma(i)} - k_j \Bigr| \le 1/3 \, (j = 1, \dots, t) \right\},\,$$

we see that for a sufficiently large $p \in \operatorname{Spl}_{\infty}(f, \sigma)$, the condition $(r_1/p, \ldots, r_n/p) \in D(\sigma, \{k_j\})$ is equivalent to (7). Hence the density $\Pr(f, \sigma, \{k_j\})$ is equal to the density $\Pr_D(f, \sigma)$ in Expectation 1' with $D = D(\sigma, \{k_j\})$, thus we have

$$\Pr(f, \sigma, \{k_j\}) = \Pr_{D(\sigma, \{k_j\})}(f, \sigma) = \frac{\operatorname{vol}(D(\sigma, \{k_j\}) \cap \mathfrak{D}(f, \sigma))}{\operatorname{vol}(\mathfrak{D}(f, \sigma))}$$
$$= \frac{\operatorname{vol}(\{(x_1, \dots, x_n) \mid 0 \le x_1 \le \dots \le x_n < 1, \sum_i m_{j,i} x_{\sigma(i)} = k_j \ (\forall j)\})}{\operatorname{vol}(\mathfrak{D}(f, \sigma))}$$
(16)

by Expectation 1'.

Lastly, assume $\# \operatorname{Spl}_{\infty}(f, \sigma, \{k_j\}) = \infty$; then we expect that

$$\Pr(f, \sigma, \{k_j\}, L, \{R_i\}) = \begin{cases} \frac{1}{\#\Re(f, \sigma, \{k_j\}, L)} & \text{if } \#\operatorname{Spl}_{\infty}(f, \sigma, \{k_j\}, L, \{R_i\}) = \infty, \\ 0 & \text{otherwise,} \end{cases}$$
(17)

where

$$\Re(f,\sigma,\{k_j\},L) := \{\{R_i\} \in [0,L-1]^n \mid \#\operatorname{Spl}_{\infty}(f,\sigma,\{k_j\},L,\{R_i\}) = \infty\}.$$

It is not easy to see whether $\# \operatorname{Spl}_{\infty}(f, \sigma, \{k_j\}, L, \{R_i\}) = \infty$ or not. Suppose $\# \operatorname{Spl}_{\infty}(f, \sigma, \{k_j\}, L, \{R_i\}) = \infty$; then there is a large prime $p \in \operatorname{Spl}(f)$ such that $\sum_i m_{j,i} r_{\sigma(i)} = m_j + k_j p$ and $r_i \equiv R_i \mod L$, hence $\sum_i m_{j,i} R_{\sigma(i)} \equiv m_j + k_j p \mod L$ $(j = 1, \ldots, t)$. Thus the following condition (C_1) is satisfied:

$$(C_1)$$
: $(k_j, L) = (\sum_i m_{j,i} R_{\sigma(i)} - m_j, L) (= d_j \text{ say})$ and there is an integer q which is independent of j , relatively prime to L and satisfies that $\sum_i m_{j,i} R_{\sigma(i)} - m_j \equiv k_j \cdot q \mod L$ and $[[q]] = [[1]]$ on $\mathbb{Q}(f) \cap \mathbb{Q}(\zeta_{L/d_j})$.

Data suggest that the condition (C_1) is also a sufficient condition, that is putting

$$\mathfrak{R}'(f,\sigma,\{k_j\},L) := \left\{ \{R_i\} \in [0,L-1]^n \mid (C_1) \right\} \left(\supset \mathfrak{R}(f,\sigma,\{k_j\},L) \right),$$

we expect that

$$\Re(f,\sigma,\{k_j\},L) = \Re'(f,\sigma,\{k_j\},L) \quad \text{if } \#\operatorname{Spl}_{\infty}(f,\sigma,\{k_j\}) = \infty.$$
(18)

EXAMPLE 1. Let us see the case of degree 1, i.e. f(x) = x - a: Then we see that the permutation σ is the identity, t = 1, $\hat{m}_1 = (1, a)$, and the local root r_1 is equal to $a + k_1 p$ for $k_1 = 0, 1$ according to $a \ge 0, a < 0$ if p > |a|. Hence we have $\# \operatorname{Spl}_{\infty}(f, id, k_1) < \infty$ unless $k_1 = 0, 1$ according to $a \ge 0, a < 0$. We consider only such an integer $k_1 (= 0 \text{ or } 1)$ and neglect a finite number of primes p less than or equal to |a|; then we see that

$$Spl_X(f, id) = \{p \le X\},$$

$$Spl_X(f, id, k_1) = \{p \le X\},$$

$$Spl_X(f, id, k_1, L, R_1) = \{p \le X \mid a + k_1p \equiv R_1 \mod L\}.$$

hence

$$\Pr(f, id) = \Pr(f, id, k_1) = 1$$

and

$$\Pr(f, id, k_1, L, R_1) = \begin{cases} 1 & \text{if } a \ge 0, a \equiv R_1 \mod L, \\ 0 & \text{if } a \ge 0, a \not\equiv R_1 \mod L, \\ \frac{1}{\varphi(L)} & \text{if } a < 0, (R_1 - a, L) = 1, \\ 0 & \text{if } a < 0, (R_1 - a, L) \neq 1 \end{cases}$$

by Dirichlet's theorem, and

$$#\mathfrak{R}(f, id, k_1, L) = \begin{cases} 1 & \text{if } a \ge 0, \\ \varphi(L) & \text{if } a < 0. \end{cases}$$

Thus the conjecture (17) is nothing but Dirichlet's theorem. Since the condition (C_1) is : $d_1 := (R_1 - a, L) = (k_1, L) = L$ or 1 according to $a \ge 0$ or a < 0, and there is an integer q such that (q, L) = 1, $R_1 - a \equiv k_1 q \mod L$, it is easy to see that (18) is true.

EXAMPLE 2. Let us see that Expectation 2 follows from the conjectures (17), (18). Suppose that a polynomial f has no non-trivial linear relation among roots. So, we have t = 1, $\hat{m}_1 = (1, \ldots, 1, -a_{n-1})$. The equation (15) in Expectation 2 is equivalent to

$$\Pr(f, L, \{R_i\}) = \frac{1}{L^{n-1}} \sum_{k_1} \frac{E_n(k_1)}{\left[\mathbb{Q}(\zeta_{L/d}) : \mathbb{Q}(f) \cap \mathbb{Q}(\zeta_{L/d})\right]},$$
(19)

where k_1 satisfies that

$$1 \le k_1 \le n-1, d := \left(a_{n-1} + \sum R_i, L\right) = (k_1, L)$$

and that there is an integer q such that (q, L) = 1, $(a_{n-1} + \sum R_i)/d \equiv k_1/d \cdot q \mod L/d$ and [[q]] = [[1]] on $\mathbb{Q}(f) \cap \mathbb{Q}(\zeta_{L/d})$, since the number of such integers q is $[\mathbb{Q}(\zeta_L) : \mathbb{Q}(\zeta_{L/d})]$ if there exists. We see that for any permutation σ

$$\begin{aligned} \operatorname{Spl}_X(f,\sigma) &= \operatorname{Spl}_X(f),\\ \operatorname{Spl}_X(f,\sigma,k_1) &= \Big\{ p \in \operatorname{Spl}_X(f,\sigma) \Big| \sum r_i = -a_{n-1} + k_1 p \Big\},\\ \operatorname{Spl}_X(f,\sigma,k_1,L,\{R_i\}) &= \Big\{ p \in \operatorname{Spl}_X(f,\sigma,k_1) \mid r_i \equiv R_i \bmod L\left({}^\forall i\right) \Big\}. \end{aligned}$$

The identity $Pr(f, \sigma) = 1$ is obvious. Since we know

$$\operatorname{vol}\left(\left\{\boldsymbol{x}\in\hat{\mathfrak{D}}_n\middle|\sum x_i=k_1\right\}\right)/\operatorname{vol}(\hat{\mathfrak{D}}_n)=E_n(k_1),$$

we have

$$\Pr(f, \sigma, k_1) = E_n(k_1) \qquad \text{by (16)}.$$

We see that the density in (14) is

$$\begin{split} \lim_{X \to \infty} & \frac{\#\{p \in \operatorname{Spl}_X(f) \mid r_i \equiv R_i \mod L\}}{\#\operatorname{Spl}_X(f)} \\ &= \sum_{k_1=1}^{n-1} \lim_{X \to \infty} \frac{\#\{p \in \operatorname{Spl}_X(f) \mid r_i \equiv R_i \mod L, \sum r_i = -a_{n-1} + k_1 p\}}{\#\operatorname{Spl}_X(f)} \\ &= \sum_{k_1=1}^{n-1} \lim_{X \to \infty} \frac{\#\operatorname{Spl}_X(f, \sigma, k_1, L, \{R_i\})}{\#\operatorname{Spl}_X(f)} \\ &= \sum_{k_1=1}^{n-1} ' \lim_{X \to \infty} \frac{\#\operatorname{Spl}_X(f, \sigma, k_1, L, \{R_i\})}{\#\operatorname{Spl}_X(f, \sigma, k_1)} \cdot \frac{\#\operatorname{Spl}_X(f, \sigma, k_1)}{\#\operatorname{Spl}_X(f, \sigma)} \end{split}$$

where \sum' means that k_1 satisfies the condition $\# \operatorname{Spl}_{\infty}(f, \sigma, k_1, L, \{R_i\}) = \infty$, i.e. $\{R_i\} \in \mathfrak{R}(f, \sigma, k_1, L)$, then $\# \operatorname{Spl}_{\infty}(f, \sigma, k_1) = \infty$ is satisfied

$$= \sum_{k_1=1}^{n-1} ' \Pr(f, \sigma, k_1, L, \{R_i\}) \Pr(f, \sigma, k_1)$$
$$= \sum_{k_1=1}^{n-1} ' \frac{E_n(k_1)}{\#\Re(f, \sigma, k_1, L)} \quad \text{using (17)}.$$

Put $d_1 := (k_1, L)$ and suppose $(\sum R_i + a_{n-1}, L) = d_1$. Making use of $(\sum R_i + a_{n-1})/d_1 \equiv k_1/d_1 \cdot p \mod L/d_1$, the mapping $\{R_i\} \mapsto [[p]] \in \operatorname{Gal}(\mathbb{Q}(\zeta_{L/d_1})/\mathbb{Q})$ tells us $\#\mathfrak{R}'(f, \sigma, k_1, L) = L^{n-1}[\mathbb{Q}(\zeta_{L/d_1}) : \mathbb{Q}(f) \cap \mathbb{Q}(\zeta_{L/d_1})]$. Hence under the assumption (18), we obtain (15) in Expectation 2.

Putting

$$C(f,L,k) := \frac{E_n(k)}{L^{n-1}[\mathbb{Q}(\zeta_{L/d}):\mathbb{Q}(f) \cap \mathbb{Q}(\zeta_{L/d})]} \quad (d := (k,L)),$$

we have checked for polynomials

 $x^{2} + 1, x^{3} + 2, x^{4} + x^{3} + x^{2} + x + 1, x^{5} + 2, x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1, x^{5} + 2, x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1, x^{5} + 2, x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1, x^{5} + 2, x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1, x^{5} + 2, x^{6} + x^{5} + x^{6} + x^{6$

which have no non-trivial linear relation among roots that there is a large number $X(\leq 10^{12})$ and $L\leq 7$ such that

$$\left|\frac{\#\operatorname{Spl}_X(f,\sigma,k,L,\{R_i\})}{\#\operatorname{Spl}_X(f)} - C(f,L,k)\right| < C(f,L,k)/10$$

 $\text{if }\# \mathrm{Spl}_X(f,\sigma,k,L,\{R_i\})>10.$

EXAMPLE 3. Suppose that a polynomial $f(x) = (x^2 + ax)^2 + b(x^2 + ax) + c$ is irreducible. It is an irreducible polynomial of the least degree with a non-trivial linear relation. For roots β_1, β_2 of $x^2 + bx + c$, denote roots of $x^2 + ax = \beta_i$ by $\alpha_{i,j}$ (j = 1, 2). Then we can take linear equations $\alpha_{i,1} + \alpha_{i,2} = -a$ (i = 1, 2) as a basis of linear relations among roots of f(x) ([K1]). By putting $\alpha_1 = \alpha_{1,1}, \alpha_2 =$ $\alpha_{2,1}, \alpha_3 = \alpha_{2,2}, \alpha_4 = \alpha_{1,2}$, the relations $\alpha_1 + \alpha_4 = \alpha_2 + \alpha_3 = -a$ are a basis, hence we see that t = 2 and $\hat{m}_1 = (1, 0, 0, 1, -a), \hat{m}_2 = (0, 1, 1, 0, -a)$. Let pbe a large prime in Spl(f) and r_i local roots, which are supposed to satisfy $0 < r_1 < \cdots < r_4 < p$ by the assumption. Then, the induced local linear relations (7) among them are $r_1 + r_4 = -a + p, r_2 + r_3 = -a + p$ for a large prime p, hence a permutation σ with #Spl $(f, \sigma) = \infty$ satisfies $\{\sigma(1), \sigma(4)\} = \{1, 4\}$ or $\{2, 3\}$ with $k_1 = k_2 = 1$. For such permutations σ and $k_1 = k_2 = 1$, we see that Spl $_X(f, \sigma, \{k_j\}) =$ Spl $_X(f)$ and Spl $_X(f, \sigma, \{k_j\}, L, \{R_i\}) = \{p \in$ Spl $_X(f) \mid$ $r_i \equiv R_i \mod L\}$, neglecting a finite number of small primes. Our expectation with (18) is, for $\Re' = \Re'(f, \sigma, \{k_i\}, L)$

$$\Pr(f, \sigma, \{k_i\}, L, \{R_i\}) = \begin{cases} 1/\#\mathfrak{R}' & \text{if } (R_1, \dots, R_4) \in \mathfrak{R}'\\ 0, & \text{otherwise.} \end{cases}$$

We have checked for $2 \le L \le 40$ and for polynomials in the following table below

[a,b,c]	G	Max. abelian subfield	Cond
[10, 5, 7]	D	$x^4 - x^2 + 1$	12
[10, 2, 3]	D	$x^4 + 1$	8
[4, 4, 5]	D	$x^4 + 3x^2 + 1$	20
[9, -3, 3]	D	$x^4 - x^3 - x^2 - 2x + 4$	21
[-3, 0, 9]	В	$x^4 - x^2 + 1$	12
[-2, 1, 4]	В	$x^4 - x^3 + 2x^2 + x + 1$	15
[-4, 0, 9]	В	$x^4 + 1$	8
[-3, 4, 9]	В	$x^4 + 3x^2 + 1$	20
[0, 0, 1]	В	$x^4 + 1$	8
[-1, 3, 1]	С	$x^4 - x^3 + x^2 - x + 1$	5
[-9, 3, -9]	С	$x^4 - x^3 - 4x^2 + 4x + 1$	15
[-6, 8, -4]	С	$x^4 - 5x^2 + 5$	20
[-1, 7, 9]	С	$x^4 - x^3 + 2x^2 + 4x + 3$	13
[-8, -8, 8]	С	$x^4 - 4x^2 + 2$	16
[-6, 1, -4]	С	$x^4 - x^3 - 6x^2 + x + 1$	17
[-4, -2, -4]	С	$x^4 - 10x^2 + 20$	40

that there is a number $X (\leq 10^{12})$ such that $|\Pr_X(f, \sigma, \{k_i\}, L, \{R_i\}) - 1/\#\Re'| < 1/(10\#\Re')$ if $(R_1, \ldots, R_4) \in \Re'$. In the table, [a, b, c] means a polynomial $f := (x^2 + ax)^2 + b(x^2 + ax) + c$, and G is the Galois group $\operatorname{Gal}(\mathbb{Q}(f)/\mathbb{Q})$: D is the dihedral group of order 8, B is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and C means $\mathbb{Z}/4\mathbb{Z}$. "Max. abelian subfield" is a defining polynomial of the maximal abelian subfield of $\mathbb{Q}(f)$, which is of degree 4. "Cond" is its conductor.

EXAMPLE 4. Let us give another example of a polynomial with a non-trivial linear relation among roots. Let

$$f(x) = x^{6} + 2x^{5} + 4x^{4} + x^{3} + 2x^{2} - 3x + 1,$$

whose roots are v =

$$= (\zeta_7^3 + \zeta_7, \quad \zeta_7^5 + \zeta_7^4, \quad -\zeta_7^5 - \zeta_7^4 - \zeta_7^3 - \zeta_7 - 1, \\ \zeta_7^3 + \zeta_7^2, \quad \zeta_7^5 + \zeta_7, \quad -\zeta_7^5 - \zeta_7^3 - \zeta_7^2 - \zeta_7 - 1)$$

and the basis of linear relations among roots are $v_1+v_2+v_3=-1$, $v_4+v_5+v_6=-1$. Hence we have t=2 and (7) is

$$r_{\sigma(1)} + r_{\sigma(2)} + r_{\sigma(3)} = -1 + k_1 p, \ r_{\sigma(4)} + r_{\sigma(5)} + r_{\sigma(6)} = -1 + k_2 p.$$

We have only to consider the case $1 \in {\sigma(1), \sigma(2), \sigma(3)}$, and then possible permutations σ and a pair $[k_1, k_2]$ of integers are following $(1), \ldots, (9.3)$:

$$\begin{array}{l} & \mbox{permutation}, [k_1,k_2] \\ (1): [1,2,3,4,5,6], [1,2], \\ (2): [1,2,4,3,5,6], [1,2], \\ (3): [1,2,5,3,4,6], [1,2], \\ (4.1): [1,2,6,3,4,5], [1,1], \\ (4.2): [1,2,6,3,4,5], [1,2], \\ (4.3): [1,2,6,3,4,5], [2,2], \\ (5): [1,3,4,2,5,6], [1,2], \\ (6.1): [1,3,6,2,4,5], [2,2], \\ (7.1): [1,4,5,2,3,6], [1,1], \\ (6.2): [1,4,5,2,3,6], [2,2], \\ (7.1): [1,4,6,2,3,5], [2,2], \\ (8.1): [1,4,6,2,3,5], [1,1], \\ (8.2): [1,4,6,2,3,5], [2,2], \\ (9.1): [1,5,6,2,3,4], [1,1], \\ (9.2): [1,5,6,2,3,4], [2,1], \\ (9.3): [1,5,6,2,3,4], [2,2], \\ \end{array}$$

where a permutation σ is identified with the 6-tuple $[\sigma(1), \ldots, \sigma(6)]$ of images. Then $\Pr(f, \sigma)$ is numerically 10/144, 24/144, 15/144, 13/144, 15/144, 18/144, 18/144, 18/144, 13/144 in order of permutations (1), (2), (3), (4), ..., (9), and $\Pr(f, \sigma, \{k_j\})$ is 1, 1, 1, 8/13, 4/13, 1/13, 1, 2/3, 1/3, 1/2, 1/2, 1/3, 2/3, 1/13, 4/13, 8/13 in order of pairs of a permutation and $[k_1, k_2]$ (1), (2), (3), (4.1), (4.2), ..., (9.3). We checked that there is a large integer $X(<10^{12})$ such that

$$\frac{\#\operatorname{Spl}_X(f,\sigma,\{k_j\},L,\{R_i\})}{\#\operatorname{Spl}_X(f,\sigma)} - \frac{\operatorname{Pr}(f,\sigma,\{k_j\})}{\#\Re(f,\sigma,\{k_j\},L)} \bigg| < \frac{\operatorname{Pr}(f,\sigma,\{k_j\})}{10\#\Re(f,\sigma,\{k_j\},L)}$$

for $\{R_i\}$ satisfying $\# \text{Spl}_X(f, \sigma, \{k_j\}, L, \{R_i\}) > 10$ in the case of $L \leq 8$. Data say that $\#\Re(f, \sigma, \{k_j\}, 8) = \#\Re'(f, \sigma, \{k_j\}, 8) = 8192$ if $[k_1, k_2] = [2, 2]$, otherwise 16384.

2.

Let us give several miscellaneous remarks on $\mathfrak{D}(f,\sigma)$, $\mathrm{Spl}(f,\sigma)$, the constant c in Expectation 1" and $\mathrm{Pr}_D(f)$ of (5) in the case that f has a non-trivial linear relation. We put for $\boldsymbol{x} = (x_1, \ldots, x_n), x \in \mathbb{R}$ and a permutation $\sigma \in S_n$

$$\sigma^{-1}(\boldsymbol{x}) := (x_{\sigma(1)}, \dots, x_{\sigma(n)}), \ \sigma^{-1}((\boldsymbol{x}, x)) := (\sigma^{-1}(\boldsymbol{x}), x),$$
(20)

2.1.

~ (6

By definition (9), we see

$$\mathfrak{D}(f,\sigma) = \left\{ \boldsymbol{x} = (x_1 \dots, x_n) \in [0,1)^n \middle| \begin{array}{l} 0 \le x_1 \le \dots \le x_n < 1, \\ (\boldsymbol{m}_j, \sigma^{-1}(\boldsymbol{x})) \in \mathbb{Z} \text{ for } 1 \le \forall j \le t \end{array} \right\} \\
= \left\{ \boldsymbol{x} = (x_1 \dots, x_n) \in [0,1)^n \middle| \begin{array}{l} 0 \le x_1 \le \dots \le x_n < 1, \\ (\sigma(\boldsymbol{m}_j), \boldsymbol{x}) \in \mathbb{Z} \text{ for } 1 \le \forall j \le t \end{array} \right\}. \quad (21)$$

The aim in this subsection is

PROPOSITION 1. Suppose that $\operatorname{vol}(\mathfrak{D}(f,\sigma)) > 0$, i.e. $\dim \mathfrak{D}(f,\sigma) = n - t$; then for a permutation μ , we have the equivalence

$$\operatorname{vol}(\mathfrak{D}(f,\sigma) \cap \mathfrak{D}(f,\mu)) > 0 \iff \mathfrak{D}(f,\sigma) = \mathfrak{D}(f,\mu) \\ \iff \langle \sigma(\boldsymbol{m}_1), \dots, \sigma(\boldsymbol{m}_t) \rangle_{\mathbb{Z}} = \langle \mu(\boldsymbol{m}_1), \dots, \mu(\boldsymbol{m}_t) \rangle_{\mathbb{Z}} \\ \iff \mu^{-1}\sigma \in G := \{ \nu \in S_n \mid \langle \nu(\boldsymbol{m}_1), \dots, \nu(\boldsymbol{m}_t) \rangle_{\mathbb{Z}} = \langle \boldsymbol{m}_1, \dots, \boldsymbol{m}_t \rangle_{\mathbb{Z}} \}.$$

In particular, $\mathfrak{D}(f,\sigma) = \mathfrak{D}(f,\sigma\nu)$ holds if and only if $\nu \in G$.

Proof. Define a mapping ψ from $\mathfrak{D}(f,\sigma)$ to \mathbb{Z}^t by $\psi(\boldsymbol{x})_j = (\sigma(\boldsymbol{m}_j), \boldsymbol{x})$, and take an inverse image \boldsymbol{x}_k of \boldsymbol{k} , i.e. $\psi(\boldsymbol{x}_k) = \boldsymbol{k}$. If $\psi(\boldsymbol{x}) = \psi(\boldsymbol{y})$ holds for $\boldsymbol{x}, \boldsymbol{y} \in \mathfrak{D}(f,\sigma)$, then we have $(\sigma(\boldsymbol{m}_j), \boldsymbol{x} - \boldsymbol{y}) = 0$. Therefore we have

$$\mathfrak{D}(f,\sigma) = \bigcup_{\boldsymbol{k} \in \psi(\mathfrak{D}(f,\sigma))} \left\{ \hat{\mathfrak{D}}_n \cap \{ \boldsymbol{x}_{\boldsymbol{k}} + \langle \sigma(\boldsymbol{m}_1), \dots, \sigma(\boldsymbol{m}_t) \rangle_{\mathbb{R}}^{\perp} \} \right\}.$$
(22)

Suppose that $\operatorname{vol}(\mathfrak{D}(f,\sigma)) > 0$; if the property $\operatorname{vol}(\mathfrak{D}(f,\sigma) \cap \mathfrak{D}(f,\mu)) > 0$ holds, then (22) implies $\langle \sigma(\boldsymbol{m}_1), \ldots, \sigma(\boldsymbol{m}_t) \rangle_{\mathbb{R}}^{\perp} = \langle \mu(\boldsymbol{m}_1), \ldots, \mu(\boldsymbol{m}_t) \rangle_{\mathbb{R}}^{\perp}$, i.e.

$$\langle \sigma(\boldsymbol{m}_1),\ldots,\sigma(\boldsymbol{m}_t)\rangle_{\mathbb{R}} = \langle \mu(\boldsymbol{m}_1),\ldots,\mu(\boldsymbol{m}_t)\rangle_{\mathbb{R}}.$$

Since the matrix whose *j*th row is m_j is integral with every elementary divisor being 1, the above is equivalent to

$$\langle \sigma(\boldsymbol{m}_1), \ldots, \sigma(\boldsymbol{m}_t) \rangle_{\mathbb{Z}} = \langle \mu(\boldsymbol{m}_1), \ldots, \mu(\boldsymbol{m}_t) \rangle_{\mathbb{Z}}.$$

Conversely, suppose that the above is true. Then it is easy to see that

$$\boldsymbol{x} \in \mathfrak{D}(f, \sigma) \iff \boldsymbol{x} \in \mathfrak{D}(f, \mu)$$
 by (21),

hence $\mathfrak{D}(f, \sigma) = \mathfrak{D}(f, \mu).$

Remark The condition $\nu \in G$ is equivalent to

$$\begin{pmatrix} \nu^{-1}(\boldsymbol{m}_1) \\ \vdots \\ \nu^{-1}(\boldsymbol{m}_t) \end{pmatrix} = A \begin{pmatrix} \boldsymbol{m}_1 \\ \vdots \\ \boldsymbol{m}_t \end{pmatrix},$$

and if a polynomial f has no non-trivial linear relation among roots, then we have $G = S_n$ obviously.

COROLLARY 1. We have

$$\sum_{\mu \in S_n} \operatorname{vol}(\mathfrak{D}(f,\mu)) = \#G \cdot \operatorname{vol}(\bigcup_{\mu \in S_n} \mathfrak{D}(f,\mu)).$$
(23)

Proof. Put

$$S' := \{ \sigma \in S_n \mid \operatorname{vol}(\mathfrak{D}(f, \sigma)) > 0 \}.$$

Then we have

$$\sum_{\sigma \in S_n} \operatorname{vol}(\mathfrak{D}(f, \sigma)) = \sum_{\sigma \in S'} \operatorname{vol}(\mathfrak{D}(f, \sigma)) = \sum_{\mu \in S'/G} \sum_{\sigma \in \mu G} \operatorname{vol}(\mathfrak{D}(f, \sigma))$$
$$= \#G \sum_{\mu \in S'/G} \operatorname{vol}(\mathfrak{D}(f, \mu)) = \#G \cdot \operatorname{vol}(\cup_{\mu \in S'/G} \mathfrak{D}(f, \mu))$$
$$= \#G \cdot \operatorname{vol}(\cup_{\mu \in S_n} \mathfrak{D}(f, \mu)).$$

98

2.2.

Put

$$\hat{G} := \bigg\{ \nu \in S_n \bigg| \sum_i m_{j,\nu(i)} \alpha_i = m_j \ (j = 1, \dots, t) \bigg\}.$$

Since vectors $\hat{\boldsymbol{m}}_1, \ldots, \hat{\boldsymbol{m}}_n$ are a basis of linear relations LR (cf. (4)), there is an integral matrix A for $\nu \in \hat{G}$ such that, by the definition (20)

$$\begin{pmatrix} \nu^{-1}(\hat{\boldsymbol{m}}_1) \\ \vdots \\ \nu^{-1}(\hat{\boldsymbol{m}}_t) \end{pmatrix} = A \begin{pmatrix} \hat{\boldsymbol{m}}_1 \\ \vdots \\ \hat{\boldsymbol{m}}_t \end{pmatrix},$$

i.e.

$$\begin{pmatrix} m_{1,\nu(1)} & \dots & m_{1,\nu(n)} & m_1 \\ \vdots & \dots & \vdots & \vdots \\ m_{t,\nu(1)} & \dots & m_{t,\nu(n)} & m_t \end{pmatrix} = A \begin{pmatrix} m_{1,1} & \dots & m_{1,n} & m_1 \\ \vdots & \dots & \vdots & \vdots \\ m_{t,1} & \dots & m_{t,n} & m_t \end{pmatrix}.$$
 (24)

Since the matrix whose *j*th row is \hat{m}_j is primitive, the left-hand side is also primitive, hence $A \in GL_t(\mathbb{Z})$. Conversely, (24) implies easily $\nu \in \hat{G}$. Therefore, the condition (24) is equivalent to $\nu \in \hat{G}$ and we see that

$$\hat{G} = \left\{ \nu \in S_n \mid \langle \nu(\hat{\boldsymbol{m}}_1), \dots, \nu(\hat{\boldsymbol{m}}_t) \rangle_{\mathbb{Z}} = \langle \hat{\boldsymbol{m}}_1, \dots, \hat{\boldsymbol{m}}_t \rangle_{\mathbb{Z}} \right\}$$

is a subgroup of G.

REMARK. If $m_1 = \cdots = m_t = 0$, then $\hat{G} = G$ is obvious. If a polynomial f is irreducible, then $\sum_i m_{j,\nu(i)} \alpha_i = m_j$ implies $(\sum_i m_{j,\nu(i)}) tr(\alpha_1) = nm_j$, and so the identity

$$\begin{pmatrix} m_{1,\nu(1)} & \dots & m_{1,\nu(n)} \\ \vdots & \dots & \vdots \\ m_{t,\nu(1)} & \dots & m_{t,\nu(n)} \end{pmatrix} = A \begin{pmatrix} m_{1,1} & \dots & m_{1,n} \\ \vdots & \dots & \vdots \\ m_{t,1} & \dots & m_{t,n} \end{pmatrix}$$

implies

$$\begin{pmatrix} m_1 \\ \vdots \\ m_t \end{pmatrix} = A \begin{pmatrix} m_1 \\ \vdots \\ m_t \end{pmatrix},$$

multiplying ${}^{t}(tr(\alpha_{1})/n, \ldots, tr(\alpha_{1})/n)$ from the right. Therefore, if f is irreducible, then we have $\hat{G} = G$. However, it is not necessarily true for a reducible polynomial. For example, let a polynomial f be $(x^{2} + x + 1)(x^{2} + 2x + 2)$ with roots $\alpha_{1} = (-1 + \sqrt{-3})/2, \alpha_{2} = (-1 - \sqrt{-3})/2, \alpha_{3} = -1 + \sqrt{-1}, \alpha_{4} = -1 - \sqrt{-1}$. Then we may choose obviously $\hat{m}_{1} = (1, 1, 0, 0, -1), \hat{m}_{2} = (0, 0, 1, 1, -2)$, thus a permutation $\nu = (1, 3)(2, 4)$ is in G, but not in \hat{G} .

To prove the next proposition, we introduce one more notation. For a prime $p \in \text{Spl}(f)$, we take and fix a prime ideal \mathfrak{p} of the field $\mathbb{Q}(f) = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$ lying above p, and put

$$M_{\mu} := \{ p \in \operatorname{Spl}(f) \mid \alpha_i \equiv r_{\mu(i)} \mod \mathfrak{p} \ (i = 1, \dots, n) \}.$$

It is clear that $\#(M_{\sigma} \cap M_{\mu}) = \infty$ implies $\alpha_{\sigma^{-1}\mu(i)} = \alpha_i$ (i = 1, ..., n), hence $\sigma^{-1}\mu \in \hat{G}$, i.e. $\sigma \hat{G} = \mu \hat{G}$. The aim of this subsection is to show

PROPOSITION 2. We have

$$\operatorname{Spl}(f,\sigma) = (\cup_{\mu} M_{\mu}) \cup T_{\sigma} \tag{25}$$

where μ runs over the set of permutations satisfying $\mu \in \sigma \hat{G}$ and $\#M_{\mu} = \infty$, and T_{σ} is a finite set.

Proof. Since $\operatorname{Spl}(f,\sigma) = \bigcup_{\mu \in S_n} (\operatorname{Spl}(f,\sigma) \cap M_\mu)$ by $\operatorname{Spl}(f) = \bigcup_{\mu \in S_n} M_\mu$, we have only to show that $\#(\operatorname{Spl}(f,\sigma) \cap M_\mu) = \infty$ if and only if $\mu \hat{G} = \sigma \hat{G}$ and $\#M_\mu = \infty$, and then $M_\mu \subset \operatorname{Spl}(f,\sigma)$. Suppose that $\#(\operatorname{Spl}(f,\sigma) \cap M_\mu) = \infty$. The property $\#M_\mu = \infty$ is clear. For $p \in \operatorname{Spl}(f,\sigma) \cap M_\mu$, we have

$$\sum_{i} m_{j,i} r_{\sigma(i)} \equiv m_j \bmod p, \ r_i \equiv \alpha_{\mu^{-1}(i)} \bmod \mathfrak{p},$$

which implies $\sum_{i} m_{j,i} \alpha_{\mu^{-1}\sigma(i)} \equiv m_j \mod \mathfrak{p}$ for infinitely many primes in $p \in$ Spl $(f, \sigma) \cap M_{\mu}$, thus $\sum_{i} m_{j,i} \alpha_{\mu^{-1}\sigma(i)} = m_j$. It means $\mu^{-1}\sigma \in \hat{G}$, i.e. $\mu \hat{G} = \sigma \hat{G}$.

Conversely, suppose that $\mu \hat{G} = \sigma \hat{G}$ and $\# M_{\mu} = \infty$ hold; then we have $\sum_{i} m_{j,i} \alpha_{\mu^{-1}\sigma(i)} = m_{j}$. Hence, for $p \in M_{\mu}$, we see $\sum_{i} m_{j,i} r_{\sigma(i)} \equiv m_{j} \mod \mathfrak{p}$, that is, $p \in \operatorname{Spl}(f, \sigma)$ and so $M_{\mu} \subset \operatorname{Spl}(f, \sigma)$, thus $\#(\operatorname{Spl}(f, \sigma) \cap M_{\mu}) = \infty$.

Therefore, the condition $\#(\operatorname{Spl}(f,\sigma) \cap M_{\mu}) = \infty$ is equivalent to $\#M_{\mu} = \infty$ and $\mu \hat{G} = \sigma \hat{G}$. And then, we have $M_{\mu} \subset \operatorname{Spl}(f,\sigma)$ as above. This completes the proof.

REMARK. The proposition says that the condition $\#\text{Spl}(f, id) = \infty$ holds if and only if $\#M_{\mu} = \infty$ for some $\mu \in \hat{G}$. Suppose that $\mathbb{Q}(\alpha_1)$ is a Galois extension of \mathbb{Q} , and we take the prime ideal $\mathfrak{p} := (\alpha_1 - r_1, p)$ as a prime ideal to define the set M_{μ} . Using a polynomial $g_i \in \mathbb{Q}[x]$ defined by $\alpha_i = g_i(\alpha_1)$, we have $p \in M_{\mu} \iff g_i(r_1) \equiv r_{\mu(i)} \mod p$.

COROLLARY 2. We have

$$\lim_{X \to \infty} \sum_{\sigma \in S_n} \frac{\# \mathrm{Spl}_X(f, \sigma)}{\# \mathrm{Spl}_X(f)} = \# \hat{G}.$$
 (26)

Proof. Suppose #Spl $(f, \sigma) = \infty$. Let us see that the following three conditions are equivalent: (i) $\sigma \hat{G} = \nu \hat{G}$, (ii) there is a finite set T such that

$$\operatorname{Spl}(f,\sigma) \setminus T = \operatorname{Spl}(f,\nu) \setminus T,$$

(iii) $\#(\operatorname{Spl}(f,\sigma) \cap \operatorname{Spl}(f,\nu)) = \infty$. The condition (iii) implies that there are permutations μ_1, μ'_1 such that $\mu_1 \in \sigma \hat{G}, \mu'_1 \in \nu \hat{G}$ and $\#(M_{\mu_1} \cap M_{\mu'_1}) = \infty$, which implies $\mu_1 \hat{G} = \mu'_1 \hat{G}$, hence $\sigma \hat{G} = \nu \hat{G}$, i.e. (i). Suppose (i); then (ii) holds for $T = T_{\sigma} \cup T_{\nu}$. (ii) implies obviously (iii). Thus we have

$$\lim_{X \to \infty} \sum_{\sigma \in S_n} \frac{\# \operatorname{Spl}_X(f, \sigma)}{\# \operatorname{Spl}_X(f)}$$

= $\# \hat{G} \lim_{X \to \infty} \sum_{\sigma \in S_n/\hat{G}} \frac{\# \operatorname{Spl}_X(f, \sigma)}{\# \operatorname{Spl}_X(f)}$
= $\# \hat{G} \lim_{X \to \infty} \frac{\# (\cup_{\sigma \in S_n/\hat{G}} \operatorname{Spl}_X(f, \sigma))}{\# \operatorname{Spl}_X(f)}$
= $\# \hat{G}.$

PROPOSITION 3. Let σ, ν be permutations, and suppose that $\nu \in \hat{G}$. Then we have, neglecting a finite set of primes

$$\operatorname{Spl}(f, \sigma) = \operatorname{Spl}(f, \sigma \nu^{-1}),$$

$$\operatorname{Spl}(f, \sigma, \{k_j\}) = \operatorname{Spl}(f, \sigma \nu^{-1}, \{k'_j\}),$$
(27)

$$Spl(f, \sigma, \{k_j\}, L, \{R_j\}) = Spl(f, \sigma\nu^{-1}, \{k'_j\}, L, \{R_j\}),$$
(28)

where ${}^{t}(k'_{1}, \ldots, k'_{t}) := A \cdot {}^{t}(k_{1}, \ldots, k_{t})$ for the integral matrix $A = (a_{ij}) \in GL_{t}(\mathbb{Z})$ given at (24). In particular, we have

$$\Pr(f, \sigma) = \Pr(f, \sigma\nu^{-1}),$$

$$\Pr(f, \sigma, \{k_j\}) = \Pr(f, \sigma\nu^{-1}, \{k'_j\}),$$

$$\Pr(f, \sigma, \{k_j\}, L, \{R_i\}) = \Pr(f, \sigma\nu^{-1}, \{k'_j\}, L, \{R_i\}).$$

Proof. The first equation follows from the equivalence in the proof of the corollary above. Let p be a prime in $\text{Spl}(f, \sigma, \{k_j\})$; then we see

$$\sum_{i} m_{j,i} r_{\sigma(i)} = m_j + k_j p \quad \text{and so} \quad \sum_{j} a_{l,j} \sum_{i} m_{j,i} r_{\sigma(i)} = \sum_{j} a_{l,j} m_j + \sum_{j} a_{l,j} k_j p,$$

that is,

$$\sum_{i} m_{l,\nu(i)} r_{\sigma(i)} = m_l + k'_l p,$$

which implies

 $p\in {\rm Spl}(f,\sigma\nu^{-1},\{k_j'\}),$

that is, $\text{Spl}(f, \sigma, \{k_j\})$ is included in $\text{Spl}(f, \sigma\nu^{-1}, \{k'_j\})$. Since A^{-1} is also integral, we have the converse inclusion

$$\operatorname{Spl}(f, \sigma \nu^{-1}, \{k'_j\}) \subset \operatorname{Spl}(f, \sigma, \{k_j\})$$

similarly, hence (27), (28).

2.3.

We give the constant c in (11) explicitly.

PROPOSITION 4.

$$c = [G : \hat{G}] \cdot \operatorname{vol}(\bigcup_{\sigma \in S_n} \mathfrak{D}(f, \sigma)).$$

Proof. Suppose that (11) is true; then we have

$$\lim_{X \to \infty} \sum_{\sigma \in S_n} \frac{\# \operatorname{Spl}_X(f, \sigma)}{\# \operatorname{Spl}_X(f)} = c^{-1} \sum_{\sigma \in S_n} \operatorname{vol}\bigl(\mathfrak{D}(f, \sigma)\bigr),$$
(29)

Applying Corollary 1, 2, we see

$$c = [G : \hat{G}] \cdot \operatorname{vol}(\bigcup_{\sigma \in S_n} \mathfrak{D}(f, \sigma)).$$

2.4.

If a polynomial f may have a non-trivial linear relation, then Expectation 1 is generalized as follows:

For a subset $D = \overline{D^{\circ}} \subset [0,1)^n$, we have

$$\Pr_D(f) = \frac{1}{\#G} \sum_{\sigma \in S_n} \frac{\operatorname{vol}(D \cap \mathfrak{D}(f, \sigma))}{\operatorname{vol}(\bigcup_{\sigma \in S_n} \mathfrak{D}(f, \sigma))}.$$
(30)

102

Because, we see that $Pr_D(f)$ is, by definition (5) equal to

$$\begin{split} \lim_{X \to \infty} \frac{\#\{p \in \operatorname{Spl}_X(f) \mid (r_1/p, \dots, r_n/p) \in D\}}{\#\operatorname{Spl}_X(f)} \\ &= \frac{1}{\#\hat{G}} \lim \sum_{\sigma \in S_n} \frac{\#\{p \in \operatorname{Spl}_X(f, \sigma) \mid (r_1/p, \dots, r_n/p) \in D\}}{\#\operatorname{Spl}_X(f)} \\ &= \frac{1}{\#\hat{G}} \lim \sum \frac{\#\operatorname{Spl}_X(f, \sigma)}{\#\operatorname{Spl}_X(f)} \cdot \frac{\#\{p \in \operatorname{Spl}_X(f, \sigma) \mid (r_1/p, \dots, r_n/p) \in D\}}{\#\operatorname{Spl}_X(f, \sigma)} \\ &= \frac{1}{\#\hat{G}} \lim \sum \frac{\operatorname{Vol}(\mathfrak{D}(f, \sigma))}{c} \cdot \frac{\operatorname{vol}(D \cap \mathfrak{D}(f, \sigma))}{\operatorname{vol}(\mathfrak{D}(f, \sigma))} \quad \text{by (11), (10)} \\ &= \frac{1}{\#G} \frac{\sum_{\sigma \in S_n} \operatorname{vol}(D \cap \mathfrak{D}(f, \sigma))}{\operatorname{vol}(\cup_{\sigma \in S_n} \mathfrak{D}(f, \sigma))}, \end{split}$$

where \sum' means that permutations $\sigma \in S_n$ with $\# \operatorname{Spl}_{\infty}(f, \sigma) < \infty$ are omitted.

APPLICATON 1. Let us consider the case of a decomposable polynomial of degree 4. Let a polynomial $f(x) = (x^2 + ax)^2 + b(x^2 + ax) + c$ be irreducible. Referring to Example 3 in the previous section, we see that

$$\{\sigma \mid \#\operatorname{Spl}(f,\sigma) = \infty\} = \{\sigma \mid \{\sigma(1),\sigma(4)\} = \{1,4\} \text{ or } \{2,3\}\} = \hat{G} = G.$$

Only for such permutations, $\mathfrak{D}(f,\sigma) > 0$ and $\mathfrak{D}(f,\sigma) = \mathfrak{D}(f,id)$ are easy, hence we have, by (30)

$$\Pr_D(f) = \frac{\operatorname{vol}(D \cap \mathfrak{D}(f, id))}{\operatorname{vol}(\mathfrak{D}(f, id))}.$$
(31)

Let us see that this implies the traditional equi-distribution of the sequence of $r_1/p, \ldots, r_4/p$ in [0, 1). (cf. [K2] in the case that there is no non-trivial linear relation.)

Because, we have only to show

$$\frac{\sum_{p \in \operatorname{Spl}_X(f)} \#\{1 \le i \le 4 \mid r_i/p \le A\}}{4 \# \operatorname{Spl}_X(f)} \to A \quad (0 \le A < 1)$$

By putting $D_i := \{(x_1, \ldots, x_4) \mid x_i \leq A\} \cap \mathfrak{D}(f, id)$, (31) tells us that the left-hand side tends to

$$\sum_{i=1}^{4} \frac{1}{4} \frac{\operatorname{vol}(D_i)}{\operatorname{vol}(\mathfrak{D}(f, id))},\tag{32}$$

using $\operatorname{Spl}_X(f) = \operatorname{Spl}_X(f, id)$. By $\mathfrak{D}(f, id) = \{(x_1, \dots, x_4) \mid 0 \le x_1 \le \dots \le x_4 < 1 \mid x_1 + x_4 = 1, x_2 + x_3 = 1\}$ we have

$$\begin{split} \mathfrak{D}(f,id) &= \{(x_1,x_2,1-x_2,1-x_1) \mid 0 \leq x_1 \leq x_2 < 1/2\}, \\ D_1 &= \{(x_1,x_2,1-x_2,1-x_1) \mid 0 \leq x_1 \leq x_2 < 1/2, x_1 \leq A\}, \\ D_2 &= \{(x_1,x_2,1-x_2,1-x_1) \mid 0 \leq x_1 \leq x_2 < \min(1/2,A)\}, \\ D_3 &= \{(x_1,x_2,1-x_2,1-x_1) \mid 0 \leq x_1 \leq x_2 < 1/2, 1-x_2 \leq A\}, \\ D_4 &= \{(x_1,x_2,1-x_2,1-x_1) \mid 0 \leq x_1 \leq x_2 < 1/2, 1-x_1 \leq A\}, \end{split}$$

and projecting them on the (x_1, x_2) -plane, we see

$$\operatorname{vol}\left(\operatorname{pr}(\mathfrak{D}(f, id))\right) = 1/8,$$

$$\operatorname{vol}\left(\operatorname{pr}(D_1)\right) = \begin{cases} A/2 - A^2/2 & \text{if } A \le 1/2, \\ 1/8 & \text{if } A \ge 1/2, \end{cases}$$

$$\operatorname{vol}\left(\operatorname{pr}(D_2)\right) = \begin{cases} A^2/2 & \text{if } A \le 1/2, \\ 1/8 & \text{if } A \ge 1/2, \end{cases}$$

$$\operatorname{vol}\left(\operatorname{pr}(D_3)\right) = \begin{cases} 0 & \text{if } A \le 1/2, \\ (A - 1/2)/2 - (A - 1/2)^2/2 & \text{if } A \ge 1/2, \end{cases}$$

$$\operatorname{vol}\left(\operatorname{pr}(D_4)\right) = \begin{cases} 0 & \text{if } A \le 1/2, \\ (A - 1/2)^2/2 & \text{if } A \ge 1/2. \end{cases}$$

Thus we see that (32) is equal to A.

REFERENCES

- [K1] KITAOKA, Y.: Notes on the distribution of roots modulo a prime of a polynomial, Unif. Distrib. Theory 12 (2017), no. 2, 91–116.
- [K2] _____ Statistical distribution of roots of a polynomial modulo primes III, Int. J. Statist. Probab. 7 (2018), 115–124.

Received March 16, 2018 Accepted August 28, 2018 Yoshiyuki Kitaoka Author is retired, Asahi JAPAN E-mail: kitaoka@meijo-u.ac.jp