



DOI: 10.1515/udt-2018-0007 Unif. Distrib. Theory **13** (2018), no.1, 131-145

WEAK UNIVERSALITY THEOREM ON THE APPROXIMATION OF ANALYTIC FUNCTIONS BY SHIFTS OF THE RIEMANN ZETA-FUNCTION FROM A BEATTY SEQUENCE

ATHANASIOS SOURMELIDIS

ABSTRACT. In this paper, we prove a discrete analogue of Voronin's early finite-dimensional approximation result with respect to terms from a given Beatty sequence and make use of Taylor approximation in order to derive a weak universality statement.

Communicated by Werner Georg Nowak

1. Introduction

Let $s = \sigma + it \in \mathbb{C}$ (where $\sigma = \operatorname{Re}(s)$ and $t = \operatorname{Im}(s)$) and $\zeta(s)$ the Riemann zeta-function. This function is usually defined first on the half-plane $\{s : \operatorname{Re}(s) > 1\}$ by the formula

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

and then extended to a meromorphic function on the whole complex plane, with one simple pole at s = 1 and no other singularity.

In 1914, H. Bohr and R. Courant [3] proved that, for any $\sigma_0 \in (\frac{1}{2}, 1)$ the set

$$\{\zeta(\sigma_0 + i\tau) : \tau \in \mathbb{R}\}\$$

is dense in \mathbb{C} . In the next year B o h r [2] proved that the same result holds for $\log \zeta(\sigma_0 + i\tau)$. These results are called denseness theorems.

²⁰¹⁰ Mathematics Subject Classification: 11M99, 30K10.

Keywords: Universality, Riemann zeta-function, Beatty sequences.

Bohr's line of investigations appears to have been almost totally abandoned for some decades. Only in 1972, S. M. Voronin [8] obtained some significant generalizations of Bohr's denseness result.

THEOREM 1. Let *m* be a natural number and *h* a positive real number. For any fixed numbers s_1, \ldots, s_m with $\frac{1}{2} < \operatorname{Re}(s_k) \leq 1$ for $1 \leq k \leq m$ and $s_k \neq s_\ell$ for $k \neq \ell$, the set

$$\{(\zeta(s_1+inh),\zeta(s_2+inh),\ldots,\zeta(s_m+inh)):n\in\mathbb{N}\}$$

is dense in \mathbb{C}^m . Moreover, for any fixed number s_0 in the strip $1/2 < \sigma \leq 1$, the set

$$\left\{\left(\zeta(s_0+inh),\zeta'(s_0+inh),\ldots,\zeta^{(m-1)}(s_0+inh)\right):n\in\mathbb{N}\right\}$$

is dense in \mathbb{C}^m .

However, V or on in did not stop there and in 1975 proved a remarkable universality theorem for $\zeta(s)$ which states, roughly speaking, that any non-vanishing analytic function can be approximated by certain purely imaginary shifts of the zeta-function in the critical strip.

THEOREM 2. Let 0 < r < 1/4 and suppose that g(s) is a non-vanishing continuous function on the disk $|s| \leq r$ which is analytic in the interior. Then, for any $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \max_{|s| \le r} \left| \zeta \left(s + \frac{3}{4} + i\tau \right) - g(s) \right| < \varepsilon \right\} > 0 \,.$$

Voronin called his universality theorem the *theorem about little disks*. A. Reich [7] and B. Bagchi [1] improved Voronin's result significantly in replacing the disk by an arbitrary compact set in the right half of the critical strip with connected complement and they even obtained a discrete analogue of it.

THEOREM 3. Suppose that K is a compact subset of the strip 1/2 < Re(s) < 1 with connected complement, and let g(s) be a non-vanishing continuous function on K which is analytic in the interior of K. Then, for any $\varepsilon > 0$ and any h > 0,

$$\liminf_{N \to \infty} \frac{1}{N} \operatorname{card} \left\{ n \in \mathbb{N} \cap (0, N] : \max_{s \in K} |\zeta (s + inh) - g(s)| < \varepsilon \right\} > 0.$$

We note that Theorem 3 clearly implies both parts of Theorem 1 (except of $\operatorname{Re}(s_0) = 1$), since the truncated Taylor series of the target function g(s) can be approximated by the truncated Taylor series of a certain shift of the zeta-function. Although Theorem 1 does not suffice to prove Theorem 3, we can derive from it a weak form of universality of the zeta-function as it was first indicated by R. Garunkštis, A. Laurinčikas, K. Matsumoto, J. Steuding and R. Steuding [5].

The aim of this note is to replace the arithmetical progression $(nh)_{n\in\mathbb{N}}$ in Theorem 1 by the sequence $(\lfloor n\alpha \rfloor h)_{n\in\mathbb{N}}$ with a fixed irrational number $\alpha > 0$. Here $\lfloor x \rfloor$ denotes the largest integer which is less or equal to x and for given $\alpha > 0$, the sequence $(\lfloor n\alpha \rfloor)_{n\in\mathbb{N}}$ is called Beatty sequence. We will consider only the case $\alpha > 1$ since for $\alpha < 1$ the discrete terms of the Beatty sequence is all the natural numbers and thus we get Theorem 1. Also, h will not be a random positive number but a number belonging to

where

$$L(\alpha) \cap [0, +\infty),$$

$$L(\alpha) = \left\{ h \in \mathbb{R} : 1, \ \alpha^{-1}, \ \frac{h}{2\pi} \ln p_1, \ \frac{h}{2\pi} \ln p_2, \ \dots \ \text{are linearly independent over } \mathbb{Q} \right\}.$$

We will show later on that $L(\alpha) \cap [0, +\infty) \neq \emptyset$ for every irrational number α .

Now, using the same arguments as $V \circ r \circ n i n$ did in [8], we will prove the following

THEOREM 4 (Main theorem). Let m be a natural number and $\alpha > 1$ an irrational number. Let also s_0, s_1, \ldots, s_m be fixed numbers with

$$\frac{1}{2} < \operatorname{Re}(s_k) \le 1 \quad \text{for } 0 \le k \le m \quad \text{and} \quad s_k \ne s_\ell \quad \text{for } k \ne \ell.$$

Then, for every $h \in L(\alpha) \cap [0, +\infty)$, the sets

and

$$\left\{\left(\zeta(s_0+i\lfloor n\alpha\rfloor h),\zeta'(s_0+i\lfloor n\alpha\rfloor h),\ldots,\zeta^{(m-1)}(s_0+i\lfloor n\alpha\rfloor h)\right):n\in\mathbb{N}\right\}$$

 $\left\{ \left(\zeta(s_1 + i \lfloor n\alpha \rfloor h), \zeta(s_2 + i \lfloor n\alpha \rfloor h), \dots, \zeta(s_m + i \lfloor n\alpha \rfloor h) \right) : n \in \mathbb{N} \right\}$

are dense in \mathbb{C}^m .

Combining the preceding theorem and the method introduced in [5], we will also derive

THEOREM 5 (Weak Universality). Let $\sigma_0 \in (1/2, 1]$, $g : K = \overline{D(s_0, r)} \to \mathbb{C}$ continuous and analytic in the interior of K, and $\alpha > 1$ irrational. Then, for every $h \in L(\alpha) \cap [0, +\infty)$ and for every $\varepsilon > 0$, there exists

such that

$$n = n(\varepsilon, h) \in \mathbb{N} \quad and \quad \delta = \delta(\varepsilon, h) \in (0, 1)$$
$$\max_{|s-s_0| \le \delta r} |\zeta \left(s + i \lfloor n\alpha \rfloor h\right) - g(s)| < \varepsilon.$$

2. Uniform distribution mod 1 and a set of full Lebesgue measure

Part of the proof that Voronin gave for Theorem 1 and that we will similarly give for Theorem 4, relies on the theory of uniformly distributed sequences. A beautiful monograph on this theory is [6]. The definition, theorems and corollaries that are stated below can be found there. But before that we introduce some notation. If $\mathbf{x} = (x_1, \ldots, x_\ell) \in \mathbb{R}^\ell$, then $\{\mathbf{x}\} = (\{x_1\}, \ldots, \{x_\ell\})$. Here $\{x_i\}$ denotes the fractional part of the real number x_i .

DEFINITION 1. A sequence of points $(\mathbf{x}_n)_{n \in \mathbb{N}}$ belonging to \mathbb{R}^{ℓ} is said to be uniformly distributed mod 1 (u.d. mod 1) in \mathbb{R}^{ℓ} if for every box $B = I_1 \times \cdots \times I_{\ell}$ in $[0, 1]^{\ell}$ (i.e., a cartesian product of intervals), the relation

$$\lim_{N \to \infty} \frac{\{1 \le n \le N : \{\mathbf{x}_n\} \in B\}}{N} = |I_1| |I_2| \dots |I_\ell| = \max(B)$$

holds.

One of the many advantages when dealing with u.d. mod 1 sequences is a useful connection between sums and integrals, as the next theorem states.

THEOREM 6. A sequence $(\mathbf{x}_n)_{n \in \mathbb{N}}$ is u.d. mod 1 in \mathbb{R}^{ℓ} if and only if for every continuous complex-valued f on $[0, 1]^{\ell}$, the relation

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\{\mathbf{x}_n\}) = \int_{[0,1]^{\ell}} f(\mathbf{x}) \mathrm{d}\mathbf{x}$$

holds.

Proof. For the proof, see [6], Chapter 1, Theorem 6.1. In fact, the condition of f being continuous can be relaxed to that of both Ref and Imf being Riemann integrable.

Although the multi-dimensional definition complicates somewhat the study of whether a sequence is u.d. mod 1 or not, there exists a theorem that allows us to induce the process in the one-dimensional case.

THEOREM 7. A sequence $(\mathbf{x}_n)_{n \in \mathbb{N}}$ is u.d. mod 1 in \mathbb{R}^{ℓ} if and only if for every lattice point $\mathbf{k} \in \mathbb{Z}^{\ell}$, $\mathbf{k} \neq \mathbf{0}$, the sequence of real numbers $(\langle \mathbf{k}, \mathbf{x}_n \rangle)_{n \in \mathbb{N}}$ is u.d. mod 1 in \mathbb{R} . Here $\langle \cdot, \cdot \rangle$ denotes the inner product as it is usually defined on the vector space \mathbb{R}^{ℓ} .

Proof. For the proof, see [6], Chapter 1, Theorem 6.3.

COROLLARY 1. Let $(\theta_k)_{k \in \mathbb{N}}$ be a sequence of real numbers such that $1, \theta_1, \theta_2, \ldots$ are linearly independent over \mathbb{Q} . Then, for any $\ell \in \mathbb{N}$ and any $k_1, \ldots, k_\ell \in \mathbb{N}$ pairwise distinct, the sequence $(n\theta_{k_1}, \ldots, n\theta_{k_\ell}), n = 1, 2, \ldots$, is u.d. mod 1 in \mathbb{R}^{ℓ} .

Proof. For the proof, see [6], Chapter 1, Example 6.1.

It is desirable to substitute n from the above corollary with $\lfloor n\alpha \rfloor$ for given irrational $\alpha > 1$. D. Carlson [4] obtained a necessary and sufficient condition for that to happen in the one-dimensional case, and with the assistance of Theorem 7 we will be able to reformulate Corollary 1.

THEOREM 8. For rational α , the sequence $(\lfloor n\alpha \rfloor \theta)_{n \in \mathbb{N}}$ is u.d. mod 1 either for all irrationals θ or for no real number θ , depending on whether $\alpha \neq 0$ or $\alpha = 0$. If α is irrational, then $(\lfloor n\alpha \rfloor \theta)_{n \in \mathbb{N}}$ is u.d. mod 1 in \mathbb{R} if and only if $1, \alpha, \alpha\theta$ are linearly independent over \mathbb{Q} (or equivalently $1, \alpha^{-1}, \theta$ are linearly independent over \mathbb{Q}).

Proof. For the proof, see [6], Chapter 5, Theorem 1.8.

COROLLARY 2. Let α be an irrational number and $(\theta_k)_{k \in \mathbb{N}}$ a sequence of real numbers. Then, $1, \alpha^{-1}, \theta_1, \theta_2, \ldots$ are linearly independent over \mathbb{Q} if and only if for any $\ell \in \mathbb{N}$ and any $k_1, \ldots, k_\ell \in \mathbb{N}$ pairwise distinct, the sequence $\mathbf{x}_n = (\lfloor n\alpha \rfloor \theta_{k_1}, \ldots, \lfloor n\alpha \rfloor \theta_{k_\ell}), n = 1, 2, \ldots$, is u.d. mod 1 in \mathbb{R}^{ℓ} .

Proof. The numbers $1, \alpha^{-1}, \theta_1, \theta_2, \ldots$ are linearly independent over \mathbb{Q} if and only if for any $\ell \in \mathbb{N}$, any $k_1, \ldots, k_\ell \in \mathbb{N}$ pairwise distinct, and any $m_1, \ldots, m_\ell \in \mathbb{Z}$ not all of them zero, the numbers $1, \alpha^{-1}, m_1\theta_{k_1} + \cdots + m_\ell\theta_{k_\ell}$ are linearly independent over \mathbb{Q} . Combining Theorem 7 and Theorem 8, we see that the latter statement is equivalent to the one saying that for any $\ell \in \mathbb{N}$ and any $k_1, \ldots, k_\ell \in \mathbb{N}$ pairwise distinct, the sequence $\mathbf{x}_n = (\lfloor n\alpha \rfloor \theta_{k_1}, \ldots, \lfloor n\alpha \rfloor \theta_{k_\ell}),$ $n = 1, 2, \ldots$, is u.d. mod 1 in \mathbb{R}^{ℓ} .

The sequence of numbers that we are interested in is

$$\theta_k = \frac{h}{2\pi} \ln p_k, \quad k = 1, 2, \dots,$$

where p_k will denote from here on the *k*th prime and h > 0. We prove that for a given irrational α there exists h > 0 such that the necessary condition of Corollary 2 for the aforementioned sequence is fulfilled. In fact we prove the existence of a lot such h.

THEOREM 9. Let α be an irrational number and

$$L(\alpha) = \left\{ h \in \mathbb{R} : 1, \ \alpha^{-1}, \ \frac{h}{2\pi} \ln p_1, \ \frac{h}{2\pi} \ln p_2, \ \dots \ are \ linearly \ independent \ over \ \mathbb{Q} \right\}.$$

The set $L(\alpha)$ has full Lebesgue measure in \mathbb{R} , i.e., $meas(\mathbb{R} \setminus L(\alpha)) = 0$.

Proof. Let $B = \mathbb{R} \setminus L(\alpha)$ and $h \in B$. Then, the numbers

$$1, \alpha^{-1}, \frac{h}{2\pi} \ln p_1, \frac{h}{2\pi} \ln p_2, \dots$$

are linearly dependent over \mathbb{Q} and consequently over \mathbb{Z} as well. Thus, there exists integer $k \geq 1$ and integers a_1, \ldots, a_k, b, c , where a_i are not all zeros, such that

$$a_1 \frac{h}{\pi} \ln p_1 + \dots + a_k \frac{h}{\pi} \ln p_k = b + c\alpha^{-1}.$$
(1)

Putting $A = p_1^{a_1} \dots p_k^{a_k}$, we observe that $A \in \mathbb{Q}^+ \setminus \{1\}$ and we can rewrite (1) as $h \ln A = b\pi + c\alpha^{-1}\pi$.

Fix a vector $(A, b, c) \in (\mathbb{Q}^+ \setminus \{1\}) \times \mathbb{Z} \times \mathbb{Z} = \Gamma$. Consider the corresponding set $B(A, b, c) = \{h \in \mathbb{R} : h \ln A = b\pi + c\alpha^{-1}\pi\}.$

The set B(A, b, c) is clearly a singleton (since $\ln A \neq 0$) and thus of measure zero. Hence, the countable union of singletons

$$B = \bigcup_{(A,b,c)\in\Gamma} B(A,b,c)$$

is of measure zero. Therefore, its complement $\mathbb{R} \setminus B = L(\alpha)$ has full Lebesgue measure in \mathbb{R} .

3. Auxiliary lemmas

Before stating the lemmas needed for the proofs of Theorems 4 and 5, we introduce some notation. Let Ω denote the set of all sequences of real numbers indexed by the prime numbers in ascending order. Further, define for every finite subset M of the set of all primes, every $\omega = (\omega_2, \omega_3, \omega_5, \dots) \in \Omega$, and all complex numbers s, the truncated Euler product

$$\zeta_M(s,\omega) = \prod_{p \in M} \left(1 - \frac{\exp(-2\pi i\omega_p)}{p^s} \right)^{-1}$$

Obviously, $\zeta_M(s,\omega)$ is a non-vanishing analytic function of s in the half-plane $\sigma > 0$. Observe also that for $M = \{p'_1, \ldots, p'_\ell\}$ and constant s, $\zeta_M(s,\omega)$ can be treated as a continuous complex-valued function of ℓ variables $(\omega_{p'_1}, \ldots, \omega_{p'_\ell})$ defined on $[0, 1]^{\ell}$. In such cases, where M and s are given, $\zeta_M(s,\omega)$ will be abbreviated as $\zeta_M(s, \omega_{p'_1}, \ldots, \omega_{p'_\ell})$. Finally, Log z will denote the principal logarithm of z.

LEMMA 1. Let s_0 be complex number such that $\frac{1}{2} < \operatorname{Re}(s_0) \leq 1$ and $k \in \mathbb{N}_0$. If we define $M_Q = \{p_1, p_2, \ldots, p_Q\}$ to be the set of the first Q primes and $\mathbf{0} = (0, 0, \ldots)$, then

$$\lim_{Q \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left| \zeta^{(k)}(s_0 + it) - \zeta^{(k)}_{M_Q}(s_0 + it, \mathbf{0}) \right|^2 dt = 0$$

Proof. For the proof, see [8], pages 164-166, 168.

LEMMA 2. Suppose that $(a_1, \ldots, a_m) \in \mathbb{C}^m$, $\varepsilon > 0$, $y \in \mathbb{N}$ and x_{p_1}, \ldots, x_{p_y} are real numbers, and s_1, \ldots, s_m are the numbers in the condition of Theorem 4, where $\operatorname{Im}(s_k) > 2$ for all $1 \leq k \leq m$. Then, there exists a finite set of primes $M = \{p'_1, p'_2, \ldots, p'_\ell\}$ and a sequence $\omega \in \Omega$ such that

 $M \supset \{p_1, \dots, p_y\}, \quad \omega_{p_r} = x_{p_r} \quad and \quad |\zeta_M(s_k, \omega) - a_k| < \varepsilon,$

for $1 \le r \le y$ and $1 \le k \le m$.

Proof. For the proof, see [8], Lemma 11.

LEMMA 3. Suppose that $(a_0, \ldots, a_{m-1}) \in \mathbb{C}^m$, $\varepsilon > 0$, $y \in \mathbb{N}$ and x_{p_1}, \ldots, x_{p_y} are real numbers, and s_0 is a number with $\frac{1}{2} < \operatorname{Re}(s_0) \leq 1$ and $\operatorname{Im}(s_0) > 2$. Then, there exists a finite set of primes $M = \{p'_1, p'_2, \ldots, p'_\ell\}$ and a sequence $\omega \in \Omega$ such that

 $M \supset \{p_1, \dots, p_y\}, \quad \omega_{p_r} = x_{p_r} \quad and \quad |\zeta_M^{(k)}(s_0, \omega) - a_k| < \varepsilon,$ for $1 \le r \le y$ and $1 \le k \le m$.

Proof. For the proof, see [8], Lemma 12.

REMARK 1. Note that the condition for the imaginary parts of the complex numbers in Lemma 2 can be removed:

Proof. Let the assumptions of Lemma 2 hold without the restriction of the imaginary parts. There exists a number c > 0 such that $\text{Im}(s_k) + 2\pi c > 2$ for $1 \le k \le m$. According to Lemma 2, for $\tilde{x}_{p_1} = x_{p_1} - c \ln p_1, \ldots, \tilde{x}_{p_y} = x_{p_y} - c \ln p_y$, there exists a finite set of primes M and $\tilde{\omega} \in \Omega$ such that

 $M \supset \{p_1, \dots, p_y\}, \quad \tilde{\omega}_{p_r} = \tilde{x}_{p_r} \quad \text{and} \quad |\zeta_M(s_k + 2\pi i c, \tilde{\omega}) - a_k| < \varepsilon.$ for $1 \le r \le y$ and $1 \le k \le m$.

137

Taking $\omega \in \Omega$ to be $\omega_p = \tilde{\omega}_p + c \ln p$ for all primes p, we observe that for $1 \le k \le m$,

$$\zeta_M(s_k + 2\pi ic, \tilde{\omega}) = \prod_{p \in M} \left(1 - \frac{\exp(-2\pi i\tilde{\omega}_p)}{p^{s_k + 2\pi ic}} \right)^{-1}$$
$$= \prod_{p \in M} \left(1 - \frac{\exp(-2\pi i(\tilde{\omega}_p + c\ln p))}{p^{s_k}} \right)^{-1}$$
$$= \prod_{p \in M} \left(1 - \frac{\exp(-2\pi i\omega_p)}{p^{s_k}} \right)^{-1}$$
$$= \zeta_M(s_k, \omega),$$

and of course, $\omega_{p_r} = x_{p_r}$ for $1 \le r \le y$.

REMARK 2. The same result as above can be obtained similarly for Lemma 3, since to prove it Voronin showed that the set of points

$$\Delta_{(M,\omega)} = \left(\operatorname{Log} \zeta_M(s_0,\omega), [\operatorname{Log} \zeta_M(s_0,\omega)]', \dots, [\operatorname{Log} \zeta_M(s_0,\omega)]^{(m-1)} \right) \in \mathbb{C}^m$$

is dense in \mathbb{C}^m whenever (M, ω) runs through all possible finite sets of primes Mand $\omega \in \Omega$ with the requirements $M \supset \{p_1, \ldots, p_y\}$ and $\omega_{p_r} = x_{p_r}$ for $1 \le r \le y$.

LEMMA 4. Let t_0, t_1, \ldots, t_R be real numbers, where $t_0 < t_1 < \cdots < t_R$. If G(t) is a complex-valued function which is defined and continuously differentiable on the interval $[t_0, t_R]$, then

$$\sum_{r=1}^{R} |G(t_r)|^2 \le \frac{1}{\delta} \int_{t_0}^{t_R} |G(t)|^2 dt + 2 \left(\int_{t_0}^{t_R} |G(t)|^2 dt \right)^2 \left(\int_{t_0}^{t_R} |G'(t)|^2 dt \right)^2 dt$$

where

$$\delta = \min_{0 \le r < R} \left| t_{r+1} - t_r \right|.$$

P r o o f. For the proof, see [8], Lemma 6.

LEMMA 5. Let s_1, \ldots, s_ℓ be numbers such that $\operatorname{Re}(s_j) > 0$ for $j = 1, \ldots, \ell$, and $m \in \mathbb{N}$. Then, for every $\varepsilon > 0$, there exists an $N = N(\varepsilon) \in \mathbb{N}$ such that for every set S of prime numbers greater than p_N , every $k = 0, 1, \ldots, m$, every $j = 1, \ldots, \ell$ and every $\omega \in \Omega$, the inequality

$$\left| \left(\zeta_S(s_j, \omega) - 1 \right)^{(k)} \right| < \varepsilon$$

holds.

138

Proof. Let $\varepsilon > 0$ and

$$0 < t_0 < r_0 < \min_{1 \le j \le \ell} \operatorname{Re}(s_j).$$

If we set

$$\varepsilon' = \min_{0 \le k \le m} \frac{\varepsilon r_0^k}{k!},$$

then there exists a $\delta = \delta(\varepsilon) < 1$ such that $|e^z - 1| < \varepsilon'$ for every $|z| < \delta$. Since the series

$$\sum_{n=1}^{\infty} \frac{1}{p_n^{t_0} - 1}$$

converges, there exists an $N = N(\varepsilon)$ such that

$$\sum_{n=N}^{\infty} \frac{1}{p_n^{\sigma} - 1} < \frac{\delta}{2}$$

for every $\sigma > t_0$. Now let S be a set of prime numbers greater than p_N and $\omega\in\Omega.$ Observe that whenever $|z|<\frac{1}{2}\,,$ one can obtain

$$\left|\operatorname{Log}(1+z)\right| = \left|\int_{1}^{1+z} \frac{\mathrm{d}w}{w}\right| \le \int_{1}^{1+z} \frac{|\mathrm{d}w|}{|w|} \le 2|z|.$$

Keeping that in mind and taking advantage of the fact that for every $\operatorname{Re}(s) > t_0$ and $n \geq N$:

$$\left| \left(1 - \frac{\exp(-2\pi i\omega_{p_n})}{p_n^s} \right)^{-1} - 1 \right| = \left| \frac{\exp(-2\pi i\omega_{p_n})}{p_n^s - \exp(-2\pi i\omega_{p_n})} \right| \\ \leq \frac{1}{p_n^{\sigma} - 1} < \frac{\delta}{2} < \frac{1}{2},$$

we can estimate

1

$$\begin{split} \left| \sum_{p \in S} \operatorname{Log} \left(1 - \frac{\exp(-2\pi i \omega_p)}{p^s} \right)^{-1} \right| &\leq \sum_{p \in S} \left| \operatorname{Log} \left(1 - \frac{\exp(-2\pi i \omega_p)}{p^s} \right)^{-1} \right| \\ &\leq 2 \sum_{n=N}^{\infty} \left| \left(1 - \frac{\exp(-2\pi i \omega_{p_n})}{p_n^s} \right)^{-1} - 1 \right| \\ &\leq 2 \sum_{n=N}^{\infty} \frac{1}{p_n^{\sigma} - 1} \,<\,\delta\,. \end{split}$$

Thus, for every $\operatorname{Re}(s) > t_0$,

$$|\zeta_S(s,\omega) - 1| = \left| \exp\left(\sum_{p \in S} \operatorname{Log}\left(1 - \frac{\exp(-2\pi i\omega_p)}{p^s}\right)^{-1}\right) - 1 \right| < \varepsilon'.$$

All inequalities

$$\left|\left(\zeta_S(s_j,\omega)-1\right)^{(k)}\right|<\varepsilon,$$

for $k = 0, \ldots, m$ and $j = 1, \ldots, \ell$, can now be proved by computing the Cauchy's estimates of $\zeta_S(s, \omega) - 1$ on the disks $D(s_j, r_0) \subset \{s : \operatorname{Re}(s) > t_0\}$, for $j = 1, \ldots, \ell$, respectively.

4. Proofs of Theorem 4 and Theorem 5

Proof of Theorem 4. We prove the second part of Theorem 4 since the first part can be shown similarly. Let s_0 be a complex number with $\frac{1}{2} < \operatorname{Re}(s_0) \leq 1$, $\alpha > 1$ irrational and $h \in L(\alpha) \cap [0, +\infty)$, where $L(\alpha)$ is the set defined in the first section and in Theorem 9.

To prove the theorem it suffices to show that any vector $(a_0, \ldots, a_{m-1}) \in \mathbb{C}^m$ can be approximated arbitrarily close by the vector

$$\left(\zeta(s_0+i\lfloor n\alpha\rfloor h),\ldots,\,\zeta^{(m-1)}(s_0+i\lfloor n\alpha\rfloor h)\right)$$

with a suitable natural number n. We fix any (a_0, \ldots, a_{m-1}) . By Lemma 3, for every $\varepsilon > 0$ and every $y \in \mathbb{N}$, there exists $\zeta_M(s_0, \omega)$ such that $M \supset \{p_1, \ldots, p_y\}$, $\omega_{p_r} = 0$ for $1 \le r \le y$, and for $k = 0, \ldots, m-1$ we have

$$\left|\zeta_M^{(k)}(s_0,\omega) - a_k\right| < \varepsilon.$$
⁽²⁾

Let $M = \{p'_1, \ldots, p'_\ell\}$. By the continuity of $\zeta_M(s_0, \omega_{p'_1}, \ldots, \omega_{p'_\ell})$ as a function of ℓ variables and (2), in $[0, 1]^\ell$ there exists a subbox K with meas(K) > 0 such that for $k = 0, \ldots, m-1$ all the points $(x_{p'_1}, \ldots, x_{p'_\ell})$ belonging in K satisfy

$$\left|\zeta_{M}^{(k)}(s_{0}, x_{p_{1}'}, \dots, x_{p_{\ell}'}) - a_{k}\right| < 2\varepsilon.$$
 (3)

Let ${\sum'}_{n=1}^{N}$ denote summation over those $n \in [1, N] \cap \mathbb{N}$ for which

$$\left(\left\{\frac{h \ln p_1'}{2\pi}\lfloor n\alpha\rfloor\right\}, \ldots, \left\{\frac{h \ln p_\ell'}{2\pi}\lfloor n\alpha\rfloor\right\}\right) \in K.$$

We consider the expression

$$A_N = \frac{1}{N} \sum_{n=1}^{N'} \sum_{k=0}^{m-1} \left| \zeta^{(k)}(s_0 + i \lfloor n\alpha \rfloor h) - \zeta^{(k)}_M(s_0 + i \lfloor n\alpha \rfloor h, \mathbf{0}) \right|^2.$$

We choose Q larger than any $p \in M$ and we define $M_Q = \{p_1, p_2, \ldots, p_Q\}$ to be the set of the first Q primes. Then,

$$A_{N} \leq \frac{2}{N} \sum_{n=1}^{N}' \sum_{k=0}^{m-1} \left| \zeta^{(k)}(s_{0} + i \lfloor n\alpha \rfloor h) - \zeta^{(k)}_{M_{Q}}(s_{0} + i \lfloor n\alpha \rfloor h, \mathbf{0}) \right|^{2} + \frac{2}{N} \sum_{n=1}^{N}' \sum_{k=0}^{m-1} \left| \zeta^{(k)}_{M_{Q}}(s_{0} + i \lfloor n\alpha \rfloor h, \mathbf{0}) - \zeta^{(k)}_{M}(s_{0} + i \lfloor n\alpha \rfloor h, \mathbf{0}) \right|^{2}.$$
(4)

We denote the first double sum by S_1 and the second by S_2 . Firstly, we estimate S_2 . We make use of Leibniz's formula

$$\zeta_{M_Q}^{(k)} - \zeta_M^{(k)} = [\zeta_M(\zeta_{M_Q \setminus M} - 1)]^{(k)} = \sum_{j=0}^k \binom{k}{j} \zeta_M^{(j)} (\zeta_{M_Q \setminus M} - 1)^{(k-j)}.$$

Applying the Cauchy-Schwarz inequality, we obtain

$$\left|\zeta_{M_Q}^{(k)} - \zeta_M^{(k)}\right|^2 \le (k+1) \sum_{j=0}^k \left|\binom{k}{j} \zeta_M^{(j)} (\zeta_{M_Q \setminus M} - 1)^{(k-j)}\right|^2.$$

Hence, putting in S_2 the summation over n on the inside, we get

$$S_{2} \leq \sum_{k=0}^{m-1} (k+1) \sum_{j=0}^{k} {k \choose j} \sum_{n=1}^{N'} \left| \zeta_{M}^{(j)}(s_{0}+i\lfloor n\alpha \rfloor h, \mathbf{0}) \times (\zeta_{M_{Q} \setminus M}(s_{0}+i\lfloor n\alpha \rfloor h, \mathbf{0})-1)^{(k-j)} \right|^{2}.$$
(5)

So it suffices to estimate the sums of the form

$$S_{k,j} = \sum_{n=1}^{N}' \left| \zeta_M^{(j)}(s_0 + i \lfloor n\alpha \rfloor h, \mathbf{0}) (\zeta_{M_Q \setminus M}(s_0 + i \lfloor n\alpha \rfloor h, \mathbf{0}) - 1)^{(k-j)} \right|^2.$$

Note that if $M_Q \setminus M = \{p''_1, \dots, p''_{Q-\ell}\}$, then a simple computation leads to

$$\zeta_M\left(s_0 + i\lfloor n\alpha\rfloor h, \mathbf{0}\right) = \zeta_M\left(s_0, \left\{\frac{h \ln p_1'}{2\pi}\lfloor n\alpha\rfloor\right\}, \dots, \left\{\frac{h \ln p_\ell'}{2\pi}\lfloor n\alpha\rfloor\right\}\right)$$

and

$$\zeta_{M_Q \setminus M}\left(s_0 + i\lfloor n\alpha\rfloor h, \mathbf{0}\right) = \zeta_{M_Q \setminus M}\left(s_0, \left\{\frac{h \ln p_1''}{2\pi}\lfloor n\alpha\rfloor\right\}, \dots, \left\{\frac{h \ln p_{Q-\ell}''}{2\pi}\lfloor n\alpha\rfloor\right\}\right)$$
141

We define $F: [0,1]^Q \to \mathbb{C}$ to be of the form

$$F(\omega_{p_1},\ldots,\omega_{p_Q}) = \left| \zeta_M^{(j)} \left(s_0, \omega_{p'_1},\ldots,\omega_{p'_\ell} \right) \right. \\ \left. \times \left(\zeta_{M_Q \setminus M} \left(s_0, \omega_{p''_1},\ldots,\omega_{p''_{Q-\ell}} \right) - 1 \right)^{(k-j)} \right|^2,$$

whenever $(\omega_{p'_1}, \ldots, \omega_{p'_\ell}) \in K$, and zero otherwise. If we set

$$\mathbf{x}_n = \left(\frac{h \ln p_1}{2\pi} \lfloor n\alpha \rfloor, \dots, \frac{h \ln p_Q}{2\pi} \lfloor n\alpha \rfloor\right), \quad n \in \mathbb{N},$$

then

$$S_{k,j} = \sum_{n=1}^{N} {}'F(\{\mathbf{x}_n\}) = \sum_{n=1}^{N} F(\{\mathbf{x}_n\}).$$

The last equality is true if we consider the definitions of \sum' and F. Now recall that $h \in L(\alpha)$. Thus, according to Corollary 2, the sequence $(\mathbf{x}_n)_{n \in \mathbb{N}}$ is u.d. mod 1 in \mathbb{R}^Q . Using Theorem 6, we obtain

$$\lim_{N \to \infty} \frac{1}{N} S_{k,j} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F\left(\{\mathbf{x}_n\}\right) = \int_{[0,1]^Q} F(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \int_{K} \int_{[0,1]^{Q-\ell}} F(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$
$$= \int_{K} \left| \zeta_M^{(j)} \left(s_0, \omega_{p'_1}, \dots, \omega_{p'_{\ell}} \right) \right|^2 \, \mathrm{d}\omega_{p'_1} \dots \, \mathrm{d}\omega_{p'_{\ell}}$$
$$\times \int_{[0,1]^{Q-\ell}} \left| \left(\zeta_{M_Q \setminus M} \left(s_0, \omega_{p''_1}, \dots, \omega_{p''_{Q-\ell}} \right) - 1 \right)^{(k-j)} \right|^2 \, \mathrm{d}\omega_{p''_1} \dots \, \mathrm{d}\omega_{p''_{Q-\ell}} \,.$$
(6)

By (3), the first integral is bounded by $(|a_j| + 2\varepsilon)^2 \text{meas}(K)$, and the second integral, in view of Lemma 5, approaches zero uniformly in Q as y increases. Hence, by (5) and (6), we may choose y sufficiently large so that for every Qlarger than any $p \in M$, we can find an $N_0 = N_0(Q)$ with the property

$$S_2 < N \operatorname{meas}(K) \frac{\varepsilon^3}{2} \quad \text{for } N \ge N_0 \,.$$
 (7)

We estimate S_1 ,

$$S_{1} = \sum_{k=0}^{m-1} \sum_{n=1}^{N} \left| \zeta^{(k)}(s_{0} + i \lfloor n\alpha \rfloor h) - \zeta^{(k)}_{M_{Q}}(s_{0} + i \lfloor n\alpha \rfloor h, \mathbf{0}) \right|^{2} = \sum_{k=0}^{m-1} S'_{k}.$$

Let $k \in \{0, \ldots, m-1\}$. We apply Lemma 4 for

$$G(t) = \zeta^{(k)}(s_0 + ith) - \zeta^{(k)}_{M_Q}(s_0 + ith, \mathbf{0}):$$

$$S'_{k} \leq \sum_{n=1}^{N} |G(\lfloor n\alpha \rfloor h)|^{2}$$
$$\leq \frac{1}{h(\alpha-1)} \int_{0}^{N\alpha h} |G(t)|^{2} \mathrm{d}t + 2 \left(\int_{0}^{N\alpha h} |G(t)|^{2} \mathrm{d}t \right)^{\frac{1}{2}} \left(\int_{0}^{N\alpha h} |G'(t)|^{2} \mathrm{d}t \right)^{\frac{1}{2}}.$$

Using Lemma 1, we may choose Q sufficiently large such that

$$S_1 < N \operatorname{meas}(K) \frac{\varepsilon^3}{2}$$
 for $N \ge N_1 = N_1(Q)$. (8)

Consequently, by (4), (7) and (8), we have

$$A_N < \operatorname{meas}(K)\varepsilon^3$$
 for $N > N_2 = N_2(Q)$.

Since the sequence

$$\left(\left\{\frac{h \ln p_1'}{2\pi} \lfloor n\alpha \rfloor\right\}, \dots, \left\{\frac{h \ln p_\ell'}{2\pi} \lfloor n\alpha \rfloor\right\}\right)_{n \in \mathbb{N}}$$

is u.d. mod 1 in \mathbb{R}^{ℓ} , A_N contains $\sim N \operatorname{meas}(K)$ terms in $\sum_{n=1}^{N} A_n = N \to \infty$. Hence there exists an n such that

$$\sum_{k=0}^{m-1} \left| \zeta^{(k)}(s_0 + i\lfloor n\alpha \rfloor h) - \zeta^{(k)}_M(s_0 + i\lfloor n\alpha \rfloor h, \mathbf{0}) \right|^2 < \varepsilon^3, \\ \left(\left\{ \frac{h \ln p_1'}{2\pi} \lfloor n\alpha \rfloor \right\}, \dots, \left\{ \frac{h \ln p_\ell'}{2\pi} \lfloor n\alpha \rfloor \right\} \right) \in K.$$
(9)

Combining (3) and (9) we showed that there exists an n such that

$$\left|\zeta^{(k)}(s_0+i\lfloor n\alpha\rfloor h)-a_k\right|<3\varepsilon,$$

for k = 0, ..., m - 1

The proof of the first part of Theorem 4 consists of the same arguments as we used until now. Instead of Lemma 3 we use Lemma 2, and there is no need to apply Leibniz's formula and the Cauchy-Schwarz inequality. \Box

Proof of Theorem 5. Let $h \in L(\alpha) \cap [0, +\infty)$ and $\varepsilon > 0$. Since the Taylor expansion of g is valid for all $s \in K$, there exists an $N = N(\varepsilon)$ such that

$$\max_{s \in K} \left| g(s) - \sum_{k=0}^{N-1} \frac{g^{(k)}(s_0)}{k!} (s - s_0)^k \right| < \frac{\varepsilon}{3}.$$
 (10)

From Theorem 4, for the vector $(g(s_0), \ldots, g^{(N-1)}(s_0))$ and $\varepsilon > 0$, there exists a sequence $(n_\ell)_{\ell \in \mathbb{N}}$ such that for every $\ell = 1, 2, \ldots$ and every $k = 0, \ldots, N-1$,

$$\left|\zeta^{(k)}\left(s_{0}+i\lfloor n_{\ell}\alpha\rfloor h\right)-g^{(k)}(s_{0})\right|<\varepsilon'=\frac{\varepsilon}{3N}\min_{0\leq k\leq N-1}\frac{k!}{r^{k}}$$

We choose an $n_{\ell_0} = n_{\ell_0}(\varepsilon, h)$ such that $1 \notin K + i \lfloor n_{\ell_0} \alpha \rfloor h$. Then,

$$\max_{s \in K} \left| \sum_{k=0}^{N-1} \frac{\zeta^{(k)}(s_0 + i\lfloor n_{\ell_0} \alpha \rfloor h)}{k!} (s - s_0)^k - \sum_{k=0}^{N-1} \frac{g^{(k)}(s_0)}{k!} (s - s_0)^k \right| \le \max_{s \in K} \varepsilon' \sum_{k=0}^{N-1} \frac{|s - s_0|^k}{k!} \le \frac{\varepsilon}{3}.$$
(11)

The choice of n_{ℓ_0} allows us to represent ζ in the disk $K + i \lfloor n_{\ell_0} \alpha \rfloor h$ as the sum of a Taylor series centered at $s_0 + i \lfloor n_{\ell_0} \alpha \rfloor h$,

$$\zeta(s+i\lfloor n_{\ell_0}\alpha\rfloor h) = \sum_{k=0}^{\infty} \frac{\zeta^{(k)}(s_0+i\lfloor n_{\ell_0}\alpha\rfloor h)}{k!} (s-s_0)^k,$$

for all $s \in K$. If

$$M = M(\varepsilon, h) = \max_{s \in K} |\zeta(s + i \lfloor n_{\ell_0} \alpha \rfloor h)| \quad \text{and} \quad \delta \in (0, 1) \,,$$

then, using Cauchy's estimates, we get

$$\left|\frac{\zeta^{(k)}(s_0+i\lfloor n_{\ell_0}\alpha\rfloor h)}{k!}(s-s_0)^k\right| \le \frac{Mk!}{r^k} \frac{|s-s_0|^k}{k!} \le M\delta^k,$$

for all $s \in \overline{D(s_0, \delta r)}$. Hence,

$$\left|\zeta(s+i\lfloor n_{\ell_0}\alpha\rfloor h) - \sum_{k=0}^{N-1} \frac{\zeta^{(k)}(s_0+i\lfloor n_{\ell_0}\alpha\rfloor h)}{k!}(s-s_0)^k\right| = \left|\sum_{k=N}^{\infty} \frac{\zeta^{(k)}(s_0+i\lfloor n_{\ell_0}\alpha\rfloor h)}{k!}(s-s_0)^k\right| \le M \frac{\delta^N}{1-\delta}, \quad (12)$$

for all $s \in \overline{D(s_0, \delta r)}$. Combining relations (10), (11) and (12), we find

$$|\zeta(s+i\lfloor n_{\ell_0}\alpha\rfloor h) - g(s)| < M\frac{\delta^N}{1-\delta} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

for all $s \in \overline{D(s_0, \delta r)}$. Now choose $\delta = \delta(\varepsilon, h) \in (0, 1)$ such that

$$M\frac{\delta^N}{1-\delta} = \frac{\varepsilon}{3}$$

This is possible since for the continuous function

$$F: (0,1) \to \mathbb{R}$$
 with $F(t) = M \frac{t^N}{1-t}, \quad t \in (0,1),$

we have

$$\lim_{t \to 0} F(t) = 0 \quad \text{and} \quad \lim_{t \to 1} F(t) = +\infty.$$

We thus have shown

$$\max_{|s-s_0| \le \delta r} |\zeta(s+i\lfloor n_{\ell_0} \alpha \rfloor h) - g(s)| < \varepsilon$$

and this completes the proof.

REFERENCES

- BAGCHI, B.: The Statistical Behaviour and Universality Properties of the Riemann Zeta-function and Other Allied Dirichlet Series, Thesis, Indian Statistical Institute, Calcutta, 1981.
- [2] BOHR, H.: Zur Theorie der Riemannschen Zetafunktion im kritischen Streifen, Acta Math. 40 (1915), 67–100.
- [3] BOHR, H.—COURANT, R.: Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannschen Zetafunktion, J. reine Angew. Math. 144 (1914), 249–274.
- [4] CARLSON, D.: Good Sequences of Integers, Thesis, University of Colorado, 1971.
- [5] GARUNKŠTIS, R.—LAURINČIKAS, A.—MATSUMOTO, K.—STEUDING, J.– -STEUDING, R.: Effective uniform approximation by the Riemann zeta-function, Pub. Mat., Barc. 54 (2010), 209–219.
- [7] REICH, A.: Werteverteilung von Zetafunktionen, Arch. Math. 34 (1980), 440–451.
- [8] VORONIN, S. M.: On the distribution of nonzero values of the Riemann ζ-function, Poc. Steklov Inst. Math 128 (1972), 153–175; translation from Trudy Mat. Inst. Steklov 128 (1972), 131–150.

Received April 15, 2016 Accepted February 22, 2017

Athanasios Sourmelidis

Institute for Mathematics Chair of Mathematics IV University of Würzburg Campus Hubland Nord Emil-Fischer-Straße 40 97074 Würzburg GERMANY E-mail: athanasios.sourmelidis

@mathematik.uni-wuerzburg.de