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WEAK UNIVERSALITY THEOREM
ON THE APPROXIMATION OF ANALYTIC
FUNCTIONS BY SHIFTS
OF THE RIEMANN ZETA-FUNCTION
FROM A BEATTY SEQUENCE

ATHANASIOS SOURMELIDIS

ABSTRACT. In this paper, we prove a discrete analogue of Voronin’s early
finite-dimensional approximation result with respect to terms from a given Beatty
sequence and make use of Taylor approximation in order to derive a weak uni-
versality statement.

Communicated by Werner Georg Nowak

1. Introduction

Let s = 0 + it € C (where ¢ = Re(s) and t = Im(s)) and ((s) the Rie-
mann zeta-function. This function is usually defined first on the half-plane
{s: Re(s)>1} by the formula

)=

n=1

and then extended to a meromorphic function on the whole complex plane, with
one simple pole at s = 1 and no other singularity.
In 1914, H. Bohr and R. Courant [3] proved that, for any og € (1,1)

the set
{C(op +i7) : T € R}

is dense in C. In the next year Bohr [2] proved that the same result holds for
log ((o¢ + 7). These results are called denseness theorems.
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ATHANASIOS SOURMELIDIS

Bohr’s line of investigations appears to have been almost totally abandoned
for some decades. Only in 1972, S. M. Voronin [§ obtained some significant
generalizations of Bohr’s denseness result.

THEOREM 1. Let m be a natural number and h a positive real number. For any
fized numbers s1, ..., Sy with % < Re(sg) <1 for 1 <k < m and si # s¢ for
k # ¢, the set

{(¢(s1 4+ inh),{(s2 + inh),...,((sm +inh)) : n € N}

is dense in C™. Moreover, for any fized number sy in the strip 1/2 < o < 1,

the set {(C(SO + Znh)v CI(SO + Znh)a B aC(mil) (80 + Znh)) Tne N}

is dense in C™.

However, Voronin did not stop there and in 1975 proved a remarkable uni-
versality theorem for {(s) which states, roughly speaking, that any non-vanishing
analytic function can be approximated by certain purely imaginary shifts of the
zeta-function in the critical strip.

THEOREM 2. Let 0 < r < 1/4 and suppose that g(s) is a non-vanishing con-
tinuous function on the disk |s| < r which is analytic in the interior. Then,
for any e > 0,

1
lim inf —meas {7’ € [0,77] : max
T—oo T |s|<r

C(S+Z+ir> —g(s) <5}>0.

Voronin called his universality theorem the theorem about little disks.
A. Reich [f] and B. Bagchi [I] improved Voronin’s result significantly in re-
placing the disk by an arbitrary compact set in the right half of the critical strip
with connected complement and they even obtained a discrete analogue of it.

THEOREM 3. Suppose that K is a compact subset of the strip 1/2 < Re(s) < 1
with connected complement, and let g(s) be a non-vanishing continuous function
on K which is analytic in the interior of K. Then, for any € > 0 and any h > 0,

N —o00

1
lim inf Ncard{n e NN (0,N]: me%dg"(s—kinh) —g(9)| < 6} >0.

We note that Theorem 3 clearly implies both parts of Theorem 1 (except of
Re(sg) = 1), since the truncated Taylor series of the target function g(s) can
be approximated by the truncated Taylor series of a certain shift of the zeta-
function. Although Theorem 1 does not suffice to prove Theorem 3, we can derive
from it a weak form of universality of the zeta-function as it was first indicated
by R. Garunkstis, A. Laurin¢ikas, K. Matsumoto, J. Steuding
and R. Steuding [3].
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WEAK UNIVERSALITY THEOREM

The aim of this note is to replace the arithmetical progression (nh),en in
Theorem 1 by the sequence (|noh)neny with a fixed irrational number a > 0.
Here |z| denotes the largest integer which is less or equal to = and for given
a > 0, the sequence (|na|)nen is called Beatty sequence. We will consider only
the case a > 1 since for v < 1 the discrete terms of the Beatty sequence is all
the natural numbers and thus we get Theorem 1. Also, h will not be a random
positive number but a number belonging to

where L(a) N[0, 400),

h h
L(a)= {h eER:1,a !, 2—1np1, 2—1np2, ... are linearly independent over Q} .
™ ™

We will show later on that L(«) N [0,400) # 0 for every irrational number a.

Now, using the same arguments as Voronin did in [8], we will prove the
following

THEOREM 4 (Main theorem). Let m be a natural number and oo > 1 an irrational
number. Let also sg, S1,...,8m be fixed numbers with

1
3 <Re(sg) < 1 for 0<k<m and si#s¢ for k+#UL.

Then, for every h € L(a) N[0, +00), the sets

. {(¢(s1 +ilnalh),((s2 +i|nalh),...,((sm +ilnalh)) :n € N}

{(¢(s0 +ilna)h), ¢ (so +ilnalh),..., " V(so +i[nalh)) : n € N}

are dense in C™.

Combining the preceding theorem and the method introduced in [5], we will
also derive

THEOREM 5 (Weak Universality). Let o9 € (1/2,1], g : K = D(so,7) = C
continuous and analytic in the interior of K, and o > 1 irrational. Then, for
every h € L(a) N[0, +00) and for every e > 0, there exists

n=n(e,h) €N and §=4d(h) < (0,1)
such that

e I¢ (s +ilnalh) —g(s)| <e.
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2. Uniform distribution mod 1
and a set of full Lebesgue measure

Part of the proof that Voronin gave for Theorem 1 and that we will simi-
larly give for Theorem 4, relies on the theory of uniformly distributed sequences.
A beautiful monograph on this theory is [6]. The definition, theorems and corol-
laries that are stated below can be found there. But before that we introduce
some notation. If x = (21,...,2¢) € R, then {x} = ({z1},...,{x¢}). Here {2;}
denotes the fractional part of the real number ;.

DEFINITION 1. A sequence of points (x,)nen belonging to R’ is said to be
uniformly distributed mod 1 (u.d. mod 1) in R if for every box B = I} x - -- x I,
in [0,1] (i.e., a cartesian product of intervals), the relation
<n< HAxy
lim {1<n<N:{x,}€B}
N—o0 N

= |L||L2| ... |I;| = meas(B)
holds.

One of the many advantages when dealing with u.d. mod 1 sequences is a use-
ful connection between sums and integrals, as the next theorem states.

THEOREM 6. A sequence (X,)nen 45 u.d. mod 1 in R® if and only if for every
continuous complez-valued f on [0,1]%, the relation

N
. 1
Jim 3 () = [Fmy
holds. =t [0.1]¢

Proof. For the proof, see [6], Chapter 1, Theorem 6.1. In fact, the condition
of f being continuous can be relaxed to that of both Ref and Im f being Riemann
integrable. O

Although the multi-dimensional definition complicates somewhat the study
of whether a sequence is u.d. mod 1 or not, there exists a theorem that allows
us to induce the process in the one-dimensional case.

THEOREM 7. A sequence (Xp)nen 5 u.d. mod 1 in R if and only if for every
lattice point k € Z°, k # 0, the sequence of real numbers ((k,%x,))nen is u.d.
mod 1 in R. Here (-;-) denotes the inner product as it is usually defined on the
vector space RY.

Proof. For the proof, see [6], Chapter 1, Theorem 6.3. (I
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COROLLARY 1. Let (0;)ren be a sequence of real numbers such that 1,071,602, . ..
are linearly independent over Q. Then, for any ¢ € N and any ky,..., ks € N
pairwise distinct, the sequence (nfy,,...,n0,), n=1,2,..., is u.d. mod 1 in R’

Proof. For the proof, see [6], Chapter 1, Example 6.1. (]

It is desirable to substitute n from the above corollary with |n«] for given
irrational « > 1. D. Carlson [] obtained a necessary and sufficient condi-
tion for that to happen in the one-dimensional case, and with the assistance
of Theorem 7 we will be able to reformulate Corollary 1.

THEOREM 8. For rational «, the sequence (|na0),en is u.d. mod 1 either for
all irrationals 0 or for no real number 6, depending on whether aw # 0 or a = 0.
If « is irrational, then (|na)0)nen s u.d. mod 1 in R if and only if 1, «, af are
linearly independent over Q (or equivalently 1,a=% 0 are linearly independent

over Q).

Proof. For the proof, see [6], Chapter 5, Theorem 1.8. (]
COROLLARY 2. Let « be an irrational number and (0 )ken a sequence of real
numbers. Then, 1,a= %, 01,0, ... are linearly independent over Q if and only
if for any £ € N and any k1,...,k¢ € N pairwise distinct, the sequence x,, =
(Ina|O,, ..., |nalbr,), n=1,2,..., is u.d. mod I in R

Proof. The numbers 1,a=%01,0s,... are linearly independent over Q if and
only if for any €N, any ki, ..., k¢ €N pairwise distinct, and any mq,...,my€Z

not all of them zero, the numbers 1,a~%m10y, + -+ + myly, are linearly in-
dependent over Q. Combining Theorem 7 and Theorem 8, we see that the
latter statement is equivalent to the one saying that for any ¢ € N and any
ki,...,ke € N pairwise distinct, the sequence x, = (|nolO,,..., |nalby,),
n=1,2,..., is u.d. mod 1 in R?. O

The sequence of numbers that we are interested in is

szilnpk, k=1,2,...,
27
where pj will denote from here on the kth prime and h > 0. We prove that
for a given irrational « there exists h > 0 such that the necessary condition
of Corollary 2 for the aforementioned sequence is fulfilled. In fact we prove the
existence of a lot such h.

THEOREM 9. Let o be an irrational number and

h h
L(a)= {h ER:1,a 2—1np1, 2—1np2, ... are linearly independent over Q} .
T T
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The set L(c) has full Lebesgue measure in R, i.e., meas(R\ L(a)) = 0.

Proof. Let B=R\ L(a) and h € B. Then, the numbers

Lk

h
1 —1 —1
, QT o0 np1, ot npa,

are linearly dependent over Q and consequently over Z as well. Thus, there exists
integer k > 1 and integers aq,...,ax, b, ¢, where a; are not all zeros, such that

h h
ai—Inp; + -+ ap—Inpy = b+ ca™ L. (1)
T T
Putting A = p{*... p*, we observe that A € Q" \ {1} and we can rewrite () as
hlnA = br + ca™'x.
Fix a vector (4,b,¢) € (QT\ {1}) x Z x Z =T. Consider the corresponding set
B(A,b,c) = {h € R: hInA = brr + ca”'7}.

The set B(A, b, ¢) is clearly a singleton (since InA # 0) and thus of measure zero.
Hence, the countable union of singletons

B = | B(A b0
(A,b,c)el’

is of measure zero. Therefore, its complement R\ B = L(«) has full Lebesgue
measure in R. (]

3. Auxiliary lemmas

Before stating the lemmas needed for the proofs of Theorems 4 and 5, we
introduce some notation. Let Q denote the set of all sequences of real numbers
indexed by the prime numbers in ascending order. Further, define for every finite
subset M of the set of all primes, every w = (w2, w3, ws, ... ) € Q, and all complex
numbers s, the truncated Euler product

Guts.) = [ (1~ ZRE2m) )

pEM

Obviously, (a(s,w) is a non-vanishing analytic function of s in the half-plane
0>0. Observe also that for M = {p},...,p;} and constant s, (a(s,w) can
be treated as a continuous complex-valued function of £ variables (wp, ..., wp)
defined on [0, 1]. In such cases, where M and s are given, (s (s,w) will be abbre-
viated as Ca(s,wp;, .., wp, ). Finally, Logz will denote the principal logarithm
of z.
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WEAK UNIVERSALITY THEOREM

LEMMA 1. Let sg be complex number such that % < Re(sp) <1 and k € Ny.
If we define Mg = {p1,p2,...,pq} to be the set of the first Q primes and
0=(0,0,...), then

Q=0 T 4o

T

- 1 . k . 2

lim limsup T/ }C(k) (so +it) — CJ(WZ)(SQ +14t,0)| dt =0.
0

Proof. For the proof, see [8], pages 164-166, 168. (]
LEMMA 2. Suppose that (ay,...,an) € C", e >0,y €N and z,,,...,1,, are
real numbers, and si,...,S, are the numbers in the condition of Theorem 4,

where Im(sg) > 2 for all 1 < k < m. Then, there exists a finite set of primes
M = {p},p5,...,p;} and a sequence w € Q such that

Mo {p1,...,py}, wp, =xp. and |[Car(Sk,w) —ag| <e,
for1<r<yandl <k<m.

Proof. For the proof, see [§], Lemma 11. U

LEMMA 3. Suppose that (ag,...,am—1) € C™, ¢
are real numbers, and so is a number with & < Re(sg) < 1 and Im(so) > 2.
Then, there exists a finite set of primes M = {p},ph,...,p;} and a sequence
w € Q such that

>0,y € Nand xp,,...,1p,
/
19

k
M o {plv e apll}v pr = x}% a’nd |CJ(VI)(SO’W) - a’k| < 67
for1<r<yandl <k <m.

Proof. For the proof, see [§], Lemma 12. U

REMARK 1. Note that the condition for the imaginary parts of the complex
numbers in Lemma 2 can be removed:

Proof. Let the assumptions of Lemma 2 hold without the restriction of the
imaginary parts. There exists a number ¢ > 0 such that Im(sy) + 27w¢ > 2 for
1 <k < m. According to Lemma 2, for &), = x,, —clnp1,...,Tp, = z,, —clnp,,
there exists a finite set of primes M and @ € ) such that

Mo {p1,...,py}t, @p, =Tp, and [Ca(sk + 2mic,0) —ag| <e.
forl1<r<yand1l<k<m.
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Taking w €€ to be w, =wy,+clnp for all primes p, we observe that for 1<k <m,

N
(v (s + 2mic, @) = H (1 _ M)

L prtamic
_ H (1 _exp(—2mi(wp + clnp))1
pEM p*
_ H (1 B exp(—27riwp))1
pEM P
= Qu (s, w),
and of course, w, =z, for1l<r <y. O

REMARK 2. The same result as above can be obtained similarly for Lemma 3,
since to prove it Voronin showed that the set of points

Avrw) = (LOgCM(So,W), [Log Car(so,w)]’s - - - [LOgCM(So,W)](m_l)) ec™

is dense in C™ whenever (M,w) runs through all possible finite sets of primes M
and w € Q with the requirements M D {p1,...,p,} and w,, =z, for 1 <r <y.

LEMMA 4. Let to,t1,...,tr be real numbers, where tog < t1 < -+ < tg. If G(t)
18 a complex-valued function which is defined and continuously differentiable on
the interval [to,tr|, then

R tr tr % tr %
1

D IG))? < gﬁG(t)|2dt+2 ﬁG(t)th ﬁG’(t)th ,

r=1 to to to
where

0= min |t,41 —t,].
0<r<R

Proof. For the proof, see [§], Lemma 6. (]

LEMMA 5. Let s1,...,s; be numbers such that Re(s;) >0 for j=1,....¢, and
m € N. Then, for every e > 0, there exists an N = N(g) € N such that for every
set S of prime numbers greater than py, everyk =0,1,....m, everyj=1,... ¢
and every w € Q, the inequality

(Cs(sj,w) — M| <e
holds.
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Proof. Let € > 0 and
0 <t <7“0<1r£jlgeRe(sj).

If we set

erg

12 .
g'= —
Ogllclgnm k! ’
then there exists a § = d() < 1 such that |e* — 1| < &’ for every |z| < §. Since
the series

converges, there exists an N = N(¢) such that
oo
>
o __
g

for every o > tg. Now let S be a set of prime numbers greater than py and
w € Q. Observe that whenever |z| < 3, one can obtain

N

1+z 1+
|Log(1+z)|:/ /|—“’ 202,
1

Keeping that in mind and taking advantage of the fact that for every Re(s) > tg
and n > N :

. -1
(1 B exp(—27mwpn)> .

Dy,

exp(—2miwy,, )
pfl - exp(_ 27Tiwpn )
1 é 1

< - < =,
pg—1 2 2

‘ -1
Log <1 B exp(—27rzwp)) ‘

pS

<

we can estimate

‘ -1
ZLog <1 B exp(—%wzwp))
D

peS

IA

D

peS

. -1
(1 B exp(—27rzwpn)> .
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Thus, for every Re(s) > to,

_omi -1
st =11 = oxp | Yorog (1= R} ) g

peS p
All inequalities
|(Cstsg) - 1)P| <,

fork=0,...,mand j=1,...,¢ can now be proved by computing the Cauchy’s
estimates of (s(s,w)—1 on the disks D(sj,79) C {s: Re(s) > to},forj=1,....,¢,
respectively. O

4. Proofs of Theorem 4 and Theorem 5

Proof of Theorem [ We prove the second part of Theorem 4 since the first
part can be shown similarly. Let sg be a complex number with % < Re(sg) <1,
a > 1 irrational and h € L(a) N [0,400), where L(a) is the set defined in the
first section and in Theorem 9.

To prove the theorem it suffices to show that any vector (ag,...,am—1) € C™
can be approximated arbitrarily close by the vector

(g(so ilnalh), ..., (™D (so +i|nal h))

with a suitable natural number n. We fix any (aq, ..., am—1). By Lemma 3, for
every € > 0 and every y € N, there exists (as(so,w) such that M D {p1,...,py},
wp, =0for 1 <r <y,and for k=0,...,m —1 we have

‘C(k) (s0,w _U«k‘ <e. (2)

Let M = {p},...,py}. By the continuity of (as(s0,wp; - - - ,wpé) as a function of ¢
variables and (@), in [0, 1]* there exists a subbox K with meas(K) > 0 such that
for k=0,...,m —1 all the points (z,,...,z,,) belonging in K satisfy

‘(1(\5[) (80, Zpys -y Tpy) — ak‘ < 2e. (3)

N
Let ', denote summation over those n € [1, N]NN for which

({hgf/l Lnozj}, {%Lnod}) € K.
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We consider the expression
N m—1
NZ Z‘C(k) so + i|nalh) — (so—I—anaJh O)‘
n=1 k=0
We choose @Q larger than any p € M and we define Mg = {p1,p2,...,pg} to be
the set of the first () primes. Then,
N m-—1

2 . 5
NZ ‘ (so +i|na)h) — (ké (so + i|na]h, 0)’
n=1 k=0
9 N /m—l ,
(k) . (k) .
+N; § ’CMQ (so +ilnalh,0) — Cy (so + ZLnaJh,O)’

We denote the first double sum by S; and the second by Ss. Firstly, we esti-
mate Sa. We make use of Leibniz’s formula

(4)

k

C(k) W= = [Car (Crrgrnr — D]I® = Z (];) ¢ (Crrgynr — 1)F9),
=0

Applying the Cauchy-Schwarz inequality, we obtain

k

2 E\ o

e, - < e 3 |(4) el cargnar - 0t
=0

Hence, putting in Sy the summation over n on the inside, we get

Z E+1)> ( )Z 6 oo+ nalh,0) x
(Caro\a1 (50 +i[nafh,0) — 1) (k— J)‘

So it suffices to estimate the sums of the form

2

N
Sk,j = ‘C(J) S() + ZLTLOZJh, O)(CJVIQ\M(SO + ZLnaJ h, 0) _ 1)(1{)7‘])’ )
n=1

Note that if Mg\ M = {p{,...,p{_,}, then a simple computation leads to

Cor (S0 +i|nalh,0) = Cu (80,{111%7511“7,04}, ce {%Lna]})
and

Vi hinp”.
Guravs (s + lnah0) = Gurgar (s0 {228 (na . {0 g 1)

™
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We define F : [0,1]% — C to be of the form

F(wp,, ... wpy) = ‘C](\ff) (So,wpfl, e aWp;)

(k—3)
X ((MQ\M (so,wpflf, e 7wP’<§_e) - 1)

)

whenever (wpfl Y ’WPZ) € K, and zero otherwise. If we set
hl hl
Xy = ( 211:1 [nal, ..., ;:Qmozj>, neN,
then

N , N
Skj= Y F({xn}) = Z ({xn}) -

The last equality is true if we consider the definitions of 3> and F. Now recall
that h € L(a). Thus, according to Corollary 2, the sequence (xy,)nen is u.d. mod
1 in R?. Using Theorem 6, we obtain

Jim S;w_ Jim —ZF {xn}) = / dx—// (x)

o, 1]Q K 0,112

/ ‘C](\;) SOawpl 7wp2)

(k=) |
X (CN[Q\M(SO,WPI{’...,(J.)plclz_ﬂ)—].) d

0,197

dwp/l “e- dwpg

wpflf e dwp/c/)—z .

(6)

By (@), the first integral is bounded by (|a;| + 2¢)?meas(K), and the second
integral, in view of Lemma 5, approaches zero uniformly in @ as y increases.
Hence, by (@) and (@), we may choose y sufficiently large so that for every @
larger than any p € M, we can find an Ny = Ny(Q) with the property

Sa < Nmeas(K)E—; for N > Np. (7)
We estimate S,
m—1 N , m-1
Sy = ZZ }g (s +i|na)h) — ¢t (so+qnaJh,0)] =351
—0n=1 k=0
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Let k € {0,...,m — 1}. We apply Lemma 4 for

G(t) = ¢ (sp + ith) — ;;;; (so + ith,0) :

N
S <> |G (lnalh)?

1 1
Nah Nah 2 Nah 2

1 ) ) o
<m0/|6‘(t)| dt +2 0/|G(t)| dt 0/|G (t)|2dt

Using Lemma 1, we may choose @) sufficiently large such that

3
S < Nmeas(K)% for N > N; = N1(Q). (8)

Consequently, by @), (@) and (&), we have
An < meas(K)e® for N > Ny = No(Q).

Since the sequence

S R

. . . . N
is w.d. mod 1 in R?, Ay contains ~ Nmeas(K) terms in >, as N — oo.
Hence there exists an n such that

m—1

3 ’dk)(so +ilnalh) = ¢ (so + ilnalh, 0)

({h;‘;p'wnaj},...,{h;‘fﬂnajb c K

Combining (@) and (@) we showed that there exists an n such that

2
’ < &3,

‘C(k)(so +ilnalh) — ak‘ < 3e,

fork=0,....m—1

The proof of the first part of Theorem 4 consists of the same arguments as
we used until now. Instead of Lemma 3 we use Lemma 2, and there is no need
to apply Leibniz’s formula and the Cauchy-Schwarz inequality. (]
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Proof of Theorem B Let h € L(a) N[0, +00) and € > 0. Since the Taylor
expansion of g is valid for all s € K, there exists an N = N(¢) such that

N-1

(k)
k=0
From Theorem 4, for the vector (g(so), ...,V "V (so)) and & > 0, there exists
a sequence (ng)een such that for every £ =1,2,... and every k=0,..., N — 1,
|
®) (59 4 1 —gW(s)| << = i L
]g (s0 +ilmah) —g®(s0) <&'= 5% min T
We choose an ng, = ng, (e, h) such that 1 ¢ K + i|ng,a|h. Then,
N-1 N-1
¢™ (s0 + il ng,a|h) K 9™ (s0) K
max | ) k! (s = 50)" = R TS0 S
k=0 k=0
N_1|s sol* e
/ — 20
L B
ser© kz_; w3 b

The choice of ny, allows us to represent ¢ in the disk K + i|ns,a]h as the sum
of a Taylor series centered at sg + i|ng, o h,

k) (s 1| ne,
g(s+iwoajh)=z< (°+k!L walh) o gy,

k=0

o0

for all s € K. If
M = M(e, ) = max|C(s + ilne,0l )] and 5 € (0,1),

then, using Cauchy’s estimates, we get

ME!|s — so|*

) (so +i|ng,a|h
’C (0 k'l_ Lo J )(S—So)k < = o SMék,
for all s € D(sg,0r). Hence,

N-1

. F) (s 4+ i|ng,a|h

(s il ) — 3 S0t (i)

k=0 )
R (s +i|ng,alh 5N
ZC (0 k't Lo J )(S—So)k SM]__(S? (12)
k=N ’
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for all s € D(sg,dr). Combining relations ([I0)), (II)) and ([I2]), we find

) 5N e €
(s + ilneal ) = gls)| < Ms— + 5 + 5,

for all s € D(sg,dr). Now choose § = d(e, h) € (0, 1) such that

5N

€
1-6 3
This is possible since for the continuous function
tN
F:(0,1) >R with F(t):Ml——t’ te(0,1),

we have

lim F(t) =0 and lim F(t) = +o0.
t—1

t—0

We thus have shown

max |((s +i[ngalh) —g(s)] <e
[s—so|<dr

and this completes the proof. O

(1]

REFERENCES

BAGCHI, B.: The Statistical Behaviour and Universality Properties of the Riemann
Zeta-function and Other Allied Dirichlet Series, Thesis, Indian Statistical Institute,
Calcutta, 1981.

BOHR, H.: Zur Theorie der Riemannschen Zetafunktion im kritischen Streifen, Acta
Math. 40 (1915), 67-100.

BOHR, H—COURANT, R.: Neue Anwendungen der Theorie der Diophantischen Ap-
prozimationen auf die Riemannschen Zetafunktion, J. reine Angew. Math. 144 (1914),
249-274.

CARLSON, D.: Good Sequences of Integers, Thesis, University of Colorado, 1971.
GARUNKSTIS, R.—LAURINCIKAS, A.—MATSUMOTO, K.—STEUDING, J.-
—STEUDING, R.: Effective uniform approximation by the Riemann zeta-function, Pub.
Mat., Barc. 54 (2010), 209-219.

KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. John Wiley &
Sons, New York, 1974. Reprint edition: Dover Publications, Inc. Mineola, New York, 2006.
REICH, A.: Werteverteilung von Zetafunktionen, Arch. Math. 34 (1980), 440-451.
VORONIN, S. M.: On the distribution of nonzero values of the Riemann (-function, Poc.
Steklov Inst. Math 128 (1972), 153-175; translation from Trudy Mat. Inst. Steklov 128
(1972), 131-150.

145



ATHANASIOS SOURMELIDIS

Received April 15, 2016 Athanasios Sourmelidis

Accepted February 22, 2017 Institute for Mathematics
Chair of Mathematics IV
University of Wiirzburg
Campus Hubland Nord
Emil-Fischer-Strafie 40
97074 Wiirzburg
GERMANY

FE-mail: athanasios.sourmelidis
@mathematik.uni-wuerzburg.de

146



	1. Introduction
	2. Uniform distribution mod 1 and a set of full Lebesgue measure
	3.  Auxiliary lemmas
	4. Proofs of Theorem 4 and Theorem 5
	REFERENCES

