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WEAK UNIVERSALITY THEOREM

ON THE APPROXIMATION OF ANALYTIC

FUNCTIONS BY SHIFTS

OF THE RIEMANN ZETA-FUNCTION

FROM A BEATTY SEQUENCE

Athanasios Sourmelidis

ABSTRACT. In this paper, we prove a discrete analogue of Voronin’s early
finite-dimensional approximation result with respect to terms from a given Beatty
sequence and make use of Taylor approximation in order to derive a weak uni-
versality statement.

Communicated by Werner Georg Nowak

1. Introduction

Let s = σ + it ∈ C (where σ = Re(s) and t = Im(s)) and ζ(s) the Rie-
mann zeta-function. This function is usually defined first on the half-plane
{s : Re(s)>1} by the formula

ζ(s) =

∞
∑

n=1

1

ns

and then extended to a meromorphic function on the whole complex plane, with
one simple pole at s = 1 and no other singularity.

In 1914, H. B o h r and R. C o u r a n t [3] proved that, for any σ0 ∈ (12 , 1)
the set

{ζ(σ0 + iτ) : τ ∈ R}

is dense in C. In the next year B o h r [2] proved that the same result holds for
log ζ(σ0 + iτ). These results are called denseness theorems.
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Bohr’s line of investigations appears to have been almost totally abandoned
for some decades. Only in 1972, S. M. V o r o n i n [8] obtained some significant
generalizations of Bohr’s denseness result.

Theorem 1. Let m be a natural number and h a positive real number. For any
fixed numbers s1, . . . , sm with 1

2 < Re(sk) ≤ 1 for 1 ≤ k ≤ m and sk 6= sℓ for
k 6= ℓ, the set

{(

ζ(s1 + inh), ζ(s2 + inh), . . . , ζ(sm + inh)
)

: n ∈ N
}

is dense in Cm. Moreover, for any fixed number s0 in the strip 1/2 < σ ≤ 1,
the set {(

ζ(s0 + inh), ζ′(s0 + inh), . . . , ζ(m−1)(s0 + inh)
)

: n ∈ N
}

is dense in Cm.

However, V o r o n i n did not stop there and in 1975 proved a remarkable uni-
versality theorem for ζ(s) which states, roughly speaking, that any non-vanishing
analytic function can be approximated by certain purely imaginary shifts of the
zeta-function in the critical strip.

Theorem 2. Let 0 < r < 1/4 and suppose that g(s) is a non-vanishing con-
tinuous function on the disk |s| ≤ r which is analytic in the interior. Then,
for any ε > 0,

lim inf
T→∞

1

T
meas

{

τ ∈ [0, T ] : max
|s|≤r

∣

∣

∣

∣

ζ

(

s+
3

4
+ iτ

)

− g(s)

∣

∣

∣

∣

< ε

}

> 0 .

V o r o n i n called his universality theorem the theorem about little disks.
A. R e i c h [7] and B. B a g c h i [1] improved Voronin’s result significantly in re-
placing the disk by an arbitrary compact set in the right half of the critical strip
with connected complement and they even obtained a discrete analogue of it.

Theorem 3. Suppose that K is a compact subset of the strip 1/2 < Re(s) < 1
with connected complement, and let g(s) be a non-vanishing continuous function
on K which is analytic in the interior of K. Then, for any ε > 0 and any h > 0,

lim inf
N→∞

1

N
card

{

n ∈ N ∩ (0, N ] : max
s∈K

|ζ (s+ inh)− g(s)| < ε

}

> 0 .

We note that Theorem 3 clearly implies both parts of Theorem 1 (except of
Re(s0) = 1), since the truncated Taylor series of the target function g(s) can
be approximated by the truncated Taylor series of a certain shift of the zeta-
function. Although Theorem 1 does not suffice to prove Theorem 3, we can derive
from it a weak form of universality of the zeta-function as it was first indicated
by R. G a r u n k š t i s , A. L a u r i n č i k a s, K. M a t s u m o t o, J. S t e u d i n g
and R. S t e u d i n g [5].
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The aim of this note is to replace the arithmetical progression (nh)n∈N in
Theorem 1 by the sequence (⌊nα⌋h)n∈N with a fixed irrational number α > 0.
Here ⌊x⌋ denotes the largest integer which is less or equal to x and for given
α > 0, the sequence (⌊nα⌋)n∈N is called Beatty sequence. We will consider only
the case α > 1 since for α < 1 the discrete terms of the Beatty sequence is all
the natural numbers and thus we get Theorem 1. Also, h will not be a random
positive number but a number belonging to

L(α) ∩ [0,+∞) ,where

L(α)=

{

h ∈ R : 1, α−1,
h

2π
lnp1,

h

2π
lnp2, . . . are linearly independent over Q

}

.

We will show later on that L(α) ∩ [0,+∞) 6= ∅ for every irrational number α.

Now, using the same arguments as V o r o n i n did in [8], we will prove the
following

Theorem 4 (Main theorem). Let m be a natural number and α > 1 an irrational
number. Let also s0, s1, . . . , sm be fixed numbers with

1

2
< Re(sk) ≤ 1 for 0 ≤ k ≤ m and sk 6= sℓ for k 6= ℓ .

Then, for every h ∈ L(α) ∩ [0,+∞), the sets

{(

ζ(s1 + i⌊nα⌋h), ζ(s2 + i⌊nα⌋h), . . . , ζ(sm + i⌊nα⌋h)
)

: n ∈ N
}

and
{(

ζ(s0 + i⌊nα⌋h), ζ′(s0 + i⌊nα⌋h), . . . , ζ(m−1)(s0 + i⌊nα⌋h)
)

: n ∈ N
}

are dense in Cm.

Combining the preceding theorem and the method introduced in [5], we will
also derive

Theorem 5 (Weak Universality). Let σ0 ∈ (1/2, 1], g : K = D(s0, r) → C

continuous and analytic in the interior of K, and α > 1 irrational. Then, for
every h ∈ L(α) ∩ [0,+∞) and for every ε > 0, there exists

n = n(ε, h) ∈ N and δ = δ(ε, h) ∈ (0, 1)
such that

max
|s−s0|≤δr

|ζ (s+ i⌊nα⌋h)− g(s)| < ε.
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2. Uniform distribution mod 1

and a set of full Lebesgue measure

Part of the proof that Voronin gave for Theorem 1 and that we will simi-
larly give for Theorem 4, relies on the theory of uniformly distributed sequences.
A beautiful monograph on this theory is [6]. The definition, theorems and corol-
laries that are stated below can be found there. But before that we introduce
some notation. If x = (x1, . . . , xℓ) ∈ Rℓ, then {x} = ({x1}, . . . , {xℓ}). Here {xi}
denotes the fractional part of the real number xi.

Definition 1. A sequence of points (xn)n∈N belonging to Rℓ is said to be
uniformly distributed mod 1 (u.d. mod 1) in Rℓ if for every box B = I1×· · ·×Iℓ
in [0, 1]ℓ (i.e., a cartesian product of intervals), the relation

lim
N→∞

{1 ≤ n ≤ N : {xn} ∈ B}

N
= |I1||I2| . . . |Iℓ| = meas(B)

holds.

One of the many advantages when dealing with u.d. mod 1 sequences is a use-
ful connection between sums and integrals, as the next theorem states.

Theorem 6. A sequence (xn)n∈N is u.d. mod 1 in Rℓ if and only if for every
continuous complex-valued f on [0, 1]ℓ, the relation

lim
N→∞

1

N

N
∑

n=1

f({xn}) =

∫

[0,1]ℓ

f(x)dx

holds.

P r o o f. For the proof, see [6], Chapter 1, Theorem 6.1. In fact, the condition
of f being continuous can be relaxed to that of both Ref and Imf being Riemann
integrable. �

Although the multi-dimensional definition complicates somewhat the study
of whether a sequence is u.d. mod 1 or not, there exists a theorem that allows
us to induce the process in the one-dimensional case.

Theorem 7. A sequence (xn)n∈N is u.d. mod 1 in Rℓ if and only if for every
lattice point k ∈ Zℓ, k 6= 0, the sequence of real numbers (〈k, xn〉)n∈N is u.d.
mod 1 in R. Here 〈·,·〉 denotes the inner product as it is usually defined on the
vector space Rℓ.

P r o o f. For the proof, see [6], Chapter 1, Theorem 6.3. �
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Corollary 1. Let (θk)k∈N be a sequence of real numbers such that 1, θ1, θ2, . . .
are linearly independent over Q. Then, for any ℓ ∈ N and any k1, . . . , kℓ ∈ N

pairwise distinct, the sequence (nθk1
, . . . , nθkℓ

), n = 1, 2, . . . , is u.d. mod 1 in Rℓ.

P r o o f. For the proof, see [6], Chapter 1, Example 6.1. �

It is desirable to substitute n from the above corollary with ⌊nα⌋ for given
irrational α > 1. D. C a r l s o n [4] obtained a necessary and sufficient condi-
tion for that to happen in the one-dimensional case, and with the assistance
of Theorem 7 we will be able to reformulate Corollary 1.

Theorem 8. For rational α, the sequence (⌊nα⌋θ)n∈N is u.d. mod 1 either for
all irrationals θ or for no real number θ, depending on whether α 6= 0 or α = 0.
If α is irrational, then (⌊nα⌋θ)n∈N is u.d. mod 1 in R if and only if 1, α, αθ are
linearly independent over Q (or equivalently 1, α−1, θ are linearly independent
over Q).

P r o o f. For the proof, see [6], Chapter 5, Theorem 1.8. �

Corollary 2. Let α be an irrational number and (θk)k∈N a sequence of real
numbers. Then, 1, α−1, θ1, θ2, . . . are linearly independent over Q if and only
if for any ℓ ∈ N and any k1, . . . , kℓ ∈ N pairwise distinct, the sequence xn =
(⌊nα⌋θk1

, . . . , ⌊nα⌋θkℓ
), n = 1, 2, . . . , is u.d. mod 1 in Rℓ.

P r o o f. The numbers 1, α−1, θ1, θ2, . . . are linearly independent over Q if and
only if for any ℓ∈N, any k1, . . . , kℓ∈N pairwise distinct, and any m1, . . . ,mℓ∈Z

not all of them zero, the numbers 1, α−1,m1θk1
+ · · · + mℓθkℓ

are linearly in-
dependent over Q. Combining Theorem 7 and Theorem 8, we see that the
latter statement is equivalent to the one saying that for any ℓ ∈ N and any
k1, . . . , kℓ ∈ N pairwise distinct, the sequence xn = (⌊nα⌋θk1

, . . . , ⌊nα⌋θkℓ
),

n = 1, 2, . . ., is u.d. mod 1 in Rℓ. �

The sequence of numbers that we are interested in is

θk =
h

2π
lnpk, k = 1, 2, . . . ,

where pk will denote from here on the kth prime and h > 0. We prove that
for a given irrational α there exists h > 0 such that the necessary condition
of Corollary 2 for the aforementioned sequence is fulfilled. In fact we prove the
existence of a lot such h.

Theorem 9. Let α be an irrational number and

L(α)=

{

h ∈ R : 1, α−1,
h

2π
lnp1,

h

2π
lnp2, . . . are linearly independent over Q

}

.
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The set L(α) has full Lebesgue measure in R, i.e., meas(R \ L(α)) = 0.

P r o o f. Let B = R \ L(α) and h ∈ B. Then, the numbers

1, α−1,
h

2π
lnp1,

h

2π
lnp2, . . .

are linearly dependent over Q and consequently over Z as well. Thus, there exists
integer k ≥ 1 and integers a1, . . . , ak, b, c, where ai are not all zeros, such that

a1
h

π
lnp1 + · · ·+ ak

h

π
lnpk = b+ cα−1. (1)

Putting A = pa1

1 . . . pak

k , we observe that A ∈ Q+ \ {1} and we can rewrite (1) as

hlnA = bπ + cα−1π.

Fix a vector (A, b, c) ∈ (Q+ \ {1})× Z× Z = Γ. Consider the corresponding set

B(A, b, c) = {h ∈ R : hlnA = bπ + cα−1π}.

The set B(A, b, c) is clearly a singleton (since lnA 6= 0) and thus of measure zero.
Hence, the countable union of singletons

B =
⋃

(A,b,c)∈Γ

B(A, b, c)

is of measure zero. Therefore, its complement R \ B = L(α) has full Lebesgue
measure in R. �

3. Auxiliary lemmas

Before stating the lemmas needed for the proofs of Theorems 4 and 5, we
introduce some notation. Let Ω denote the set of all sequences of real numbers
indexed by the prime numbers in ascending order. Further, define for every finite
subset M of the set of all primes, every ω = (ω2, ω3, ω5, . . . ) ∈ Ω, and all complex
numbers s, the truncated Euler product

ζM (s, ω) =
∏

p∈M

(

1−
exp(−2πiωp)

ps

)−1

.

Obviously, ζM (s, ω) is a non-vanishing analytic function of s in the half-plane
σ>0. Observe also that for M = {p′1, . . . , p

′
ℓ} and constant s, ζM (s, ω) can

be treated as a continuous complex-valued function of ℓ variables (ωp′

1
, . . . , ωp′

ℓ
)

defined on [0, 1]ℓ. In such cases, where M and s are given, ζM (s, ω) will be abbre-
viated as ζM (s, ωp′

1
, . . . , ωp′

ℓ
). Finally, Logz will denote the principal logarithm

of z.
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Lemma 1. Let s0 be complex number such that 1
2 < Re(s0) ≤ 1 and k ∈ N0.

If we define MQ = {p1, p2, . . . , pQ} to be the set of the first Q primes and
0 = (0, 0, . . . ), then

lim
Q→∞

lim sup
T→∞

1

T

T
∫

0

∣

∣

∣ζ(k)(s0 + it)− ζ
(k)
MQ

(s0 + it,0)
∣

∣

∣

2

dt = 0.

P r o o f. For the proof, see [8], pages 164-166, 168. �

Lemma 2. Suppose that (a1, . . . , am) ∈ Cm, ε > 0, y ∈ N and xp1
, . . . , xpy

are
real numbers, and s1, . . . , sm are the numbers in the condition of Theorem 4,
where Im(sk) > 2 for all 1 ≤ k ≤ m. Then, there exists a finite set of primes
M = {p′1, p

′
2, . . . , p

′
ℓ} and a sequence ω ∈ Ω such that

M ⊃ {p1, . . . , py}, ωpr
= xpr

and |ζM (sk, ω)− ak| < ε,

for 1 ≤ r ≤ y and 1 ≤ k ≤ m.

P r o o f. For the proof, see [8], Lemma 11. �

Lemma 3. Suppose that (a0, . . . , am−1) ∈ Cm, ε > 0, y ∈ N and xp1
, . . . , xpy

are real numbers, and s0 is a number with 1
2 < Re(s0) ≤ 1 and Im(s0) > 2.

Then, there exists a finite set of primes M = {p′1, p
′
2, . . . , p

′
ℓ} and a sequence

ω ∈ Ω such that

M ⊃ {p1, . . . , py}, ωpr
= xpr

and |ζ
(k)
M (s0, ω)− ak| < ε,

for 1 ≤ r ≤ y and 1 ≤ k ≤ m.

P r o o f. For the proof, see [8], Lemma 12. �

Remark 1. Note that the condition for the imaginary parts of the complex
numbers in Lemma 2 can be removed:

P r o o f. Let the assumptions of Lemma 2 hold without the restriction of the
imaginary parts. There exists a number c > 0 such that Im(sk) + 2πc > 2 for
1 ≤ k ≤ m. According to Lemma 2, for x̃p1

= xp1
− clnp1, . . . , x̃py

= xpy
− clnpy,

there exists a finite set of primes M and ω̃ ∈ Ω such that

M ⊃ {p1, . . . , py}, ω̃pr
= x̃pr

and |ζM (sk + 2πic, ω̃)− ak| < ε .

for 1 ≤ r ≤ y and 1 ≤ k ≤ m.
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Taking ω∈Ω to be ωp= ω̃p+clnp for all primes p, we observe that for 1≤k≤m,

ζM (sk + 2πic, ω̃) =
∏

p∈M

(

1−
exp(−2πiω̃p)

psk+2πic

)−1

=
∏

p∈M

(

1−
exp(−2πi(ω̃p + clnp)

psk

)−1

=
∏

p∈M

(

1−
exp(−2πiωp)

psk

)−1

= ζM (sk, ω),

and of course, ωpr
= xpr

for 1 ≤ r ≤ y. �

Remark 2. The same result as above can be obtained similarly for Lemma 3,
since to prove it V o r o n i n showed that the set of points

∆(M,ω) =
(

Log ζM (s0, ω), [Log ζM (s0, ω)]
′, . . . , [Log ζM (s0, ω)]

(m−1)
)

∈ Cm

is dense in Cm whenever (M,ω) runs through all possible finite sets of primes M
and ω ∈ Ω with the requirements M ⊃ {p1, . . . , py} and ωpr

= xpr
for 1 ≤ r ≤ y.

Lemma 4. Let t0, t1, . . . , tR be real numbers, where t0 < t1 < · · · < tR. If G(t)
is a complex-valued function which is defined and continuously differentiable on
the interval [t0, tR], then

R
∑

r=1

|G(tr)|
2 ≤

1

δ

tR
∫

t0

|G(t)|2dt+ 2







tR
∫

t0

|G(t)|2dt







1

2







tR
∫

t0

|G′(t)|2dt







1

2

,

where
δ = min

0≤r<R
|tr+1 − tr| .

P r o o f. For the proof, see [8], Lemma 6. �

Lemma 5. Let s1, . . . , sℓ be numbers such that Re(sj) > 0 for j = 1, . . . , ℓ, and
m ∈ N. Then, for every ε > 0, there exists an N = N(ε) ∈ N such that for every
set S of prime numbers greater than pN , every k = 0, 1, . . . ,m, every j = 1, . . . , ℓ
and every ω ∈ Ω, the inequality

∣

∣

∣(ζS(sj , ω)− 1)
(k)

∣

∣

∣ < ε

holds.
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P r o o f. Let ε > 0 and

0<t0<r0< min
1≤j≤ℓ

Re(sj).

If we set

ε′= min
0≤k≤m

εrk0
k!

,

then there exists a δ = δ(ε) < 1 such that |ez − 1| < ε′ for every |z| < δ. Since
the series

∞
∑

n=1

1

pt0n − 1

converges, there exists an N = N(ε) such that
∞
∑

n=N

1

pσn − 1
<

δ

2

for every σ > t0. Now let S be a set of prime numbers greater than pN and
ω ∈ Ω. Observe that whenever |z| < 1

2 , one can obtain

|Log(1 + z)| =

∣

∣

∣

∣

∣

∣

1+z
∫

1

dw

w

∣

∣

∣

∣

∣

∣

≤

1+z
∫

1

|dw|

|w|
≤ 2|z|.

Keeping that in mind and taking advantage of the fact that for every Re(s) > t0
and n ≥ N :

∣

∣

∣

∣

∣

(

1−
exp(−2πiωpn

)

psn

)−1

− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

exp(−2πiωpn
)

psn − exp(−2πiωpn
)

∣

∣

∣

∣

≤
1

pσn − 1
<

δ

2
<

1

2
,

we can estimate
∣

∣

∣

∣

∣

∣

∑

p∈S

Log

(

1−
exp(−2πiωp)

ps

)−1
∣

∣

∣

∣

∣

∣

≤
∑

p∈S

∣

∣

∣

∣

∣

Log

(

1−
exp(−2πiωp)

ps

)−1
∣

∣

∣

∣

∣

≤ 2

∞
∑

n=N

∣

∣

∣

∣

∣

(

1−
exp(−2πiωpn

)

psn

)−1

− 1

∣

∣

∣

∣

∣

≤ 2

∞
∑

n=N

1

pσn − 1
< δ .
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Thus, for every Re(s) > t0,

|ζS(s, ω)− 1| =

∣

∣

∣

∣

∣

∣

exp





∑

p∈S

Log

(

1−
exp(−2πiωp)

ps

)−1


− 1

∣

∣

∣

∣

∣

∣

< ε′.

All inequalities
∣

∣

∣(ζS(sj , ω)− 1)
(k)

∣

∣

∣ < ε,

for k = 0, . . . ,m and j = 1, . . . , ℓ, can now be proved by computing the Cauchy’s
estimates of ζS(s, ω)−1 on the disksD(sj , r0) ⊂ {s : Re(s) > t0}, for j = 1, . . . , ℓ,
respectively. �

4. Proofs of Theorem 4 and Theorem 5

P r o o f o f T h e o r e m 4. We prove the second part of Theorem 4 since the first
part can be shown similarly. Let s0 be a complex number with 1

2 < Re(s0) ≤ 1,
α > 1 irrational and h ∈ L(α) ∩ [0,+∞), where L(α) is the set defined in the
first section and in Theorem 9.

To prove the theorem it suffices to show that any vector (a0, . . . , am−1) ∈ Cm

can be approximated arbitrarily close by the vector
(

ζ(s0 + i⌊nα⌋h), . . . , ζ(m−1)(s0 + i⌊nα⌋h)
)

with a suitable natural number n. We fix any (a0, . . . , am−1). By Lemma 3, for
every ε > 0 and every y ∈ N, there exists ζM (s0, ω) such that M ⊃ {p1, . . . , py},
ωpr

= 0 for 1 ≤ r ≤ y, and for k = 0, . . . ,m− 1 we have
∣

∣

∣ζ
(k)
M (s0, ω)− ak

∣

∣

∣ < ε . (2)

Let M = {p′1, . . . , p
′
ℓ}. By the continuity of ζM (s0, ωp′

1
, . . . , ωp′

ℓ
) as a function of ℓ

variables and (2), in [0, 1]ℓ there exists a subbox K with meas(K) > 0 such that
for k = 0, . . . ,m− 1 all the points (xp′

1
, . . . , xp′

ℓ
) belonging in K satisfy

∣

∣

∣ζ
(k)
M (s0, xp′

1
, . . . , xp′

ℓ
)− ak

∣

∣

∣ < 2ε . (3)

Let
∑′N

n=1 denote summation over those n ∈ [1, N ] ∩N for which
({

hlnp′1
2π

⌊nα⌋

}

, . . . ,

{

hlnp′ℓ
2π

⌊nα⌋

})

∈ K.
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We consider the expression

AN =
1

N

N
∑

n=1

′
m−1
∑

k=0

∣

∣

∣
ζ(k)(s0 + i⌊nα⌋h)− ζ

(k)
M (s0 + i⌊nα⌋h,0)

∣

∣

∣

2

.

We choose Q larger than any p ∈ M and we define MQ = {p1, p2, . . . , pQ} to be
the set of the first Q primes. Then,

AN ≤
2

N

N
∑

n=1

′
m−1
∑

k=0

∣

∣

∣
ζ(k)(s0 + i⌊nα⌋h)− ζ

(k)
MQ

(s0 + i⌊nα⌋h,0)
∣

∣

∣

2

+
2

N

N
∑

n=1

′
m−1
∑

k=0

∣

∣

∣ζ
(k)
MQ

(s0 + i⌊nα⌋h,0)− ζ
(k)
M (s0 + i⌊nα⌋h,0)

∣

∣

∣

2

. (4)

We denote the first double sum by S1 and the second by S2. Firstly, we esti-
mate S2. We make use of Leibniz’s formula

ζ
(k)
MQ

− ζ
(k)
M = [ζM (ζMQ\M − 1)](k) =

k
∑

j=0

(

k

j

)

ζ
(j)
M (ζMQ\M − 1)(k−j).

Applying the Cauchy-Schwarz inequality, we obtain

∣

∣

∣ζ
(k)
MQ

− ζ
(k)
M

∣

∣

∣

2

≤ (k + 1)

k
∑

j=0

∣

∣

∣

∣

(

k

j

)

ζ
(j)
M (ζMQ\M − 1)(k−j)

∣

∣

∣

∣

2

.

Hence, putting in S2 the summation over n on the inside, we get

S2 ≤

m−1
∑

k=0

(k + 1)

k
∑

j=0

(

k

j

) N
∑

n=1

′ ∣
∣

∣ζ
(j)
M (s0 + i⌊nα⌋h,0) ×

(ζMQ\M (s0 + i⌊nα⌋h,0)− 1)(k−j)
∣

∣

∣

2

. (5)

So it suffices to estimate the sums of the form

Sk,j =

N
∑

n=1

′ ∣
∣

∣ζ
(j)
M (s0 + i⌊nα⌋h,0)(ζMQ\M (s0 + i⌊nα⌋h,0)− 1)(k−j)

∣

∣

∣

2

.

Note that if MQ \M = {p′′1 , . . . , p
′′
Q−ℓ}, then a simple computation leads to

ζM (s0 + i⌊nα⌋h,0) = ζM

(

s0,

{

hlnp′1
2π

⌊nα⌋

}

, . . . ,

{

hlnp′ℓ
2π

⌊nα⌋

})

and

ζMQ\M (s0 + i⌊nα⌋h,0) = ζMQ\M

(

s0,

{

hlnp′′1
2π

⌊nα⌋

}

, . . . ,

{

hlnp′′Q−ℓ

2π
⌊nα⌋

})
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We define F : [0, 1]Q → C to be of the form

F (ωp1
, . . . , ωpQ

) =
∣

∣

∣ζ
(j)
M

(

s0, ωp′

1
, . . . , ωp′

ℓ

)

×
(

ζMQ\M

(

s0, ωp′′

1
, . . . , ωp′′

Q−ℓ

)

− 1
)(k−j)

∣

∣

∣

∣

2

,

whenever (ωp′

1
, . . . , ωp′

ℓ
) ∈ K, and zero otherwise. If we set

xn =

(

hlnp1
2π

⌊nα⌋, . . . ,
hlnpQ
2π

⌊nα⌋

)

, n ∈ N ,

then

Sk,j =

N
∑

n=1

′
F ({xn}) =

N
∑

n=1

F ({xn}) .

The last equality is true if we consider the definitions of
∑′

and F . Now recall
that h ∈ L(α). Thus, according to Corollary 2, the sequence (xn)n∈N is u.d. mod
1 in RQ. Using Theorem 6, we obtain

lim
N→∞

1

N
Sk,j = lim

N→∞

1

N

N
∑

n=1

F ({xn}) =

∫

[0,1]Q

F (x) dx =

∫

K

∫

[0,1]Q−ℓ

F (x) dx

=

∫

K

∣

∣

∣
ζ
(j)
M

(

s0, ωp′

1
, . . . , ωp′

ℓ

)

∣

∣

∣

2

dωp′

1
. . . dωp′

ℓ

×

∫

[0,1]Q−ℓ

∣

∣

∣

∣

(

ζMQ\M

(

s0, ωp′′

1
, . . . , ωp′′

Q−ℓ

)

−1
)(k−j)

∣

∣

∣

∣

2

dωp′′

1
. . . dωp′′

Q−ℓ
.

(6)

By (3), the first integral is bounded by (|aj | + 2ε)2meas(K), and the second
integral, in view of Lemma 5, approaches zero uniformly in Q as y increases.
Hence, by (5) and (6), we may choose y sufficiently large so that for every Q
larger than any p ∈ M, we can find an N0 = N0(Q) with the property

S2 < Nmeas(K)
ε3

2
for N ≥ N0 . (7)

We estimate S1,

S1 =

m−1
∑

k=0

N
∑

n=1

′ ∣
∣

∣ζ(k)(s0 + i⌊nα⌋h)− ζ
(k)
MQ

(s0 + i⌊nα⌋h,0)
∣

∣

∣

2

=

m−1
∑

k=0

S′
k .
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Let k ∈ {0, . . . ,m− 1}. We apply Lemma 4 for

G(t) = ζ(k)(s0 + ith)− ζ
(k)
MQ

(s0 + ith,0) :

S′
k ≤

N
∑

n=1

|G(⌊nα⌋h)|2

≤
1

h(α− 1)

Nαh
∫

0

|G(t)|2dt+ 2







Nαh
∫

0

|G(t)|2dt







1

2







Nαh
∫

0

|G′(t)|2dt







1

2

.

Using Lemma 1, we may choose Q sufficiently large such that

S1 < Nmeas(K)
ε3

2
for N ≥ N1 = N1(Q). (8)

Consequently, by (4), (7) and (8), we have

AN < meas(K)ε3 for N > N2 = N2(Q).

Since the sequence
({

hlnp′1
2π

⌊nα⌋

}

, . . . ,

{

hlnp′ℓ
2π

⌊nα⌋

})

n∈N

is u.d. mod 1 in Rℓ, AN contains ∼ Nmeas(K) terms in
∑′N

n=1 as N → ∞.
Hence there exists an n such that

m−1
∑

k=0

∣

∣

∣ζ(k)(s0 + i⌊nα⌋h)− ζ
(k)
M (s0 + i⌊nα⌋h,0)

∣

∣

∣

2

< ε3,

({

hlnp′1
2π

⌊nα⌋

}

, . . . ,

{

hlnp′ℓ
2π

⌊nα⌋

})

∈ K.



















(9)

Combining (3) and (9) we showed that there exists an n such that
∣

∣

∣ζ(k)(s0 + i⌊nα⌋h)− ak

∣

∣

∣ < 3ε,

for k = 0, . . . ,m− 1

The proof of the first part of Theorem 4 consists of the same arguments as
we used until now. Instead of Lemma 3 we use Lemma 2, and there is no need
to apply Leibniz’s formula and the Cauchy-Schwarz inequality. �
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P r o o f o f T h e o r e m 5. Let h ∈ L(α) ∩ [0,+∞) and ε > 0. Since the Taylor
expansion of g is valid for all s ∈ K, there exists an N = N(ε) such that

max
s∈K

∣

∣

∣

∣

∣

∣

g(s)−

N−1
∑

k=0

g(k)(s0)

k!
(s− s0)

k

∣

∣

∣

∣

∣

∣

<
ε

3
. (10)

From Theorem 4, for the vector
(

g(s0), . . . , g
(N−1)(s0)

)

and ε > 0, there exists
a sequence (nℓ)ℓ∈N such that for every ℓ = 1, 2, . . . and every k = 0, . . . , N − 1,

∣

∣

∣ζ(k) (s0 + i⌊nℓα⌋h)− g(k)(s0)
∣

∣

∣ < ε′ =
ε

3N
min

0≤k≤N−1

k!

rk
.

We choose an nℓ0 = nℓ0(ε, h) such that 1 /∈ K + i⌊nℓ0α⌋h. Then,

max
s∈K

∣

∣

∣

∣

∣

∣

N−1
∑

k=0

ζ(k)(s0 + i⌊nℓ0α⌋h)

k!
(s− s0)

k −

N−1
∑

k=0

g(k)(s0)

k!
(s− s0)

k

∣

∣

∣

∣

∣

∣

≤

max
s∈K

ε′
N−1
∑

k=0

|s− s0|k

k!
≤

ε

3
. (11)

The choice of nℓ0 allows us to represent ζ in the disk K + i⌊nℓ0α⌋h as the sum
of a Taylor series centered at s0 + i⌊nℓ0α⌋h,

ζ(s+ i⌊nℓ0α⌋h) =

∞
∑

k=0

ζ(k)(s0 + i⌊nℓ0α⌋h)

k!
(s− s0)

k,

for all s ∈ K. If

M = M(ε, h) = max
s∈K

|ζ(s+ i⌊nℓ0α⌋h)| and δ ∈ (0, 1) ,

then, using Cauchy’s estimates, we get
∣

∣

∣

∣

ζ(k)(s0 + i⌊nℓ0α⌋h)

k!
(s− s0)

k

∣

∣

∣

∣

≤
Mk!

rk
|s− s0|k

k!
≤ Mδk,

for all s ∈ D(s0, δr). Hence,

|ζ(s+ i⌊nℓ0α⌋h) −

N−1
∑

k=0

ζ(k)(s0 + i⌊nℓ0α⌋h)

k!
(s− s0)

k

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=N

ζ(k)(s0 + i⌊nℓ0α⌋h)

k!
(s− s0)

k

∣

∣

∣

∣

∣

≤ M
δN

1− δ
, (12)
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for all s ∈ D(s0, δr). Combining relations (10), (11) and (12), we find

|ζ(s+ i⌊nℓ0α⌋h)− g(s)| < M
δN

1− δ
+

ε

3
+

ε

3
,

for all s ∈ D(s0, δr). Now choose δ = δ(ε, h) ∈ (0, 1) such that

M
δN

1− δ
=

ε

3

This is possible since for the continuous function

F : (0, 1) → R with F (t) = M
tN

1− t
, t ∈ (0, 1) ,

we have

lim
t→0

F (t) = 0 and lim
t→1

F (t) = +∞.

We thus have shown

max
|s−s0|≤δr

|ζ(s+ i⌊nℓ0α⌋h)− g(s)| < ε

and this completes the proof. �
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