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CONSTRUCTION OF UNIFORMLY DISTRIBUTED

LINEAR RECURRING SEQUENCES

MODULO POWERS OF 2

Tamás Herendi

ABSTRACT. The aim of the present paper is to provide the background to
construct linear recurring sequences with uniform distribution modulo 2s. The

theory is developed and an algorithm based on the achieved results is given.
The constructed sequences may have arbitrary large period length depending
only on the computational power of the used machines.

Communicated by Katalin Gyarmati

1. Introduction

Pseudo random numbers play an essential role in many applications. The
traditional ones were simulations, Monte-Carlo methods [13] and coding, while
recently cryptography is one of the main utilization area. Inside cryptography it
is mainly used for key generation, in stream ciphers [11], asymmetric cryptosys-
tems, zero-knowledge proofs, and in particular applications, such as authenti-
cation protocols [3], secure elections [5] and electronic exam schemes [6]. There
is number of ways to produce sequences of pseudo random numbers see, e.g.,
[7], [9] and [2]. In [10] one can find a general construction for pseudo random
numbers.

Depending on the application, there are several expectations for pseudo ran-
dom number sequences. One of the most important requirements is the given
or at least known distribution property. For general applications, the uniform
distribution is the most acceptable. Another important attributes are low auto-
correlation, wide range of the values for the sequence, fast computability, long
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period—or no periodicity at all, but this seems practically impossible—and un-
predictability. To use linear recurring sequences as base objects for pseudo ran-
dom number sequences is not a new idea (see, e.g., [7]), but in most of the cases,
the obtained results has some insufficiency. In the following we provide the theo-
retical background for the construction of uniformly distributed linear recurring
sequences. The presented design allows us to create sequences with rather (the-
oretically arbitrary) large period length —no difficulty to reach 21000—basically
without correlation between the members close to each other. (The distance can
vary, but 1000 can be settled easily.) The numbers in the sequence can be not
only 0 or 1, but arbitrary large and the computation of a new element requires
only some addition. Unfortunately, the unpredictability of the forthcoming el-
ements does not hold at all, because of the basic properties of linear recurring
sequences.

At the end of the paper an example for construction of a sequence based on
the presented theory is given.

We may summarize our results in the following

�������� Let Q ∈ Z[x] be monic of degree k such that its reduction modulo 2
is irreducible and let P ∈ Z[x] be monic satisfying

P (x) ≡ (x2 − 1)Q(x) mod 2.

Let us define
P1(x) = P (x),

P2(x) = P (x)− 2,

P3(x) = P (x)− 2x,

P4(x) = P (x)− 2x− 2

and let u(i) be linear recurring sequences corresponding to Pi, such that the min-
imal period length of u(i) modulo 2 is 2ord(Q), where ord(Q) is the order of Q
in F2[x]. Then at least one of the u(i)’s is uniformly distributed modulo 2s with
period length 2sord(Q) for any s ∈ N.

2. Definitions and preliminary results

��	
�
�
�� 1� Let R be a Dedekind-domain and let a0, . . . , ad−1 ∈ R and

u = {un}∞n=0

be a sequence in R satisfying the recurrence relation

un+d = ad−1un+d−1 + · · ·+ a0un for n = 0, 1, . . .
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Then u is called a linear recurring sequence (for short l.r.s.) with defining
coefficients a0, . . . , ad−1 and initial values u0, . . . , ud−1.

The integer d is called the order of the recurrence and the polynomial

P (x) = xd − ad−1x
d−1 − · · · − a0

is called a characteristic polynomial of u.

��	
�
�
�� 2� Let u be an l.r.s. in the Dedekind-domain R, defined by the
coefficients a0, . . . , ad−1 with initial values u0, . . . , ud−1. Then

ūn(k) = (un, . . . , un+k−2, un+k−1)
tr

denotes the nth k-dimensional state vector and

M (u) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1
a0 a1 . . . ad−2 ad−1

⎞
⎟⎟⎟⎟⎟⎠

the companion matrix of u.

Since it causes no misunderstanding, we will omit the transpose sign from the
state vector definitions.


����� 3� With the above notations we have

ūn(d) = M (u)nū0(d).

��	
�
�
�� 4� Let u be a sequence in the Dedekind-domain R and let I ⊆ R
be an ideal. We say that u is periodic modulo I with period length � ∈ N,
if there exists �0 ∈ N, such that

un+� ≡ un mod I for all n ≥ �0.

The smallest �0 = �0,I(u) and � = �I(u) with the previous property will be called
the preperiod and minimal period length of u modulo I, respectively.

If �0,I(u) = 0, then u is said to be purely periodic modulo I.


����� 5� Let R be a Dedekind-domain, let u be a linear recurring sequence
in R and let I ⊆ R be an ideal with finite norm. A simple observation shows
that u is periodic modulo I.

��	
�
�
�� 6� Let u be a sequence in the Dedekind-domain R and let I ⊆ R
be an ideal with finite norm. We will say that u is uniformly distributed
(for short u.d.) modulo I if

lim
N→∞

1

N
# {n ≤ N |un ≡ a mod I} =

1

Norm(I)
for all a ∈ R.
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����� 7� One can find criteria for the uniform distribution of linear recurring
sequences of order ≤ 4 over finite fields in [14] and [15].

Among other general results, criteria for the uniform distribution of lin-
ear recurring sequences of order ≤ 3 over Dedekind-domains can be found
in [17] and [16].

As a starting point we have to construct uniformly distributed recurring se-
quences over simpler structures. N i e d e r r e i t e r and S h i u e in [14] give a
necessary condition on uniform distribution of linear recurring sequences over
finite fields:

������
�
�� 8� Let F be a finite field and let u be an l.r.s. over F. If u is
uniformly distributed, the characteristic polynomial of u has a multiple factor.

P r o o f. See, e.g., [14]. �

������� 9� Let us define the sequence u by the following:

u0 = 0, u1 = 1 and un = un−2 for n ≥ 2.

Clearly, the sequence is uniformly distributed modulo 2. The characteristic poly-
nomial of u is

P (x) = x2 − 1 ≡ (x+ 1)2 mod 2.

������� 10� Define the sequence u by the following:

u0 = 0, u1 = 1 and un = un−1 + un−2 for n ≥ 2.

The sequence u is the well-known Fibonacci sequence. In [12] it is proven that
u is uniformly distributed modulo 5. Actually, even more proven there: u is
uniformly distributed modulo m if and only if m is a power of 5.

The characteristic polynomial of u is

P (x) = x2 − x− 1 ≡ (x+ 2)2 mod 5.

Now, we turn to the known and the new results we use for finding linear
recurring sequences with uniform distribution modulo some—in particular 2k–
–integer. The idea behind the construction is trying to find a linear recurring
sequence with a characteristic polynomial having the property

P (x) ≡ (x+ 1)2Q(x) mod 2,

where Q(x) is irreducible modulo 2 and has a particular degree. In this way we
can find a linear recurring sequence with a large period length, which has some
advantages for the later steps.

112



CONSTRUCTION OF UD SEQUENCES

��	
�
�
�� 11� Let F be a finite field and P ∈ F[x] with the condition P (0) �= 0.
We will call ord(P ) = e the order of P, where e is the smallest positive integer,
such that P (x) | xe − 1 over F[x].


����� 12� The integer e in the above definition always exists. See, e.g., in [8]

������
�
�� 13� Let F be a finite field with q elements and let Q(x) be an
irreducible polynomial of degree k over F. Then the order of Q divides qk − 1.

P r o o f. See, e.g., Corollary 3.4 of [8]. �
������
�
�� 14� Let F be a finite field of characteristic p, let P ∈ F[x] be

a polynomial of positive degree with P (0) �= 0 and let P = aP b1
1 . . . P br

r , where
a ∈ F and P1, . . . , Pr are distinct monic irreducible polynomials.

If e denotes the least common multiple of ord(P1), . . . , ord(Pr) and t denotes
the smallest integer, such that pt ≥ max{b1, . . . , br}, then ord(P ) = ept.

P r o o f. See, e.g., Theorem 3.11 of [8]. �

We can use the above result to determine the order of polynomials in the
required form.

��������� 15� Let P (x), R(x) ∈ Z[x] be such that

P (x) ≡ (x+ 1)2Q(x) mod 2
and

R(x) ≡ (x+ 1)Q(x) mod 2,

where Q(x) is irreducible modulo 2.

Then for the orders of the polynomials over F2 we have

ord(P ) = 2ord(Q)
and

ord(R) = ord(Q).

��	
�
�
�� 16� Let u be an l.r.s. of order d over a Dedekind-domain R.
We say that u is an impulse response sequence if

u0 = · · · = ud−2 = 0 and ud−1 = 1.

The following proposition shows the distinguished role of the impulse response
sequence corresponding to a given recurrence relation.

������
�
�� 17� Let F be a finite field and let u be the impulse response se-
quence over F with characteristic polynomial P (x). Then the minimal period
length of u is equal to ord(P ).

P r o o f. See, e.g., Theorem 6.27. of [8]. �
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��	
�
�
�� 18� Let m > 1 be an integer, let un be a sequence of integers and
let u′

n ∈ {0, . . . ,m− 1} be such that

u′
n ≡ un mod m.

The sequence u′ is called the reduced sequence of u mod m.

The following lemma assures the possibility to construct linear recurring se-
quences with large period lengths.

����� 19� Let Q(x) ∈ Z[x] be monic of degree k such that its reduction modulo
2 is irreducible in F2[x]. Let u be the impulse response sequence corresponding
to the characteristic polynomial P (x) ≡ (x2 − 1)Q(x) mod 2. Then u′ — the
reduced sequence of u modulo 2 — has period length 2� with some �, such that
� | 2k − 1.

P r o o f. Let � = ord(Q). By Proposition 13, � | 2k − 1. The factorization of P
is P ≡ (x+ 1)2Q(x) mod 2, whence by Corollary 15,

ord(P ) = 2 ord(Q) = 2�.

Hence by Proposition 17, the lemma follows. �
����� 20� Let Q(x) ∈ Z[x], such that 2 � Q(1) and let u be an l.r.s. of integers
with characteristic polynomial

P (x) ≡ (x2 − 1)Q(x) mod 2,

let v be the sequence given by

vn = un + 1 for all n ≥ 0

and let v′ denote the modulo 2 reduced sequence of v. Then v′ modulo 2 satisfies
the recurrence relation corresponding to P .

P r o o f. The polynomial P is a characteristic polynomial of the sequence w
modulo 2, where wn = 1 for all n ≥ 0, whence by the additive property of linear
recurring sequences, the lemma follows. �

����� 21� The above lemma is proven in more general settings in Theo-
rem 6.62 of [8].

��	
�
�
�� 22� Let F be a finite field with q elements and let u and v be two
linear recurring sequences of order d with the same characteristic polynomial P.
Suppose that P (0) �= 0. We will say that u and v are equivalent, if there exists
N ∈ N, such that

un = vn+N for all n ∈ N
or

un+N = vn for all n ∈ N.
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����� 23� The following properties are easy to prove. Let F be a finite field
with q elements and let P ∈ F [x] be a polynomial of degree d. Suppose that
P (0) �= 0. Then:

i) we have qd different linear recurring sequences having characteristic poly-
nomial P, and they can be divided into equivalence classes by the above
defined equivalence relation, such that

ii) in every equivalence class, the sequences have the same minimal period
length

iii) the cardinality of the equivalence classes are equal to its elements’ common
minimal period length

iv) the sequences from the same equivalence classes have periods differing only
in cyclic permutations.

����� 24� Let Q(x) ∈ Z[x] be monic irreducible modulo 2 of degree k and let

P (x) ≡ (x+ 1)2Q(x) mod 2.

Let u be a sequence having characteristic polynomial P and minimal period length
modulo 2 equal to ord(P ). Then u is uniformly distributed modulo 2.

P r o o f. Let denote by L the set of different linear recurring sequences having
characteristic polynomial P modulo 2. We will consider two linear recurring
sequences the same modulo 2 (notation: w ≡ v mod 2) if their reduced sequences
are the same.

By (i) of Remark 23, #(L) = 2k+2.

We will use the fact that if Q is a characteristic polynomial of an l.r.s., then
Q ·Q′ is a characteristic polynomial of it, too, for all Q′ non-zero monic polyno-
mials. We can partition L = L1 ∪ L2, such that #(L1) = #(L2) = 2k+1 by the
following: an l.r.s. is in L1 if it satisfies the recurrence relation corresponding
to the characteristic polynomial (x + 1)Q(x) mod 2 and it is in L2, otherwise.
The definition implies that L1 is closed for the addition of sequences.

Let e denote the impulse response sequence corresponding to the characteristic
polynomial P, i.e., the sequence in L, satisfying the initial condition e0 = e1 = · · ·
· · · = ek = 0 and ek+1 = 1. Furthermore, let ϕ : L → L be the function defined
by ϕ(w) = w + e. Clearly, ϕ is injective, ϕ2 = Id and w + ϕ(w) ≡ e mod 2
for any w ∈ L. Since e �∈ L1 thus w and ϕ(w) cannot be in L1 simultaneously.
The cardinalities of L1 and L2 are equal, whence ϕ(L1) = L2, i.e., ϕ is a bijection
between L1 and L2.

Obviously, for any two sequences v, w ∈ L,

w + v ≡ ϕ(w) + ϕ(v) mod 2.

115
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Further, if w, v ∈ L2, then ϕ(w), ϕ(v) ∈ L1, whence w + v ∈ L1.

Let v be an l.r.s. We will use the notation v̄n = (vn, . . . , vn+k+1) for the k+2
dimensional state vector of v.

Let � = ord(Q). Then by Corollary 15, ord((x+ 1)Q) = � and ord(P ) = 2�.

By the definition of u we know that u ∈ L2, in other words,

ū0 ≡ ū2� mod 2
and

ū0 �≡ ū� mod 2.

Let w ∈ L be the sequence for which

w̄0 ≡ ū� − ū0 mod 2.
Clearly,

ūn+� ≡ ūn + w̄n mod 2 for all n ∈ N.

Let v ∈ L be the sequence for which

v̄0 ≡ ū1 mod 2.

Since u, v ∈ L2, thus

u+ v ∈ L1 and ū� + v̄� ≡ ū0 + v̄0 mod 2,

i.e.,
ū� + ū�+1 ≡ ū0 + ū1 mod 2.

This implies

ū0 + w̄0 + ū1 + w̄1 ≡ ū0 + ū1 mod 2,
i.e.,

w̄0 ≡ w̄1 mod 2.

Since w �≡ 0 mod 2, this yields

wn ≡ 1 mod 2 for all n ∈ N.

Consequently,
un ≡ un+� + 1 mod 2 for all n ∈ N. (1)

However, this means that the number of 0s among the first � elements of the
sequence is equal to the number of 1s among the second � elements of the
sequence and vice versa. Then the number of 0s and 1s has to be the same in a
period, which means that u is uniformly distributed modulo 2. �

����� 25� Although the statement of the lemma is proven in more general
settings in [14], some details of the present proof are used later in the paper.

����� 26� Let u be a linear recurring sequence in Z with characteristic poly-
nomial P, let p be a prime, let s > 0 integer and let �1 and �2 the minimal period
length of u modulo ps and ps+1 respectively. If P is minimal characteristic poly-
nomial of u modulo p, then either �2 = �1 or �2 = p�1.
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P r o o f. The lemma is a particular case of Lemma 13 of [4]. With the given
conditions on P, T (u) = 1. Here T (u) denotes the smallest exponent, such that
the sequence has fixed minimal order modulo ps for any T (u) ≤ s. Since in our
case P is minimal characteristic polynomial modulo p, thus the minimal order
of the sequence is deg(P ) modulo ps, for any s. �


����� 27� Minimal characteristic polynomials expresses minimal degree.

The conditions of the lemma on P are fulfilled, for instance, when u is the
impulse response sequence and P (0) �≡ 0 mod p.

3. Proof of the main result

P r o o f o f t h e T h e o r e m. Simplifying the proof, we suppose, that

ū
(1)
0 = ū

(2)
0 = ū

(3)
0 = ū

(4)
0 ,

where ūn is the state vector of un. In the proof we will use the notation � =
ord(Q) and M(i) for the companion matrix. Furthermore, in any case we will use
upper or lower index (i) with the different symbols corresponding to the proper
sequence for i = 1, 2, 3, 4. For short, we will write u = u(1). For the convenient
reference and better overview, we will enumerate the parts of the proof.

(i) Let us calculate

ū2�+n − ūn = M 2�ūn − ūn = (M 2� −E)ūn = (M� +E)(M� −E)ūn , (2)

where M is the companion matrix of u and E is the unit matrix of the same
dimension. As we have seen in the proof of Lemma 24, by (1) we know, that

(M� −E)ūn = 1̄ + 2ȳn ,

with some ȳn. Here 1̄ yields the k+2 dimensional (1, 1, . . . , 1) vector. One should
remark, that the equation ȳn+1 = Mȳn not necessarily holds.

(ii) For the further calculations, examine first the behaviour of M�1̄. Since the
sequence 1, 1, 1 . . . satisfies the recurrence relation with characteristic polynomial
x−1 and x−1 divides P1(x), P2(x), P3(x) and P4(x) modulo 2, thus 1, 1, 1 . . . also
satisfies the recurrence relations with characteristic polynomials P1(x), P2(x),
P3(x) and P4(x) modulo 2. Consequently,

M 1̄ = 1̄ + 2v̄ and M�1̄ = 1̄ + 2z̄, with some v̄ and z̄.

Clearly, either v̄ ≡ 0̄ mod 2 or v̄ ≡ (0, 0, . . . , 0, 1) mod 2. We will use the
notation ē = (0, 0, . . . , 0, 1) = ū0. In the first case, z̄ ≡ 0̄ mod 2 should hold, too.
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In the second case,

M�+11̄ = M�(1̄ + 2v̄) = 1̄ + 2z̄ + 2M�v̄ ≡ 1̄ + 2z̄ + 2M�ū0

= 1̄ + 2z̄ + 2(1̄ + ē+ 2ȳ0) ≡ 1̄ + 2(z̄ + 1̄ + ē) mod 4.

From the other side,

M�+11̄ = M (1̄ + 2z̄) = 1̄ + 2v̄ + 2Mz̄ ≡ 1̄ + 2ē+ 2Mz̄ mod 4.

Hence,

1̄ + 2(z̄ + 1̄ + ē) ≡ 1̄ + 2ē+ 2Mz̄ mod 4,

which is equivalent to
z̄ + 1̄ ≡ Mz̄ mod 2.

Let z̄ = (z1, z2, . . . , zk+2). Then the above congruence means

z̄ + 1̄ ≡ (z2, . . . , zk+2, z
′) mod 2 with some z′ ∈ Z.

However, this yields
z1 ≡ z2 + 1 mod 2,

z2 ≡ z3 + 1 mod 2,

. . .

zk+1 ≡ zk+2 + 1 mod 2,

i.e., z̄ is congruent to one of the alternating vectors beginning with (0, 1, 0, 1, . . . )
or (1, 0, 1, 0, . . . ) modulo 2.

(iii) We may write M(i)1̄ = 1̄ + 2v̄(i) corresponding to the different recurrence

relations for i = 1, 2, 3, 4. By the above, if z̄(1) ≡ 0̄ mod 2, then v̄(1) ≡ 0̄ mod 2.
Hence by the properties of P1(x), P2(x), P3(x) and P4(x) we have

v̄(2) ≡ v̄(3) ≡ ē mod 2 and v̄(4) ≡ 0̄ mod 2

which yield z̄(2) and z̄(3) are congruent to some of the vectors (0, 1, 0, 1, . . . ) and
(1, 0, 1, 0, . . . ) modulo 2 and z̄(4) ≡ 0̄ mod 2. Similarly, if z̄(1) is congruent to one
of (0, 1, 0, 1, . . . ) and (1, 0, 1, 0, . . . ) modulo 2, then v̄(1) ≡ ē mod 2, whence

v̄(2) ≡ v̄(3) ≡ 0̄ mod 2 and v̄(4) ≡ ē mod 2,

i.e.,

z̄(2) ≡ z̄(3) ≡ 0̄ mod 2

and z̄(4) is congruent to one of (0, 1, 0, 1, . . . ) and (1, 0, 1, 0, . . . ) modulo 2.

(iv) Now, examine the behaviour of M�ȳn. Since ū0, ū1, . . . , ūk+1 are indepen-

dent, they form a basis in Fk+2
2 and there exist α0, α1, . . . , αk+1 ∈ Z such that

ȳn ≡ α0ū0 + α1ū1 + · · ·+ αk+1ūk+1 mod 2.
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Hence, by (1)

M�ȳn ≡ M�(α0ū0 + α1ū1 + · · ·+ αk+1ūk+1)

≡ M�α0ū0 +M�α1ū1 + · · ·+M�αk+1ūk+1

≡ α0M
�ū0 + α1M

�ū1 + · · ·+ αk+1M
�ūk+1

≡ α0(1̄ + ū0) + α1(1̄ + ū1) + · · ·+ αk+1(1̄ + ūk+1)

≡ (α0 + α1 + · · ·+ αk+1) · 1̄ + ȳn

≡ δn · 1̄ + ȳn mod 2, with some δn ∈ {0, 1}.
(v) Now, by (2) we can write

ū2�+n − ūn = (M� +E)(M� − E)ūn

= (M� +E)(1̄ + 2ȳn)

= 1̄ + 2z̄ + 1̄ + 2M�ȳn + 2ȳn

≡ 2(1̄ + z̄) + 2(δn1̄ + ȳn) + 2ȳn

≡ 2(1̄ + z̄ + δn1̄ + 2ȳn)

≡ 2(1̄ + z̄ + δn1̄) mod 4.

(3)

Similarly,

ū2�+n+1 − ūn+1 ≡ 2(1̄ + z̄ + δn+11̄) mod 4.

Hence
1 + z2 + δn ≡ 1 + z1 + δn+1 mod 2

1 + z3 + δn ≡ 1 + z2 + δn+1 mod 2

. . .

1 + zk+2 + δn ≡ 1 + zk+1 + δn+1 mod 2.

This yields

if z̄ ≡ (0, 0, . . . , 0) mod 2, then δn = δn+1 and

if z̄ is congruent to one of (0, 1, . . . ) or (1, 0, . . .), then δn = 1− δn+1.
(4)

(vi) In the following we will prove that z̄(i)≡ 0̄ mod 2 and δ
(i)
0 = 0 for at least

one of the i = 1, 2, 3, 4. (If z̄(i)≡ 0̄ mod 2 and δ
(i)
0 = 0, then δ

(i)
n = 0 for all n ∈ N.)

Suppose, that z̄(1)�≡ 0̄ mod 2 or δ
(1)
0 �= 0.

(vi.a) Clearly, u
(i)
n ≡ u

(j)
n mod 2 for any i, j = 1, 2, 3, 4. Define the sequences r

(i)
n

by
u(i)
n = u(1)

n + 2r(i)n for i = 2, 3, 4

and denote ûn = (0, 0, . . . , 0, un) ∈ Zk+2.

Obviously, for the state vectors we have r̄
(i)
0 = 0̄ for i = 2, 3, 4.
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By the definition of M(i),

ū
(2)
n+1 = M(2)ū

(2)
n = M(1)ū

(2)
n + 2û(2)

n ,

ū
(3)
n+1 = M(3)ū

(3)
n = M(1)ū

(3)
n + 2û

(3)
n+1

and

ū
(4)
n+1 = M(4)ū

(4)
n = M(1)ū

(4)
n + 2

(
û(4)
n + û

(4)
n+1

)
for all n ≥ 0.

Hence

ū
(1)
n+1 + 2r̄

(2)
n+1 = ū

(2)
n+1

= M(1)

(
ū(1)
n + 2r̄(2)n

)
+ 2

(
û(1)
n + 2r̂(2)n

)

= ū
(1)
n+1 + 2

(
M(1)r̄

(2)
n + û(1)

n + 2r̂(2)n

)
,

ū
(1)
n+1 + 2r̄

(3)
n+1 = ū

(3)
n+1

= M(1)(ū
(1)
n + 2r̄(3)n ) + 2

(
û
(1)
n+1 + 2r̂

(3)
n+1

)

= ū
(1)
n+1 + 2

(
M(1)r̄

(3)
n + û

(1)
n+1 + 2r̂

(3)
n+1

)

and

ū
(1)
n+1 + 2r̄

(4)
n+1 = ū

(4)
n+1

= M(1)(ū
(1)
n + 2r̄(4)n ) + 2

(
û(1)
n + û

(1)
n+1 + 2

(
r̂(4)n + r̂

(4)
n+1

))

= ū
(1)
n+1 + 2

(
M(1)r̄

(4)
n + û(1)

n + û
(1)
n+1 + 2

(
r̂(4)n + r̂

(4)
n+1

))
.

Subtracting ū
(1)
n+1 and cancelling out 2, we obtain

r̄
(2)
n+1 = M(1)r̄

(2)
n + û(1)

n + 2r̂(2)n ,

r̄
(3)
n+1 = M(1)r̄

(3)
n + û

(1)
n+1 + 2r̂

(3)
n+1 (5)

and

r̄
(4)
n+1 = M(1)r̄

(4)
n + û(1)

n + û
(1)
n+1 + 2

(
r̂(4)n + r̂

(4)
n+1

)
for all n ≥ 0.

Further, we know r̄
(i)
0 = 0̄ for i = 2, 3, 4.

(vi.b) One can prove

r̄
(2)
n+1 ≡ r̄(3)n mod 2 for all n ≥ 0 (6)

by the following:
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Since u0 = 0, thus û
(1)
0 = 0̄ and we have r̄

(2)
0 = r̄

(3)
0 = 0̄. Let n = 0, then by (5)

r̄
(2)
1 = M(1)r̄

(2)
0 + û

(1)
0 + 2r̂

(2)
0 ≡ M(1)0̄ + û

(1)
0 = 0̄ + 0̂ = r̄

(3)
0 mod 2.

Suppose that
r̄
(2)
n+1 ≡ r̄(3)n mod 2 for some n ≥ 0.

Then again by (5)

r̄
(2)
n+2 = M(1)r̄

(2)
n+1 + û

(1)
n+1 + 2r̂

(2)
n+1 ≡ M(1)r̄

(3)
n + û

(1)
n+1 ≡ r̄

(3)
n+1 mod 2.

Hence by induction, the claim follows.

Similarly, one can prove that

r̄(4)n ≡ r̄(2)n + r̄(3)n mod 2 for all n ≥ 0. (7)

(vi.c) By (3) we can write

ū
(1)
2� + 2r̄

(i)
2� − (

ū
(1)
0 + 2r̄

(i)
0

)
= ū

(i)
2� − ū

(i)
0 ≡ 2

(
1̄ + z̄(i) + δ

(i)
0 1̄

)
mod 4

for all i = 2, 3, 4. Again by (3), using that r̄
(i)
0 = 0̄,

2
(
1̄ + z̄(1) + δ

(1)
0 1̄

)
+ 2r̄

(i)
2�≡ 2

(
1̄ + z̄(i) + δ

(i)
0 1̄

)
mod 4,

which is equivalent to

z̄(1) + δ
(1)
0 1̄ + r̄

(i)
2�≡ z̄(i) + δ

(i)
0 1̄ mod 2 (8)

for all i = 2, 3, 4.

(vi.d) At the beginning of part (vi) we assumed that z̄(1) �≡ 0̄ mod 2 or δ
(1)
0 �= 0.

Suppose first that z̄(1) �≡ 0̄ mod 2. By part (iii) of the proof, we have then

z̄(i) ≡ 0̄ mod 2 for i = 2, 3. Assume further that δ
(2)
0 �= 0 (i.e., δ

(2)
0 = 1).

By (8)
r̄
(i)
2� ≡ z̄(1) + δ

(1)
0 1̄ + δ

(i)
0 1̄ mod 2 for i = 2, 3.

Since by part (ii) z̄(1) is congruent to one of (0, 1, 0, 1, . . . ) and (1, 0, 1, 0, . . . ) mo-

dulo 2, thus r̄
(2)
2� and r̄

(3)
2� are also congruent to some of the vectors (0, 1, 0, 1, . . . )

and (1, 0, 1, 0, . . . ) modulo 2. However, by (6) if

r̄
(2)
2� ≡ (0, 1, 0, 1, . . . ) mod 2,

then

r̄
(3)
2� ≡ (1, 0, 1, 0, . . .) mod 2,

and vice versa. Hence, by (8)

δ
(3)
0 1̄ ≡ r̄

(2)
2� + r̄

(3)
2� + δ

(2)
0 1̄ ≡ 1̄ + 1̄ ≡ 0̄ mod 2,

that is both condition z̄(3) ≡ 0̄ mod 2 and δ
(3)
0 = 0 are fulfilled.
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Suppose now that z̄(1) ≡ 0̄ mod 2. Then, by part (iii) of the proof, we have
z̄(4) ≡ 0̄ mod 2. Since we assumed at the beginning of this part that z̄(1) ≡
0̄ mod 2 and δ

(1)
0 = 0 do not hold simultaneously, we have δ

(1)
0 = 1. By (8) we

can write
z̄(1) + δ

(1)
0 1̄ + r̄

(4)
2� ≡ z̄(4) + δ

(4)
0 1̄ mod 2.

By (7)

z̄(1) + δ
(1)
0 1̄ + r̄

(2)
2� + r̄

(3)
2� ≡ z̄(4) + δ

(4)
0 1̄ mod 2.

Similarly, as above we can prove that

r̄
(2)
2� + r̄

(3)
2� ≡ 1̄ mod 2,

whence substituting the proper values for z̄(1), z̄(4) and δ
(1)
0 we obtain

1̄ + 1̄ ≡ δ
(4)
0 1̄ mod 2.

However, this yields z̄(4)≡ 0̄ mod 2 and δ
(4)
0 = 0.

With this we could prove the claim of part (vi). We should remark here, that
the careful reading of the proof gives a stronger result, namely that z̄(i)≡ 0̄ mod 2

and δ
(i)
0 = 0 hold simultaneously for exactly one i ∈ {1, 2, 3, 4}.

(vii) The above ensures us, that there exists an i, such that z̄(i)≡ 0̄ mod 2 and

δ
(i)
0 = 0. In the following, without loss of generality, we may suppose i = 1.

In this part of the proof we will prove that

u2s�+n ≡ un + 2s mod 2s+1 for all s = 1, 2, . . . and n = 0, 1, . . . (9)

(vii.a) By the definition of M we know that

M 2�ȳ ≡ ȳ mod 2 for all ȳ ∈ Zk+2.

Suppose that for a fixed s

M 2s�ȳ ≡ȳ mod 2s for all ȳ ∈ Zk+2

holds. Then

M 2s+1�ȳ − ȳ = (M 2s+1� −E)ȳ

= (M 2s� + E)(M 2s� −E)ȳ

≡ (M 2s� + E)2sx̄

≡ M 2s�2sx̄+ 2sx̄

≡ 2s+1x̄

≡ 0̄ mod 2s+1 with somex̄ ∈ Zk+2 for any ȳ ∈ Zk+2.

By induction
M 2s�ȳ ≡ ȳ mod 2s for any ȳ ∈ Zk+2 and s = 1, 2, . . . (10)
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(vii.b) Now we prove a similar, but somewhat stronger result than (10), assum-
ing ȳ = 1̄. Recall that in our case z̄ ≡ 0̄ mod 2, whence

M 2�1̄ ≡ 1̄ mod 4.

Suppose that for a fixed s

M 2s�1̄ ≡ 1̄ mod 2s+1.

Then by (10)
M 2s+1�1̄ = M 2s�M 2s�1̄

≡ M 2s�(1̄ + 2s+1ȳn)

≡ M 2s�1̄ +M 2s�2s+1ȳn

≡ 1̄ + 2s+1ȳn + 2s+1ȳn

≡ 1̄ mod 2s+2 with some ȳn ∈ Zk+2.

By induction
M 2s�1̄ ≡ 1̄ mod 2s+1 for all s = 1, 2, . . . (11)

(vii.c) Finally, we finish the proof of (9), assuming z̄ ≡ 0̄ mod 2 and δn = 1.
Hence by (4) δ0 = δn. By (3)

ū2�+n − ūn ≡ 2(1̄ + z̄ + δn1̄) ≡ 2 · 1̄ mod 4.

This means that

u2�+n ≡ un + 2 mod 4 for all n ∈ N.

Suppose, that s is fixed and

u2s�+n ≡ un + 2s mod 2s+1 for all n = 0, 1, . . .

Then by (10) and (11)

ū2s+1�+n − ūn = M 2s+1�ūn − ūn

= (M 2s+1� −E)ūn

= (M 2s� + E)(M 2s� −E)ūn

= (M 2s� + E)(2s · 1̄ + 2s+1ȳn)

= M 2s�2s · 1̄ + 2s · 1̄ +M 2s�2s+1ȳn + 2s+1ȳn

≡ 2 · 2s · 1̄ + 2 · 2s+1ȳn

≡ 2s+1 · 1̄ mod 2s+2, with some ȳn ∈ Zk+2,

which by induction proves (9).
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(viii) By Lemma 24, un is uniformly distributed modulo 2 with period length 2�.

Suppose that un is uniformly distributed modulo 2s with period length 2s�.
This yields

#{n | un ≡ i mod 2s , 0 ≤ n < 2s�} = � for all 0 ≤ i < 2s.

Obviously,

#{n | un ≡ i mod 2s, 0 ≤ n < 2s�} =

#{n | un ≡ i mod 2s+1, 0 ≤ n < 2s�}+
#{n | un ≡ i+ 2s mod 2s+1, 0 ≤ n < 2s�} for all 0 ≤ i < 2s.

Furthermore, by (9)

#{n | un ≡ i mod 2s+1, 0 ≤ n < 2s�} =

#{n | un ≡ i+ 2s mod 2s+1, 2s� ≤ n < 2s+1�}
and symmetrically

#{n | un ≡ i+ 2s mod 2s+1, 0 ≤ n < 2s�} =

#{n | un ≡ i mod 2s+1, 2s� ≤ n < 2s+1�} for all 0 ≤ i < 2s.

Hence, using (2)

#{n | un ≡ i mod 2s+1, 0 ≤ n <2s+1�} =

#{n | un ≡ i mod 2s+1 , 0 ≤ n < 2s�}+
#{n | un ≡ i mod 2s+1 , 2s� ≤ n < 2s+1�} =

#{n | un ≡ i+ 2s mod 2s+1, 2s� ≤ n < 2s+1�}+
#{n | un ≡ i+ 2s mod 2s+1, 0 ≤ n < 2s�} =

#{n | un ≡ i+2s mod 2s+1, 0 ≤ n < 2s+1�}
for all 0 ≤ i < 2s.

However,

#{n | un ≡ i mod 2s+1, 0 ≤ n < 2s+1�}+
#{n | un ≡ i+ 2s mod 2s+1, 0 ≤ n < 2s+1�} =

#{n | un ≡ i mod 2s, 0 ≤ n < 2s+1�} =

2 ·#{n | un ≡ i mod 2s+1, 0 ≤ n < 2s�} = 2 · �
for all 0 ≤ i < 2s,

whence

#{n | un ≡ i mod 2s+1, 0 ≤ n < 2s+1�} = � for all 0 ≤ i < 2s+1.
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By (vii)
u2s�+n �≡ un mod 2s+1,

thus 2s� is not a period length of u modulo 2s+1, but then by Lemma 26 the
minimal period length of u modulo 2s+1 is

2 · 2s� = 2s+1�.

Consequently, u is uniformly distributed modulo 2s+1.

By induction, this leads to the result, u is uniformly distributed modulo 2s

for all s = 1, 2, . . . and the period length of u modulo 2s is 2s� = 2sord(Q). �


����� 28� Experience shows that among the sequences u(i) there is only one,
which is uniformly distributed.

4. Algorithm and example

�����
��� 29� Now we have everything together for the construction of a
modulo 2s uniformly distributed linear recurring sequence with large period
length.

���� 1� Choose a suitable integer k and find a monic polynomial Q(x) ∈ Z[x]
of degree k, which reduction modulo 2 is irreducible in F2[x].

���� 2� Calculate the monic polynomials P (x) = pk+2x
k+2+pk+1x

k+1+· · ·+p0
and P ′(x) such that

P (x) ≡ (x2 − 1)Q(x) mod 2

and p0, . . . , pk+1 ∈ {0,−1} and

P ′(x) ≡ (x − 1)Q(x) mod 2

with similar condition on its coefficients. Determine

P1(x) = P (x), P2(x) = P1(x)− 2, P3(x) = P1(x)− 2x

and

P4(x) = P1(x)− 2x− 2.

���� 3� Calculate the companion matrices M(i) corresponding to the character-
istic polynomials Pi(x). Check M(i)1̄ ≡ 1̄ mod 4. Keep the two matrices which
satisfy the congruence and denote them by M1 and M2.

���� 4� Compute � = ord(Q) modulo 2 andM 2�
1 modulo 4. If M 2�

1 �≡ E mod 4,
then set M = M1 else M = M2.
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���� 5� Choose initial values of the sequence. This can be done by the fol-
lowing: assuming, we want to have s bits long random numbers, choose ran-
dom u0, u1, . . . , uk ∈ [0, 2s − 1]. Set these values as initial values of the linear
recurring sequence with characteristic polynomial P ′(x). Compute the next ele-
ment of the sequence u′

k+1. Find a random number uk+1 ∈ [0, 2s − 1] satisfying
uk+1 �≡ u′

k+1 mod 2. The set u0, u1, . . . , uk, uk+1 are suitable initial values for
the sequence.


����� 30� If k is such that 2k − 1 is a prime (Mersenne prime), then by
Proposition 13, ord(Q) = 2k − 1, i.e., maximal as a function of k.

If we choose P such that its coefficient are 0 and −1, except the leading coeffi-
cient which is 1, then the computation of the elements of the recurring sequence
is very fast, since there are no need for multiplication, only addition. Further, be-
cause of the inner representation of the numbers in computers, also the reduction
modulo 2s can be easily performed. (By a simple logical bit operation.)

Since we can obtain not only single digits, choosing s to be suitably large,
we may have a very effective method for constructing pseudo random sequences
of large numbers. (In the case we have to compose large numbers from sequence
of pseudo random bits, it is more difficult to prove uniform distribution, if we
can do it at all.)

The sequence of numbers with s binary digit can be regarded as a sequence
of s dimensional 0-1 vectors.

������� 31� In a small example we demonstrate the use of Algorithm 29.
In particular, we will follow the consideration of Remark 30.

���� 1� Let k = 3 and choose a random polynomial of degree 3, which is
irreducible modulo 2, say Q(x) = x3 + x2 + 1.

���� 2� We put

P (x) =x5 − x4 − x3 − 1 ≡ (x3 + x2 + 1)(x2 − 1) mod 2

and

P ′(x) = x4 − x2 − x − 1 ≡ (x3 + x2 + 1)(x − 1) mod 2.

Thus we have:

P1(x) = x5 − x4 − x3 − 1,

P2(x) = x5 − x4 − x3 − 3,

P3(x) = x5 − x4 − x3 − 2x− 1,

P4(x) = x5 − x4 − x3 − 2x− 3.
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���� 3� Following the steps of the algorithm, we compute the companion ma-
trices, corresponding to the proper recurrence relations:

M(1) =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
1 0 0 1 1

⎞
⎟⎟⎟⎟⎠

, M(2) =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
3 0 0 1 1

⎞
⎟⎟⎟⎟⎠

,

M(3) =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
1 2 0 1 1

⎞
⎟⎟⎟⎟⎠

, M(4) =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
3 2 0 1 1

⎞
⎟⎟⎟⎟⎠

.

Computing M(1)1̄, we obtain

M(1)1̄ =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
1 0 0 1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1
1
1
1
3

⎞
⎟⎟⎟⎟⎠

�≡

⎛
⎜⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎟⎠

mod 4.

By (iii) of the proof of the Theorem, we can set M1 = M(2) and M2 = M(3).

���� 4� By Remark 30, � = 23 − 1 = 7. We can use fast exponentiation for the
calculation of M 14

1 and we get

M 14
1 ≡

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

mod 4,

whence

M = M2 = M(3) =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
1 2 0 1 1

⎞
⎟⎟⎟⎟⎠

.
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���� 5� Suppose, that we want to construct a sequence of bytes. Then s = 8.
We can choose random values for the first 4 elements, say

u0 = 113, u1 = 5, u2 = 209 and u3 = 198.

Satisfying the recurrence relation defined by P ′(x), the next value of the se-
quence is

u′
4 = 113 + 5 + 209 ≡ 1 mod 2.

Hence u4 can be any number divisible by 2, say 66.

Thus we have constructed a linear recurring sequence, with recurrence relation

un+5 = un+4 + un+3 + 2un+1 + un

and initial values

u0 = 113, u1 = 5, u2 = 209, u3 = 198 and u4 = 66.

Reducing the sequence modulo 256, by the Theorem, we obtain a pseudo random
byte sequence, which has period length

7 · 256 = 1792.

There are the first few values of the sequence:

113 , 5 , 209 , 198 , 66 , 131 , 108 , 76 ,
2 , 150 , 243 , 141 , 208 , 139 , 215 , 111.

������� 32� In [1] B r e n t and Z i mm e rm a n n describes the framework of
a mod2 irreducible trinomial searching project. After the discovery of the new
Mersenne prime 274207281−1 by GIMPS on January 7, 2016, they started a search
for primitive trinomials of degree 74207281 over F2. By the beginning of May
they could prove that there are only 3 irreducible trinomials of degree 74207281
over F2, which means they are the only primitive ones. These trinomials are:

x74207281 + x9156813 + 1,

x74207281 + x9999621 + 1

and
x74207281 + x30684570 + 1.

Based on their results, you can find an example of a sequence with the period
length 274207345 at:

https ://arato.inf.unideb.hu/herendi.tamas/UDLRS/ExampleSequence.htm .
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