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AN EXTENSION OF THE DIGITAL METHOD

BASED ON b-ADIC INTEGERS

Roswitha Hofer — Ísabel Pirsic

ABSTRACT. We introduce a hybridization of digital sequences with uniformly
distributed sequences in the domain of b-adic integers, Zb, b ∈ N \ {1}, by using
such sequences as input for generating matrices. The generating matrices are then
naturally required to have finite row-lengths. We exhibit some relations of the
‘classical’ digital method to our extended version, and also give several examples
of new constructions with their respective quality assessments in terms of t,T

and discrepancy.

Communicated by Friedrich Pillichshammer

1. Introduction

Constructing sequences with good equidistribution properties is an important
problem in number theory and has applications to quasi-Monte Carlo methods
in numerical analysis (see, e.g., [2, 24]). In this context, the star discrepancy
appears as an important measure of uniform distribution. For a given dimension
s ≥ 1, let J be a subinterval of [0, 1]s and let x0, . . . ,xN−1 be N points in [0, 1]s

(we speak also of a point set P of N points in [0, 1]s). We define the counting
function A for the interval J by A(J ;P) := #{0 ≤ n < N : xn ∈ J}. Then
the star discrepancy of the point set P consisting of the points x0, . . . ,xN−1 is
defined by

D∗
N (P) = D∗

N (x0, . . . ,xN−1) = sup
J

∣∣∣∣A(J ;P)

N
− vol(J)

∣∣∣∣ ,
where the supremum is extended over all subintervals J of [0, 1]s with one vertex
at the origin.
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For a sequence S of points x0,x1, . . . in [0, 1]s, the star discrepancy of the
first N terms of S is defined as D∗

N (S) = D∗
N (x0, . . . ,xN−1). The sequence S is

called uniformly distributed if and only if D∗
N (S) → 0 as N → ∞.

We say that S is a low-discrepancy sequence if

ND∗
N(S) = O

(
(logN)s

)
for all N ≥ 2, (1)

where the implied constant does not depend on N . It is conjectured that
O
(
N−1(logN)s

)
is the least possible order of magnitude in N that can be ob-

tained for the star discrepancy of a sequence of points in [0, 1]s.

Probably the most widespread technique for constructing low-discrepancy
sequences is the digital method which was introduced by N i e d e r r e i t e r [23]
and later slightly generalized in [26].

��������	 1
 Choose a dimension s ∈ N, a finite commutative ring R with
identity and of order b, and set Zb = {0, 1, . . . , b− 1}. Choose
(i) bijections ψr : Zb → R for all integers r ≥ 0, satisfying ψr(0) = 0 for all

sufficiently large r;

(ii) elements c
(i)
j,r ∈ R for 1 ≤ i ≤ s, j ≥ 1, r ≥ 0;

(iii) bijections λi,j : R→ Zb for 1 ≤ i ≤ s, j ≥ 1.

The ith component x
(i)
n of the nth point xn of the sequence (xn)n≥0 is defined

using the base b representation of n =
∑∞

r=0 arb
r with ar ∈ Zb and ar = 0 for

all sufficiently large r as follows.

x(i)
n :=

∞∑
j=1

λi,j

( ∞∑
r=0

c
(i)
j,rψr(ar)

)/
bj . (2)

Note that the inner sum in (2) is a finite sum because of the choice that
ψr(0) = 0 for all sufficiently large r and the fact that ar = 0 for all sufficiently
large r.

The presentation of the digital method often uses the concept of infinite gen-

erating matrices, C(i) :=
(
c
(i)
j,r

)
j≥1,r≥0

∈ RN×N0 for i ∈ {1, . . . , s} with the con-

struction given as follows. Set

C(i) ·

⎛
⎜⎝ψ0(a0)
ψ1(a1)

...

⎞
⎟⎠ =:

⎛
⎜⎜⎝
y
(i)
n,1

y
(i)
n,2
...

⎞
⎟⎟⎠ .

Then,

x(i)
n =

∞∑
j=1

λi,j

(
y
(i)
n,j

)
b−j .
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Obviously, the challenge is to find appropriate elements c
(i)
j,r ∈ R such that

the generated sequence (xn)n≥0 is a low-discrepancy sequence.

Most of the actual constructions choose the ring R to be a finite field Fq with
prime-power cardinality q. This has the advantage that basic linear algebra is
available and the distribution of the generated sequence amongst elementary
intervals is related to the rank-structure of the generating matrices.

An elementary interval in base b is an interval I ⊂ [0, 1]s of the form

I =

s∏
i=1

[
ai
bdi

,
ai + 1

bdi

)

with nonnegative integers di, 0 ≤ ai < bdi for i = 1, . . . , s.

The distribution amongst elementary intervals is relevant when determining
the quality-parameter function T or the quality parameter t of the generated
sequence when it is considered as a (T, s)-sequence in base b in the sense of
L a r c h e r and N i e d e r r e i t e r [18] or a (t, s)-sequence in base b in the sense
of N i e d e r r e i t e r [23]. Those concepts later have been modified by includ-
ing truncation in [25, 27, 28] in order to meet certain requirements in special
constructions. Throughout the paper [x]b,m :=

∑m
j=1 xjb

−j denotes the m-digit

truncation of the real x ∈ [0, 1] in base b with a specific given base b represen-
tation x =

∑∞
j=1 xjb

−j , where the case that all but finitely many xj = b − 1 is
explicitly admissible as well. For a vector the base b m-digit truncation is applied
by coordinates.

��
������� 1
 Let b, t,m be integers satisfying b ≥ 2 and 0 ≤ t ≤ m. A (t,m, s)-
-net in base b is a point set of bm points in [0, 1)s such that every elementary
interval I ⊆ [0, 1)s in base b with volume bt−m contains exactly bt points of the
point set.

Let T : N0 → N0 satisfying T(m) ≤ m for all m ∈ N0. A sequence x0,x1, . . .
of points in [0, 1]s is called a (T, s)-sequence in base b if for all integers k ≥ 0
and m satisfying T(m) < m the points [xn]b,m with kbm ≤ n < (k + 1)bm

form a (T(m),m, s)-net in base b. As a special case, such a sequence is called
a (t, s)-sequence in base b with t ∈ N0 if it is a (T, s)-sequence in base b with
T(m) ≤ t for all m ≥ 0.

A (T, s)-sequence in base b is uniformly distributed if limm→∞
(
m−T(m)

)
=∞.

In particular, every (t, s)-sequence is uniformly distributed. Furthermore, if(
1
r

∑r
m=1 b

T(m)
)
r∈N

is bounded, then the (T, s)-sequence in base b is a low-

-discrepancy sequence. Consequently, every (t, s)-sequence is a low-discrepancy
sequence.
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It is well-known that the digital method in Algorithm 1 applied to a finite
field with cardinality q constructs a digital (T, s)-sequence over Fq if and only
if the following condition holds.

��������� 1
 For every integer m satisfying m > T(m) and all nonnegative
integers d1, . . . , ds ≥ 0 with 1 ≤ d1+ · · ·+ds ≤ m−T(m), the (d1+ · · ·+ds)×m
matrix over Fq formed by the row vectors(

c
(i)
j,0, c

(i)
j,1, . . . , c

(i)
j,m−1

)
∈ Fm

q with 1 ≤ j ≤ di and 1 ≤ i ≤ s,

has rank d1 + · · ·+ ds.

Analogously, Algorithm 1 produces a (t, s)-sequence if Condition 1 holds with
T(m) = t for m ≥ t and T(m) = m else. Note that Algorithm 1 applied to a
finite field with cardinality q generates a uniformly distributed sequence if and
only if the following condition holds.

��������� 2
 For every choice of d1, . . . , ds ≥ 0 (not all zero) the rows

c
(i)
j =

(
c
(i)
j,r

)
r≥0

, 1 ≤ j ≤ di, 1 ≤ i ≤ s

are linearly independent over Fq.

For more details on (T, s)-sequences and their digital versions we refer the
interested reader to [2, 24].

For reasons related to the uniform distribution of mixed-base digital sequences
so-called finite-row generating matrices, i.e., matrices having in each row only
finitely many nonzero entries, have been the subject of investigation. We refer
to [6, 7, 9, 10, 12, 13, 14] for examples and constructions of finite-row generating
matrices and more about their motivation. Note that the finite-row property

of the matrices, i.e., for every i = 1, . . . , s and j ≥ 1, c
(i)
j,r = 0 for all sufficiently

large r, ensures the finiteness of the inner sum

∞∑
r=0

c
(i)
j,rψr(ar) in equation (2).

Hence, when using finite-row generating matrices in the digital method, any
sequence of bijections (ψr)r≥0 can be used and the index sequence for the con-
struction can in accordance be chosen freely as any sequence of b-adic integers,
i.e., Zb, instead of just the nonnegative integers. Importantly, note that b is not
required to be prime.

This yields the following alternative algorithm.
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��������	 2
 Choose a dimension s ∈ N, a finite commutative ring R with
identity and of order b, and set Zb = {0, 1, . . . , b− 1}. Choose

(i) bijections ψr : Zb → R for all integers r ≥ 0;

(ii) elements c
(i)
j,r ∈ R for 1 ≤ i ≤ s, j ≥ 1, r ≥ 0, satisfying c

(i)
j,r = 0 for all

sufficiently large r for fixed i, j;

(iii) bijections λi,j : R→ Zb for 1 ≤ i ≤ s, j ≥ 1.

(iv) a sequence (sn)n≥0 in Zb.

The ith component x
(i)
n of the nth point xn of the sequence (xn) is defined using

the b-adic representation of sn =
∑∞

r=0 arb
r with ar ∈ Zb as follows.

x(i)
n =

∞∑
j=1

λi,j

( ∞∑
r=0

c
(i)
j,rψr(ar)

)
/bj . (3)

Of course, one could generalize Algorithm 1 to subsequences indexed by
(sn)n≥0 ∈ N

N0
0 , whose elements have then all finite b-adic representations.

Such subsequences were studied already, e.g., in [5, 8, 9, 11, 15]. The advantage
of our Algorithm 2 is that this sequence (sn)n≥0 can be chosen over the b-adic
integers Zb. E.g., we can consider the sequence (−n− 1)n≥0 or (n/(b − 1))n≥0,
whose elements do not have finite b-adic representations. So for example for
one-dimensional sequences constructed with the identity matrix, we can achieve
sequence points with infinite digits, going beyond a simple digital or b-adic shift
(as, e.g., considered in [4]). This also transports to higher dimensions. Hence
Algorithm 2 is a considerable generalization of Algorithm 1.

The first objective is to have a criterion for uniform distribution of the so con-
structed sequences. This objective will be addressed in Section 3 of this paper.
Of theoretical interest is the fact that Algorithm 2 transports uniform distri-
bution in the b-adic integers to uniform distribution in the unit cube [0, 1]s

by a linear transformation.

Having uniform distribution the next natural question will be for estimates
of the discrepancy of such sequences. Section 4 considers the discrepancy and
quality parameter function T for sequences generated by Algorithm 2 using some
specific (sn)n≥0 over Zb. This way we obtain low-discrepancy sequences, whose
performance we will investigate and discuss numerically in Section 5.

The subsequent Section 2 recalls definitions pertaining to b-adic numbers and
introduces some auxiliary results, that will be used in Section 3 and 4.
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2. Relevant background on b-adic numbers

An introduction in and construction of b-adic integers and numbers for ar-
bitrary integers b ≥ 2 can, e.g., be found in [19]. Uniform distribution in the
b-adic integers was introduced by M e i j e r [20], whose definitions we will em-
ploy and first briefly recall here. We use the name b-adic rather than g-adic, i.e.,
the letter b, to signify a not necessarily prime digit base, as is customary in the
literature on uniform distribution modulo 1.

2.1. b-adic numbers and integers

(Detailed proofs for the claims in this section can be found in [20].)

Analogously to the case of p-adic numbers, b-adic numbers can be introduced
as completion of Q, only in this case not by a valuation (using the definition
of M e i j e r , in the sense of an ‘absolute value’), but the following pseudo-
valuation.

��
������� 2
 Let b ≥ 2 be a positive integer and a ∈ Q a rational. The prime
decompositions of b, a, shall be given as

b = pβ1

1 . . . p
βr
r , a = ±pα1

1 . . . pαs
s , αi ∈ Z; r, s, βi ∈ N.

Then the b-adic pseudo-valuation is defined by

|a|b := max
i,pi|b

b−αi/βi, |0|b := 0.

The ‘pseudo’ part signifies that the multiplicative identity demanded for a
valuation only holds up to inequality, i.e.,

|mn|b ≤ |m|b|n|b.
Nevertheless, d(x, y) := |x− y|b is a (non-archimedean) metric, so the following
definition is valid.

��
������� 3
 Let b ≥ 2 be a positive integer. The ring obtained by completion
of Q with respect to the b-adic pseudo-valuation shall be called the ring Qb of b-
-adic numbers, and accordingly we define the subset

Zb :=
{
a : a ∈ Qb, |a|b ≤ 1

}
of b-adic integers.

We remark the following observations:

(1) Clearly, Q ⊂ Qb, Z ⊂ Zb, and Zb is, indeed, a subring of Qb.

(2) 1/b < |a|b ≤ 1 for a ∈ N, 1 ≤ a < b, where for composite b, values less
than 1 can indeed occur, e.g.,

|6|24 = |18|24 = 1/
3
√
24, |12|24 = 1/

3
√
242.
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(3) For b prime, the definitions coincide with the usual notions. For composite
b, we have the decomposition

Qb
∼= Qp1

× · · · ×Qpr
,

using the notation of Definition 2.

(4) As in the p-adic case, each a ∈ Qb has a unique representation

a =

∞∑
i=k0

aib
i,

k0 ∈ Z, ai ∈ {0, . . . , b− 1}, ak0
�= 0, and we have |a|b = b−k0 |ak0

|b.
For b-adic integers, k0 ≥ 0, i.e., we get a representation as a formal power
series in b. Furthermore, for all a ∈ N0 the digit expansion in base b and
the b-adic representation coincide.

(5) The number (in Q) obtained by truncation of the unique representation

of a number a ∈ Qb at index k ∈ Z is defined by τk(a) :=
∑k−1

i=k0
aib

i.

A b-adic integer a is a unit if and only if gcd
(
τ1(a), b

)
= 1. Moreover, if a

is a unit, then |a|b = |a−1|b = 1 (see [20, Lemma 4]).

2.2. Uniform distribution in Zb

First we recall the definition of uniform distribution in the rational integers Z.

��
������� 4
 Let ω = (xn)n≥0 ∈ N
N0
0 be a sequence of nonnegative integers,

and m ∈ N, m > 1. If for any a, 0 ≤ a < m we have

lim
N→∞

#{n : xn ≡ a mod m, n < N}
N

=
1

m
,

ω is called uniformly distributed (u.d.) modulo m.

If ω is u.d. modulo m for any m > 1, it is called uniformly distributed in Z.

The b-adic case models this very closely. However, here we require the ‘local
uniformity’ only at powers of b.

��
������� 5
 Let ω = (xn)n≥0 ∈ ZN0

b be a sequence of b-adic integers, and

k ∈ N0. If for any a, 0 ≤ a < bk we have

lim
N→∞

#{n : |xn − a|b ≤ b−k, n < N}
N

=
1

bk
,

ω is called k-uniformly distributed in Zb.

If ω is k-uniformly distributed for any k ≥ 1, it is called uniformly distributed
in Zb.
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For reference we state the precise relation between the two notions as a lemma
(cf. Corollary 1 in [21]). It is easily seen by the first observing that

τk(x) ≡ a mod bk ⇐⇒ |x− a|b ≤ b−k for x ∈ Zb, a ∈ N0, a < bk, k ∈ N0.

��		� 1
 A sequence ω = (xn)n≥0 ∈ ZN0

b is u.d. in Zb if and only if the

sequences
(
τk(xn)

)
n≥0

∈ NN0
0 are u.d. modulo bk for every k ≥ 1.

Examples of uniformly distributed sequences in Z are the following as included
in [20] and [17, Chapter 5]. By the previous definitions and lemma they can also
be regarded as u.d. in Zb for any b ≥ 2.

(1) (�αn�)n≥0 for irrational α ∈ R \Q.

(2) (�f(n)�)n≥0 for f ∈ R[x], where at least one coefficient that is not the
constant is irrational.

(3) (�αnσ�)n≥0 for α ∈ R, σ ∈ R+ \ N.
From [20, Theorem 2] we know that (n)n≥0 is u.d. in Zb. An example of how
to obtain new u.d. sequences from other u.d. sequences is also given by [20,
Theorem 3].

��		� 2
 Let a, c ∈ Zb and (xn)n≥0 be a sequence u.d. in Zb. Then the sequence
(axn + c)n≥0 is also u.d. in Zb if and only if a is a unit.

Consequently, (an+ c)n≥0 is u.d. in Zb, if a is a unit.

���	��� 1
 Let a, c, d be b-adic integers such that |a|b < 1 and c is a unit.
Then the sequence (an2 + cn + d)n≥0 is uniformly distributed in Zb. (See [20,
Theorem 5]). Furthermore, the sequence (n2)n≥0 is not uniformly distributed
in Zb, which can be seen by quadratic residues modulo bk.

2.3. The b-adic representation of b-adic integers

Obviously, the b-adic representation of a nonnegative integer corresponds to
its base b digit expansion. This is not true for the negative integers, as is shown,
e.g., by the b-adic representation of −1 =

∑∞
i=0(b − 1)bi. We recall the general

situation and add some further details:

��		� 3
 Let n be a positive (rational or b-adic) integer.

– The b-adic representation of −n is related to the b-adic representation
(or expansion) of n =

∑∞
i=r aib

i; r ∈ N0, ar �= 0 via

−n = (b− ar)b
r+

∞∑
i=r+1

(b− 1− ai)b
i

(where r = min{r′ ∈ N0 : ar′ �= 0}, i.e., |n|b = |ar|bb−r).
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– Let k, l ∈ N0 and M = {−n : kbl < n ≤ (k + 1)bl}. The b-adic integers
in M share the same digits in their b-adic representations from index l on
and run through all possible values in their first l digits.
More precisely, if we denote the b-adic representation of a b-adic integer z
by z =

∑∞
i=0 aib

i. Then (al, al+1, al+2, . . .) ∈ Z∞
b is equal for every integer

inM and #{(a0, . . . , al−1) : z ∈M} = #M = bl. (i.e.,M is the equivalent
of a b-adic block, in negative b-adic integers).

P r o o f. The first part is easily verified by simply adding τk(n) and τk(−n)
(i.e., insert the given representation for −n) and observing that the sum, bk,
converges to 0 in the b-adic metric as k goes to infinity, while the summands
converge to n and −n, respectively.

Regarding the second part, first note that for n in the given range we always
have r = r(n) ≤ l and r = l iff n = (k + 1)bl. We denote the b-adic expansion
(or representation) of k by k =

∑
i≥0 ki+lb

i.

For r < l, it is evident that the digits of all n in the given range are constant
from index l onwards and in fact equal to kl, kl+1, . . . Thus the digits of −n
with index at least l are also constant and equal to b − 1 − kl, b − 1 − kl+1, . . .
Furthermore, the mapping between the (full range of) digits of n and −n is
self-inverse. In particular it is injective on the first l digits. There is, however, no
n with r(n) < l such that all of the first l digits are 0. Therefore the statement
is proved, if we can show that the remaining case, r = l, n = (k + 1)bl, maps to
the zero vector in the first l digits and, more importantly, to the same trailing
digits.

For this case, we set r′ ∈ N0 such that

kl = kl+1 = · · · = kl+r′−1 = b− 1 �= kl+r′

(where the case r′ = 0 may occur if kl �= b− 1). Then, obeying the carry,

(k + 1)bl = (kl + 1)bl +
∑
i>0

kl+ib
l+i = (kl+r′ + 1)bl+r′+

∑
i>0

kl+r′+ib
l+r′+i,

so the last right hand side is again a valid expansion (representation). By our pro-
posed formula this maps to(

b− (kl+r′ + 1)
)
bl+r′+

∑
i>0

(b− 1− kl+r′+i)b
l+r′+i =

∑
i≥0

(b− 1− kl+i)b
l+i,

giving the desired form and concluding the argument. �
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3. Relations between Algorithms 1 and 2

������	 1
 Let s be a dimension, R = Fq be a finite field with cardinality q,

and C(1), . . . , C(s) ∈ FN×N0
q be finite-row generating matrices. Let (sn)n≥0 be a

uniformly distributed sequence in Zq.

If C(1), . . . , C(s) generate a uniformly distributed sequence via Algorithm 1,
then Algorithm 2 based on these matrices and the sequence (sn)n≥0 gives a uni-
formly distributed sequence in [0, 1]s.

P r o o f. To prove the uniform distribution we show that every elementary in-
terval contains the correct portion of points in the limit. Let

I =

s∏
i=1

[
ai
qdi

,
ai + 1

qdi

)
with nonnegative integers d1, . . . , ds (not all zero) and a1 < qd1 , . . . , as < qds.

The finite-row property ensures that there exists an L such that c
(i)
j,r = 0 for all

i = 1, . . . , s, 1 ≤ j ≤ di and r ≥ L. Hence τL(sn) determines whether xn of
Algorithm 2 is included in I or not. Since Condition 2 holds true we know that
exactly qL−(d1+···+ds) residue classes r1, . . . , rqL−(d1+···+ds) modulo qL correspond
to the elementary interval I. The uniform distribution of (sn)n≥0 in Zq ensures
that

(
τL(sn)

)
n≥0

is uniformly distributed modulo qL. Therefore,

A(N ; I)

N
− λ(I)

=
1

N

qL−(d1+···+ds)∑
k=1

#
{
0 ≤ n < N : τL(sn) ≡ rk (mod qL)

}− 1

qd1+···+ds

and thus

lim
N→∞

(
A(N ; I)

N
− λ(I)

)
= qL−(d1+···+ds)

1

qL
− 1

qd1+···+ds
= 0. �

The converse of Theorem 1 is not true. Let sn = n2, then the sequence
(sn)n≥0 is not uniformly distributed in Zq by Example 1. But the one-dimen-
sional sequence generated by the finite-row matrix

C(1) =

⎛
⎜⎜⎜⎝
1 1 0 0 0 0 0 0 . . .
0 0 1 1 0 0 0 0 . . .
0 0 0 0 1 1 0 0 . . .
...

...
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎠ ∈ F

N×N0
2

via Algorithm 2 is a uniformly distributed digital sequence in base 2 (see [11]).
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In the next theorem, we will find conditions on the generating matrices such
that the uniform distribution of (sn)n≥0 is sufficient and necessary for the uni-
form distribution of the digital sequence. For stating the next result we introduce
the term optimal row-lengths for the generating matrices. Let

C1, . . . , Cs ∈ FN×N0
q

be finite-row generating matrices. We measure the length of a row c
(i)
j by

sup
{
r ∈ N0 : c

(i)
j,r �= 0

}
+ 1.

In [10] it was shown that the uniform distribution of the sequence implies that

for every j there exists i ∈ {1, . . . , s} such that the length of c
(i)
j is at least sj.

Therefore, we say that C1, . . . , Cs ∈ FN×N0
q have optimal row-lengths if for all

i ∈ {1, . . . , s}, j ≥ 1 the length of c
(i)
j is at most sj.

������	 2
 Let s > 0, R = Fq be a finite field with cardinality q, and C(1), . . .

. . . , C(s) ∈ FN×N0
q be finite-row generating matrices having optimal row-lengths

and yielding a (T, s)-sequence with optimal quality parameter T ≡ 0 via Algo-
rithm 1. Let (sn)n≥0 be a sequence in Zq. Then Algorithm 2 produces a uniformly
distributed sequence if and only if (sn)n≥0 is uniformly distributed in Zq.

P r o o f. Sufficiency of the uniform distribution of (sn)n≥0 in Zq follows from
Theorem 1. To prove necessity we regard elementary intervals of the following
form

I =

s∏
i=1

[
ai
qd
,
ai + 1

qd

)
, (4)

where d ∈ N and 0 ≤ ai < qd for i = 1, . . . , s. We denote the base q representation
of ai

qd
by

ai
qd

=
ai,1
q

+
ai,2
q2

+ · · ·+ ai,d
qd

and the q-adic representation of sn, for some fixed n, by

sn =

∞∑
r=0

arq
r.

The optimal row-lengths yield the equivalence of xn ∈ I and
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(1)
1,0 · · · c

(1)
1,ds−1

...
...

c
(1)
d,0 · · · c

(1)
d1,ds−1

...
...

c
(s)
1,0 · · · c

(s)
1,ds−1

...
...

c
(s)
d,0 · · · c

(s)
ds,ds−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
:=C

⎛
⎜⎝ ψ0(a0)

...
ψds−1(ads−1)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ−1
1,1(a1,1)

...
λ−1
1,d1

(a1,d)
...

λ−1
s,1(as,1)

...
λ−1
s,ds

(as,d)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Fds
q ,

with the maps ψi, λi,j of Algorithm 1. Note that C is a square matrix with full
row-rank ds, and that there are qds elementary intervals of the form (4) which
are in one to one correspondence with the elements in Fds

q . Further, note that
the value of τsd(sn) determines whether xn is included in I or not. Now the uni-
form distribution of (xn)n≥0 ensures that

(
τsd(sn)

)
n≥0

is uniformly distributed

modulo qsd. Since this is valid for every d ∈ N, we have that
(
τk(sn)

)
n≥0

is

uniformly distributed modulo qk for every k ∈ N (clearly, uniform distribution
propagates to lower powers). Finally by Lemma 1, this is equivalent to (sn)n≥0

being uniformly distributed in Zq. �
���	��� 2
 Constructions and examples of generating matrices having optimal
row-lengths and satisfying Condition 1 for T ≡ 0 are given, e.g., in [6, 10, 13].

One specific example of suitable matrices are the Stirling matrices, con-
structed in analogy to the classical Pascal or Faure matrices but with Stirling
numbers of the first kind replacing the binomials. Here are depicted matrices
in base 5 (see Figure 1). The finite row length is clearly visible. The apparent
fractal structure and other aspects are explored in more detail in [13].

Figure 1. Matrices in base 5.

��	��� 1
 Theorem 2 in case of s = 1 and C(1) chosen to be the identity matrix
represents a generalization of the one-dimensional case of [5, Theorem 4.2.(iv)].
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4. Discrepancy and quality-parameter function T for
Algorithm 2 using some specific (sn)n≥0

The probably most basic setting for (sn)n≥0 is to choose sn = n. Trivially,
in this case Condition 1 is also qualified to determine the quality parameter
or function, t or T, respectively, of the sequence constructed by Algorithm 2.
Next, we look at negative integers as the underlying sequence.

����������� 1 (The case sn = −n− 1 )
 Let s be a dimension, q be a prime
power, R = Fq, and C

(1), . . . , C(s) ∈ FN×N0
q be finite-row generating matrices.

If C(1), . . . , C(s) generate a (T, s)-sequence in base q via Algorithm 1, then
Algorithm 2 based on these matrices and the sequence (sn)n≥0 = (−n − 1)n≥0

gives a (T, s)-sequence in base q.

P r o o f. Let k,m be any nonnegative integers such that T(m) < m. We have to
prove that [xn]q,m with n = kbm, kbm+1, . . . , kbm+bm−1 forms a

(
T(m),m, s

)
-

-net in base q. We regard an elementary interval of the form

I =

s∏
i=1

[
ai
qdi

,
ai + 1

qdi

)
with integers

di ≥ 0, 0 ≤ ai < qdi for i = 1, . . . , s satisfying d1+ · · ·+ds = m−T(m).

We use the base q digit expansion

ai/q
di =

di∑
j=1

ai,j
qj

.

Regarding Algorithm 2 we see that [xn]q,m∈I (for some fixed n) if and only if⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(1)
1,0 c

(1)
1,1 · · ·

...
...

c
(1)
d1,0

c
(1)
d1,1

· · ·
...

...

c
(s)
1,0 c

(s)
1,1 · · ·

...
...

c
(s)
ds,0

c
(s)
ds,1

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝ψ0(a0)
ψ1(a1)

...

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ−1
1,1(a1,1)

...
λ−1
1,d1

(a1,d1
)

...
λ−1
s,1(as,1)

...
λ−1
s,ds

(as,ds
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where we used the notation −n− 1 =
∑∞

r=0 arq
r. Equivalently,
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(1)
1,0 · · · c

(1)
1,m−1

...
...

c
(1)
d1,0

· · · c
(1)
d1,m−1

...
...

c
(s)
1,0 · · · c

(s)
1,m−1

...
...

c
(s)
ds,0

· · · c
(s)
ds,m−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝ ψ0(a0)

...
ψm−1(am−1)

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ−1
1,1(a1,1)

...
λ−1
1,d1

(a1,d1
)

...
λ−1
s,1(as,1)

...
λ−1
s,ds

(as,ds
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(1)
1,m c

(1)
1,m+1 · · ·

...
...

c
(1)
d1,m

c
(1)
d1,m+1 · · ·

...
...

c
(s)
1,m c

(s)
1,m+1 · · ·

...
...

c
(s)
ds,m

c
(s)
ds,m+1 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝ ψm(am)
ψm+1(am+1)

...

⎞
⎟⎠ .

Lemma 3 ensures that all terms on the right hand side are independent of n for
the range n = kbm, kbm+ 1, . . . , kbm+ bm− 1 and also that the vector on the
left hand side spans Fm

q as n ranges through n = kbm, kbm+1, . . . , kbm+ bm− 1.

Since Condition 1 holds we know that the system has exactly qm−T(m) solutions
for n = kbm, kbm+ 1, . . . , kbm+ bm− 1. �

Proposition 1 immediately implies the following corollary.

��������� 1 (The case sn = (−1)n�(n + 1)/2�)
 Let s be a dimension, q be
a prime power, R = Fq, and C(1), . . . , C(s) ∈ FN×N0

q be finite-row generating
matrices.

If C(1), . . . , C(s) generate a (T, s)-sequence in base q via Algorithm 1, then
Algorithm 2 with the same matrices and the underlying sequence

(sn)n≥0 =
(
(−1)n�n+ 1

2
�)

n≥0

produces a sequence, where the two subsequences (x2n)n≥0 and
(
x2n+1

)
n≥0

are

(T, s)-sequences in base q.
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For stating the next result we introduce the magnitude Δb(t,m, s), which is
defined to be an upper bound for D∗

N (P) holding for every (t,m, s)-net P in
base b

bmD∗
bm(P) ≤ Δb(t,m, s).

In this paper we do not aim to give the most precise estimate but include for
the sake of completeness exemplarily the well-known bound of Niederreiter for
b > 2 (see [24, Theorem 4.5])

Δb(t,m, s) = bt
s−1∑
i=0

(
s− 1

i

)(
m− t

i

)⌊
b

2

⌋i
.

����������� 2 (The case sn = n+α)
 Let s be a dimension, q be a prime power,
R = Fq, and C

(1), . . . , C(s) ∈ FN×N0
q be finite-row generating matrices satisfying

the quality parameter function T : N0 → N0 in Condition 1. Furthermore, let α
be a p-adic integer with representation

α =

∞∑
i=0

aiq
i and set (sn)n≥0 = (n+ α)n≥0.

Then the discrepancy of the first N points of the sequence S produced by Algo-
rithm 2 satisfies

NDN (S) ≤ (q − a0)Δq

(
T(0), 0, s

)
+

r−1∑
j=1

(q − 1− aj)Δq

(
T(j), j, s

)
+

r∑
j=0

bjΔq

(
T(j), j, s

)
,

where r = �logq(N)� and
∑r

j=0 bjq
j is the base q representation of

N ′ = N − qr+

r−1∑
j=0

ajq
j .

P r o o f. First collect the digits aj with 1 ≤ j ≤ r − 1 of α satisfying aj �= q − 1
and denote them by ak(1), ak(2), . . . , ak(j′), where 1 ≤ k(1) < k(2) < · · · <
k(j′) ≤ r − 1 and j′ is the number of such digits. Observe that

qr −
r−1∑
i=0

aiq
i = q − a0 +

j′∑
i=1

(
q − 1− ak(i)

)
qk(i).

Bearing in mind the basic fact that if dividing a point set P of N points into
l disjoint sets P1 with N1 points, . . . , Pl with Nl points, then

NDN (P) ≤
l∑

w=1

NwDNw
(Pw)

— we divide the first qr −∑r−1
i=0 aiq

i points as follows.
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We start with the first q − a0 points which are obviously q − a0 instances of(
T (0), 0, s

)
-nets in base q.

For the next step we observe that the q-adic expansions of the next qk(1) points
have all equal digits at position k(1) and larger, and the digits at positions
0 to k(1) − 1 span {0, 1, . . . , q − 1}k(1). Hence they form via Algorithm 2 a(
T
(
k(1)

)
, k(1), s

)
-net in base q. We have n in the range

q − a0, q − a0 + 1, . . . ,q − a0 + qk(1) − 1

and thus n+ α of the form

A1, 1 +A1, . . . ,q
k(1) − 1 +A1

with A1 :=
(
ak(1)+1

)
qk(1)+

∑∞
i=k(1)+1 aiq

i. Now analogous argumentation as in

the proof of Proposition 1 imply that these qk(1) points form a
(
T(k(1)), k(1), s

)
-

-net in base q. Altogether we obtain step by step (q−1−ak(1)) nets of this form.

Absolutely identically we obtain q − 1 − ak(2),
(
T(k(2)), k(2), s

)
-nets in base

q, . . . , and q − 1 − ak(j′),
(
T(k(j′)), k(j′), s

)
-nets in base q. This explains the

first two terms in the upper bound.

It remains to estimate the discrepancy of the residual N ′ = N−qr+∑r−1
j=0 ajq

j

points. We denote the base q representation of N ′ by N ′ =
∑r

j=0 bjq
j . Now we

collect the digits bj with 1 ≤ j ≤ r of N ′ satisfying bj �= 0 and denote them by
bk(1), bk(2), . . . , bk(j′′), where 1 ≤ k(1) < k(2) < . . . < k(j′′) ≤ r, and j′′ is the
number of such digits.

We regard the next qk(j
′′) points, i.e., n in the range

qr −
r−1∑
i=0

aiq
i, qr −

r−1∑
i=0

aiq
i + 1, . . . , qr −

r−1∑
i=0

aiq
i + qk(j

′′)−1.

Now adding α yields

A2, 1 +A2, . . . , q
k(j′′) − 1 +A2,

where A2 := (ar + 1)qr +
∑∞

i=r+1 aiq
i. As above the b-adic digits for powers

with exponents at least k(j′′) are fixed and the first k(j′′) digits span {0, 1, . . .
. . . , q− 1}k(j′′). Hence those point sets form a

(
T (k(j′′)), k(j′′), s

)
-net in base q.

Step by step we obtain bk(j′′) such nets and we obtain the first summand
in the second sum of the theorem. Again, step by step, we obtain the last sum
of the upper bound. �

��������� 2
 If, furthermore, T(m) ≤ t with t ∈ N0 in Proposition 2, then S
is a low-discrepancy sequence.
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P r o o f. In this case we have Δq(t, j, s) ≤ cq,s,tj
s−1 + O(js−2) for all j ≥ 0,

where the implied constant is independent of j. (See [3] for the best known
constant cq,s,t.) Using this bound in the upper bound of Proposition 2 we obtain
the desired result NDN (S) = O((logN)s). �

��������� 3 (sn = 1
vn + α)
 Let s be a dimension, q be a prime power,

t be a nonnegative integer, R = Fq, and C(1), . . . , C(s) ∈ FN×N0
q be finite-row

generating matrices satisfying the quality parameter function T ≡ t in Condition
1. Furthermore, let α be a p-adic integer and v ∈ N satisfying gcd(v, q) = 1.
Set (sn)n≥0 = ( 1vn + α)n≥0. Then the sequence S produced by Algorithm 2 is
a low-discrepancy sequence.

P r o o f. The strategy is to split the sequence into v subsequences(
s(1)n

)
n≥0

,
(
s(2)n

)
n≥0

, . . . ,
(
s(v)n

)
n≥0

of the form
s(1)n = n+ α =: n+ α1,

s(2)n = n+
1

v
+ α =: n+ α2,

...

s(v)n = n+
(v − 1)

v
+ α =: n+ αv.

Since gcd(q, v) = 1, all of the fractions and thus all of α1, α2, . . . , αv are q-adic
integers. Then all v subsequences are low-discrepancy sequences by Corollary 2
and the result follows. �

��	��� 2
 Previously, subsequences of digital sequences produced by Algo-
rithm 1 have been investigated, see, e.g., [8, 9, 11, 15]. In particular, subsequences
indexed by arithmetic progressions were discussed in [8, 9]. Unfortunately, the
discrepancy of such sequences is a difficult subject and there exist negative re-
sults such as [8, Example 5]. Hence the obvious generalization of Corollary 3
to sn = u

vn+ α would be a difficult task as well.

5. Numerical Experiments and Discussion

The following plots give a comparison between three different input sequences:

– first, the classical sequence sn = n,

– then the alternating sequence sn = (−1)n�(n+ 1)/2� and

– finally, the sequence sn = (2n− 1)/4 in Z5.
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The generating matrices are the first two Stirling matrices in base 5 seen in
Example 2 and the number of points is 500.

Figure 2. A comparison between three different input sequences.

We have also calculated explicitly the star discrepancy for some newly con-
structed sequences. We found similar asymptotic behavior to the classical con-
structions but with an improvement in the constants. In Figure 3 we look at
one-dimensional sequences constructed with the identity matrix over F2 and
used as input sequences in Z2:

sn = n (black line),

sn = (−1)n�(n+ 1)/2� (gray line), and

sn = n− 2/5 (blue line).

We graphed the star discrepancy of the first N points, divided by the asymptotic
logN/N , and smoothed it by a moving average over ten points. The improvement
in the constant can be clearly observed and, therefore, it is an interesting topic
for future research. Furthermore, it is interesting to note that the construction
corresponding to the gray line also describes the symmetrized binary van der
Corput sequence. Symmetrization has been shown to improve the asymptotic
behavior of the Lp-discrepancy [16].

We also computed the star discrepancy for two dimensional sequences con-
structed with the Stirling matrices over F2 (see [13]) in Figure 4. Here we used
as input sequences:

sn = n (black line),

sn = −n− 1 (gray line), and

sn = n− 210/(211 + 1) (dashed blue line) in Z2.

As in the one-dimensional case, we divided by the asymptotic (log2N/N) and
smoothed the graph by a moving average over ten points. Again we observe an
improvement in the constants.
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Figure 3. One-dimensional sequences constructed with the identity matrix
over F2.

Figure 4. Two dimensional sequences constructed with the Stirling ma-
trices over F2.

In both cases we found that a b-adic shift closed to −1/b shows good results
and might be interesting for forthcoming investigations. For instance, this might
be a good explicit candidate for the b-adic shift of the Halton sequence which
were studied, for example, in [4].
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Acknowledgements. We would like to thank the anonymous referees, whose
suggestions helped to improve the quality of the paper. The first author is sup-
ported by the Austrian Science Fund (FWF): Project F5505-N26, which is a
part of the Special Research Program “Quasi-Monte Carlo Methods: Theory
and Applications”, the second by the Austrian Science Fund (FWF): Project
F5511-N26, which is a part of the Special Research Program “Quasi-Monte Carlo
Methods: Theory and Applications” as well as Project P27351-N26.

REFERENCES

[1] BUNDSCHUH, P.—ZHU Y.C.: A method for exact calculation of the discrepancy of
low-dimensional point sets, Abh. Math. Sem. Univ. Hamburg 63 (1993), 115–133.

[2] DICK, J.—PILLICHSHAMMER, F.: Digital Nets and Sequences. Discrepancy Theory
and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, 2010.

[3] FAURE, H.—KRITZER, P.: New star discrepancy bounds for (t,m, s)-nets and (t, s)-
-sequences, Monatsh. Math. 172 (2013), 55–75.

[4] HELLEKALEK, P.—KRITZER, P.—PILLICHSHAMMER, F.: Open type quasi-Monte
Carlo integration based on Halton sequences in weighted Sobolev spaces, J. Complexity
33 (2016), 169–189.

[5] HELLEKALEK, P.—NIEDERREITER, H.: Constructions of uniformly distributed se-
quences using the b-adic method, Unif. Distrib. Theory 6 (2011), no. 1, 185–200.

[6] HOFER, R.: A construction of digital (0, s)-sequences involving finite-row generator ma-
trices, Finite Fields Appl. 18 (2012), 587–596.

[7] HOFER, R.: A construction of low-discrepancy sequences involving finite-row digital
(t, s)-sequences, Monatsh. Math. 171 (2013), 77–89.

[8] On sbsequences of Niederreiter-Halton sequences. In: Monte Carlo and Quasi-
Monte Carlo Methods 2008. (P. L’Ecuyer, A.B. Owen, eds.), Springer-Verlag, Berlin,
2009, pp. 423–438.

[9] HOFER, R.—KRITZER, P.—LARCHER, G.—PILLICHSHAMMER, F.: Distribution
properties of generalized van der Corput-Halton sequences and their subsequences,
J. Number Theory 5 (2009), no. 4, 719–746.

[10] HOFER, R.—LARCHER, G.: On existence and discrepancy of certain digital
Niederreiter-Halton sequences, Acta Arith. 141 (2010), no. 4, 369–394.

[11] HOFER, R.—LARCHER, G.—ZELLINGER, H.: On the Digits of Squares and the Dis-
tribution of Quadratic Subsequences of Digital Sequences, Proceedings of Amer. Math.
Sci. 141 (2012), no. 5, 1551–1565.

[12] HOFER, R.—NIEDERREITER, H.: A construction of (t,s)-sequences with finite-row

generating matrices using global function fields, Finite Fields Appl. 21 (2013), 97–110.
[13] HOFER, R.—PIRSIC, G.: An explicit construction of finite-row digital (0, s)-sequences,

Unif. Distrib. Theory 6 (2011), no. 2, 13–30.
[14] A finite-row scrambling of Niederreiter sequences, In: Monte Carlo and Quasi-

-Monte Carlo Methods 2012. (J.Dick F.Y. Kuo, G.W. Peters I.H. Sloan, eds.) Springer

Proceedings in Mathematics & Statistics (PROMS, Vol. 65), Springer-Verlag, 2013,
pp. 427–437.

[15] HOFER, R.—ZELLINGER, H.: Distribution Properties of Certain Subsequences of Dig-
ital Sequences and Their Hybrid Version, Unif. Distrib. Theory 8 (2013), no. 2, 121–140.

106



AN EXTENSION OF THE DIGITAL METHOD BASED ON b-ADIC INTEGERS

[16] KRITZINGER, R.—PILLICHSHAMMER, F.: Lp-discrepancy of the symmetrized van
der Corput sequence, Arch. Math. 105 (2015), no. 5, 407–418.

[17] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences. Wiley,
New York, 1974.

[18] LARCHER, G.—NIEDERREITER, H.: Generalized (t, s)-sequences, Kronecker-type se-
quences, and Diophantine approximations of formal Laurent series, Trans. Amer. Math.
Soc. 347 (1995), no. 6, 2051–2073.

[19] MAHLER, K.: p-adic Numbers and their Functions (2nd edition). Cambridge University
Press, Cambridge, 1981.

[20] MEIJER, H.G.: Uniform distribution of g-adic integers, Nederl. Akad. Wetensch. Proc.

Ser. A 70=Indag. Math. 29 (1967), 535–546.
[21] MEIJER, H.G.—SHIUE, J. S.: Uniform distribution in Zg and Zg1 × · · · × Zgt , Indag.

Math. 79 (1976), 200–212.
[22] NIEDERREITER, H.: Discrepancy and convex programming, Ann. Mat. Pura Appl. 93

(1972), 89–97.

[23] Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987),
no. 4, 273–337.

[24] Random Number Generation and Quasi-Monte Carlo Methods. In: CBMS-NSF
Regional Conference Series in Applied Mathematics Vol. 63, SIAM, Philadelphia, 1992.
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