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METRICAL STAR DISCREPANCY BOUNDS

FOR LACUNARY SUBSEQUENCES

OF DIGITAL KRONECKER-SEQUENCES AND

POLYNOMIAL TRACTABILITY

Mario Neumüller — Friedrich Pillichshammer

ABSTRACT. The star discrepancy D∗
N (P) is a quantitative measure for the

irregularity of distribution of a finite point set P in the multi-dimensional unit
cube which is intimately related to the integration error of quasi-Monte Carlo

algorithms. It is known that for every integer N ≥ 2 there are point sets P
in [0, 1)d with |P| = N and D∗

N (P) = O((logN)d−1/N). However, for small N
compared to the dimension d this asymptotically excellent bound is useless (e.g.,
for N ≤ ed−1).

In 2001 it has been shown by Heinrich, Novak, Wasilkowski and Woźniakowski
that for every integer N ≥ 2 there exist point sets P in [0, 1)d with |P| = N and

D∗
N (P) ≤ C

√
d/N . Although not optimal in an asymptotic sense in N , this upper

bound has a much better (and even optimal) dependence on the dimension d.
Unfortunately the result by Heinrich et al. and also later variants thereof by

other authors are pure existence results and until now no explicit construction
of point sets with the above properties is known. Quite recently Löbbe studied
lacunary subsequences of Kronecker’s (nα)-sequence and showed a metrical dis-

crepancy bound of the form C
√

d(log d)/N with implied absolute constant C > 0

independent of N and d.
In this paper we show a corresponding result for digital Kronecker sequences,

which are a non-archimedean analog of classical Kronecker sequences.
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1. Introduction

For an N -element point set P = {x1, . . . ,xN} in the d-dimensional unit cube
[0, 1)d the star discrepancy D∗

N is defined as

D∗
N (P) = sup

J

∣∣∣∣A(J,P)

N
− λ(J)

∣∣∣∣ ,
where the supremum is extended over all intervals of the form J = [0, t) =∏d

j=1[0, tj) with tj ∈ [0, 1], t = (t1, . . . , td), A(J,P) is the number of indices

n ∈ {1, 2, . . . , N} for which xn belongs to J and λ(J) is the Lebesgue measure
of J .

The star discrepancy is a quantitative measure for irregularity of distribution
of a point set P . It is also intimately related to the integration error of a quasi-
Monte Carlo (QMC) algorithm via the celebrated Koksma-Hlawka inequality.
More information about star discrepancy and its relation to uniform distribution
theory and numerical integration can be found in the books [9, 11, 16, 20, 22].

Let disc∗(N, d) = infP D∗
N (P), where the infimum is extended over all N -

-element point sets P in [0, 1)d, be the minimal star discrepancy and let, for
ε ∈ (0, 1], the inverse of the star discrepancy be defined as

N∗(ε, d) = min{N ∈ N : disc∗(N, d) ≤ ε}.
For fixed dimension d ≥ 2 it is known that there exist 0 < cd < Cd and

ηd ∈ (0, 12 ) such that

cd
(logN)

d−1
2 +ηd

N
≤ disc∗(N, d) ≤ Cd

(logN)d−1

N
for all N ≥ 2.

The lower bound was shown by B i l y k, L a c e y and V a g h a r s h a k y a n [5]
and for the upper bound there are several explicit constructions of point sets
which achieve such a star discrepancy (see, for example, [9, 22] and the refer-
ences therein). For growing d the exponent ηd in the lower bound tends to zero
(approximately with order d−2). It should be mentioned that the exact determi-
nation of the power in the logN -term of the minimal star discrepancy is a very
famous and difficult open problem.

In this paper we consider a different view point. It was pointed out in several
discussions that the excellent asymptotic behavior of the minimal star discrep-
ancy of N -element point sets is not very useful for practical applications, espe-
cially when the dimension d is not small. For example it should be noted that
N �→ (logN)d−1/N does not start to decrease until N ≥ exp(d−1) and this num-
ber is huge already for moderately large d. In applications of QMC-algorithms
however the dimension d could be in the hundreds (see [8], [20]).
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Since the last one and a half decades a lot of effort has been put into the anal-
ysis of the star discrepancy with respect to dimensions d tending to infinity. In a
seminal work by H e i n r i c h, N o v a k, W a s i l k o w s k i and W o ź n i a k o w -
s k i [14] it has been shown that there exists an absolute constant C > 0 such
that

disc∗(N, d) ≤ C

√
d

N
for all d,N ∈ N (1)

(see [14, Theorem 3]). Later A i s t l e i t n e r [1, Theorem 1] showed that the
constant C can be chosen as C = 10. From this we obtain

N∗(ε, d) ≤ 100dε−2.

In the language of “Information Based Complexity” one says that the star dis-
crepancy is polynomially tractable, see [23, 24].

On the other hand, H i n r i c h s [15] showed that N∗(ε, d) ≥ cdε−1 for all
d ∈ N and for sufficiently small ε > 0. Hence the inverse of the star discrepancy
depends linearly on the dimension, which is also the programmatic title of [14].

The proof in [1] and also the proof of the slightly weaker bound

disc∗(N, s) ≤ C

√
d

N
(log d+ logN)1/2 (2)

in [14, Theorem 1] (which still implies that N∗(ε, d) ≤ Cdε−2 log(d/ε)) use
the probabilistic method. The main ingredient is the fact that one can obtain
extremely small probabilities for the deviation from the mean for sums of in-
dependent random variables. This probability can be quantified with the help
of B e r n s t e i n’s (in [1]) or H o e f f d i n g’s (in [14]) inequality, respectively.
In fact, the point sets in [1], [14] consist of N independently chosen random
points from the unit cube [0, 1)d. So far no explicit construction of point sets
whose star discrepancy satisfies a bound like (1) or (2) is known.

Some authors, initiated in [10], presented algorithmic constructions of point
sets with star discrepancy of order (2). We refer to the survey [13] for more
information and references in this direction. However, all these constructions
have the disadvantage that their run times are too large in order to be applied
in practical applications with large dimension d. So there is still need for a really
explicit construction.

In 2014 L ö b b e [21] studied lacunary subsequences of Kronecker-sequences
({nα})n≥0, where α ∈ R

d and where {·} denotes the fractional part applied
component-wise to a vector (until now the paper is only available via arXiv.org).
Based on the work of A i s t l e i t n e r, L ö b b e was able to prove the follow-
ing remarkable metrical result which can be interpreted as a semi-probabilistic
(or semi-constructive) version of (2).
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For α ∈ [0, 1)d let PN (α) = {x1, . . . ,xN} be the point set consisting of the
first N elements of the infinite sequence (xn)n≥1 in [0, 1)d with xn = {2n−1α}
for n ∈ N.

������� 1 (L ö b b e [21, Theorem 1.1])� Let N ≥ 1 and d ≥ 2 be integers.
Then for every ε ∈ (0, 1) there is a quantity C(ε) > 0 such that the star discrep-
ancy of the point set PN (α) satisfies

D∗
N

(PN(α)
) ≤ C(ε)

√
d log d

N

with probability at least 1− ε. The quantity C(ε) is of order C(ε) � log ε−1.

The main problem in the proof of this result is to prove independence of
certain random variables in order to be able to apply Bernstein’s inequality.
Of course, the elements of the classical Kronecker-sequence are not indepen-
dent. For this reason the author studied lacunary subsequences of the form
({2n−1α})n≥1 which led then to the desired independence properties.

Theorem 1 makes an assertion for fixed N , i.e., for finite point sets. In 2007
D i c k [7] considered the problem of the dependence of star discrepancy on the
dimension d also for infinite sequences and he gave an existence result. Com-
pared to the bound (1) for finite point sets the generalization is penalized with
an extra

√
logN -factor in the discrepancy estimate. Later A i s t l e i t n e r [2]

improved this further and got rid of the
√
logN -term. In contrast to the prob-

abilistic approaches in, e.g., [14, 7], the proof in [2] is, like in [21], also of a
semi-probabilistic nature in the sense that certain coordinates of the points are
deterministic others are chosen randomly. This once more shows the relevance
of semi-probabilistic construction in this context.

The following corollary to Theorem 1 addresses a metrical result for infinite
sequences:

����		
�� 2� Let d ∈ N with d ≥ 2. Then for every δ ∈ (0, 1) there is a
quantity C(δ) > 0 such that the star discrepancy of PN(α) satisfies

D∗
N

(PN (α)
) ≤ C(δ)(logN)

√
d log d

N
for all N ≥ 2

with probability at least 1− δ. We have C(δ) � log δ−1.

Concerning the proof of Corollary 2 we will refer to Section 3.5.

There is an interesting connection of Corollary 2 to the theory of normal
numbers which is worth to be mentioned: it is well-known that a real number
α is normal to base 2, if and only if the sequence ({2n−1α})n≥1 is uniformly
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distributed modulo one (see [16, Chapter 1, Theorem 8.1]). Hence the α’s which
satisfy the discrepancy estimate in Corollary 2 are d-tuples of normal numbers
to base 2. (By another well-known result due to B o r e l [6] almost all numbers
α ∈ [0, 1] are normal to every base b ≥ 2.)

It should also be mentioned, that metrical bounds on the star-discrepancy of
classical Kronecker-sequences for fixed d have been given by B e c k in [3].

In this paper we study digital Kronecker-sequences. These sequences are a
“non-archimedean analog” to classical Kronecker-sequences which fit into the
class of digital (t, s)-sequences. This concept was introduced by N i e d e r r e i -
t e r [22, Section 4] and further investigated by L a r c h e r and N i e d e r r e i -
t e r [18]. We will give a digital analog of Theorem 1.

In the next section we provide the necessary definitions and we formulate
the metrical discrepancy estimate. The proof of our result will be presented in
Section 3.

2. Digital Kronecker-sequences and formulation of the
main result

Let q be a prime number and let Zq = {0, . . . , q−1} be the finite field of order
q with the usual arithmetic operations modulo q. We denote the field of formal
Laurent series over Zq in the variable t−1 by Zq((t

−1)). Elements of Zq((t
−1))

are of the form

g =

∞∑
i=w

git
−i, (3)

where w is an arbitrary integer and all gi ∈ Zq with gw 	= 0. Note that Zq((t
−1))

contains the polynomial ring Zq[t] over Zq.

For a formal Laurent series g of the form (3) we define its “fractional part” by

{g} :=

∞∑
i=max(1,w)

git
−i.

Let

Zq((t
−1)) :=

{{g} : g ∈ Zq((t
−1))

}
=
{
g ∈ Zq((t

−1)) : g of the form (3) with w ≥ 1
}

and define further

φ : Zq((t
−1)) → [0, 1),

∞∑
i=1

git
−i �→

∞∑
i=1

giq
−i.
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Applied to vectors the operations {·} and φ are understood component-wise.

We associate a nonnegative integer n with q-adic expansion n = n0+n1q+ · · ·
· · ·+nrq

r, where n0, . . . , nr ∈ Zq with the polynomial n(t) = n0+n1t+ · · ·+ntt
r

in Zq[t] and vice versa.

��
������� 1� For a given d-tuple f = (f1, . . . , fd) of elements of Zq((t
−1)) the

sequence S(f) = (yn)n≥0 given by

yn = φ({nf}) = (φ({nf1}), . . . , φ({nfd})) for all n ∈ N0

is called a digital Kronecker-sequence over Zq. Note that the multiplication of the
polynomial n and the Laurent series fj is carried out in Zq((t

−1)). (Obviously,

it suffices to choose f ∈ (Zq((t
−1))

)d
.)

In order to prove a metrical result for digital Kronecker-sequences we need to

introduce a suitable probability measure on
(
Zq((t

−1))
)d
.

��
������� 2� By μ we denote the normalized Haar-measure on Zq((t
−1)) and

by μd the d-fold product measure on
(
Zq((t

−1))
)d
.

���
�� 1� The measure μ has the following rather simple shape: If we identify
the elements

∑∞
k=1 gkt

−k of Zq((t
−1)) where gk 	= q − 1 for infinitely many k in

the natural way with the real numbers
∑∞

k=1 gkq
−k ∈ [0, 1), then, by neglecting

the countably many elements where gk 	= q − 1 only for finitely many k, μ
corresponds to the Lebesgue measure λ on [0, 1). For example, the “cylinder
set” C(c1, . . . , cm) consisting of all elements g =

∑∞
k=1 gkt

−k from Zq((t
−1))

with gk = ck for k = 1, . . . ,m and arbitrary gk ∈ Zq for k ≥ m+ 1 has measure
μ
(
C(c1, . . . , cm)

)
= q−m.

Metrical results for the star discrepancy of digital Kronecker-sequences for
fixed dimension d can be found in [17, 19]. In the following we provide a non-
archimedean version of the result of Löbbe [21].

For f ∈ (Zq((t
−1))

)d
let PN (f) = {x1, . . . ,xN} be the point set consisting

of the first N elements of the infinite sequence (xn)n≥1 in [0, 1)d with xn =
φ({tn−1f}) for n ∈ N.

������� 3� Let q be a prime number and let N, d ∈ N with N, d ≥ 2. Then
for every ε ∈ (0, 1) there is a quantity C(q, ε) > 0 such that the star discrepancy
of the point set PN(f) satisfies

D∗
N

(PN(f )
) ≤ C(q, ε)

√
d log d

N

with probability at least 1− ε. The quantity C(q, ε) is of order C(q, ε) � log ε−1.
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The proof of this result will be presented in the next section. It should be
mentioned that with some more effort the quantity C(q, ε) could be given ex-
plicitly.

Again Theorem 3 makes an assertion for fixed N , i.e., for finite point sets.
From this we can again deduce a metrical result for infinite sequences:

����		
�� 4� Let q be a prime number and let d ∈ N with d ≥ 2. Then for
every δ ∈ (0, 1) there is a quantity C(q, δ) > 0 such that the star discrepancy of
PN (f) satisfies

D∗
N

(PN (f)
) ≤ C(q, δ)(logN)

√
d log d

N
for all N ≥ 2

with probability at least 1− δ.

The proof of Corollary 4 will be presented in Section 3.5.

3. The proof of Theorem 3

The proof of Theorem 3 is inspired by the techniques used in [21]. The diffi-
culty here is that we are concerned with polynomial arithmetic over finite fields
instead of the usual integer arithmetic.

Throughout the proof we tacitly assume that all components of f belong to
the class of Laurent series

∑∞
k=1 gkt

−k of Zq((t
−1)) where gk 	= q−1 for infinitely

many k. Let

C =
{
g ∈ Zq((t

−1)) : gk = q − 1 for all but finitely many k ≥ 1
}
.

Note that C is a countable set and therefore μ(C) = 0. We denote Z
∗
q((t

−1)) :=

Zq((t
−1)) \ C. Hence we assume that f ∈ (Z∗

q((t
−1))

)d
.

3.1. Some auxiliary results

As in [1, 21] the proof will be based on Bernstein’s inequality for sums of
independent random variables.

����
 5 ([4], The Bernstein inequality)� Let N ∈ N and X1, . . . , XN be inde-
pendent random variables with E(Xi) = 0 and |Xi| ≤ C for i ∈ {1, . . . , N} and
some C > 0. Then we have for any t > 0

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2
∑N

i=1 E(X
2
i ) +

2Ct
3

)
.
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Another very important tool in our analysis are bracketing covers whose def-
inition is recalled below. As usual, for a = (a1, . . . , ad) and b = (b1, . . . , bd) in
[0, 1]d we write a ≤ b if and only if ai ≤ bi for all i ∈ {1, . . . , d}.
��
������� 3� Let δ > 0. A subset τ ⊆ [0, 1]d × [0, 1]d is called a δ-bracketing
cover if for every x ∈ [0, 1]d there exists (v,w) ∈ τ such that v ≤ x ≤ w and
λ
(
[0,w)\[0, v)) ≤ δ.

The following result about the number of elements of a δ-bracketing cover is
due to G n e w u c h:

����
 6 (G n e w u c h [12, Theorem 1.15])� For any d ∈ N and any δ > 0
there exists a δ-bracketing cover τ with

|τ | ≤ 1
2
(2e)d(δ−1 + 1)d .

From this result Löbbe deduced the following corollary:

����		
�� 7 (L ö b b e [21, Corollary 2.3])� Let d, h ∈ N and q ≥ 2, then there
exists a q−h-bracketing cover τh with

(1) |τh| ≤ 1
2 (2e)

d(qh+2 + 1)d, and

(2) for (v,w) ∈ τh and i ∈ {1, . . . , d} there exist ai ∈
{
0, 1, . . . , qh+1+�logq d�}

and bi ∈
{
0, 1, . . . , qh+2+�logq d�} such that

vi =
ai

qh+1+�logq d� and wi =
wi

qh+2+�logq d� .

3.2. Preliminaries

Let N, d ∈ N and fix some H ∈ N. For h ∈ {1, . . . , H} let τh be a q−h-
bracketing cover of [0, 1)d with elements described as in Corollary 7. Let y∈ [0, 1)d.
We are going to define inductively a finite sequence of points βh(y) ∈ [0, 1)d for
h ∈ {0, . . . , H + 1} in the following way:

(1) Let βH(y),βH+1(y) ∈ [0, 1)d with βH(y) ≤ y ≤ βH+1(y) and(
βH(y),βH+1(y)

) ∈ τH .

(2) For h ∈ {1, . . . , H − 1} let βh(y) ∈ [0, 1)d be such that there exists a point
w ∈ [0, 1)d with βh(y) ≤ βh+1(y) ≤ w and

(
βh(y),w

) ∈ τh.

(3) Set β0(y) = 0 = (0, . . . , 0), the d-dimensional zero-vector.

(4) Additionally we choose the points βh such that the following property is
fulfilled. For x,y ∈ [0, 1)d and h ∈ {0, . . . , H − 1} we have that

βh+1(y) = βh+1(x) ⇒ βh(y) = βh(x) .
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Note that the sequence of points βh(y) is well defined for h ∈ {0, . . . , H + 1}
since we choose τh to be a q−h-bracketing cover. For y ∈ [0, 1)d we observe the
following properties for the finite sequence βh(y):
We have

(1) 0 = β0(y) ≤ β1(y) ≤ · · · ≤ βH(y) ≤ y ≤ βH+1(y) ≤ 1;

(2) for all h ∈ {0, . . . , H − 1} there exists w ∈ [0, 1)d such that βh(y) ≤
βh+1(y) ≤ w and

(
βh(y),w

) ∈ τh. Note that
(
βH(y),βH+1(y)

) ∈ τH ;

(3) for all h ∈ {0, . . . , H} and i ∈ {1, . . . , d} we have that(
βh(y)

)
i
= q−(h+1+�logq d�)ah,i

and (
βH+1(y)

)
i
= q−(H+2+�logq d�)bH+1,i

for ah,i ∈
{
0, 1, . . . , qh+1+�logq d�} and bH+1,i ∈

{
0, 1, . . . , qH+2+�logq d�}.

The properties 1. and 2. are an immediate consequence of the definition of the
βh(y) and property 3. follows directly by Corollary 7.

Moreover, for h ∈ {0, . . . , H} we define Kh(y) :=
[
0,βh+1(y)

)\[0,βh(y)
)

and observe that the Kh(y) are pairwise disjoint sets and by the definition
respectively property 2. of βh(y) we obtain

H−1⋃
h=0

Kh(y) ⊆ [0,y) ⊆
H⋃

h=0

Kh(y) and λ
(
Kh(y)

) ≤ q−h. (4)

Finally, for {0, . . . , H} define Sh :=
{
Kh(y) : y ∈ [0, 1)d

}
. Note that by

definition of the βh(y) and Corollary 7 we have

|SH | = ∣∣{(βH(y),βH+1(y)
)

: y ∈ [0, 1)d
}∣∣ ≤ |τH | ≤ 1

2
(2e)d(qH+2 + 1)d.

With point 4. in the definition of the βh(y) we get for h ∈ {0, . . . , H − 1} that

|Sh| =
∣∣{βh+1(y) : y ∈ [0, 1)d

}∣∣ ≤ |τh+1| ≤ 1

2
(2e)d(qh+3 + 1)d.

Fix y ∈ [0, 1)d. In order to simplify the notation from now on, we will write
βh and Kh instead of βh(y) and Kh(y), respectively . Then by (4) we get that

N∑
n=1

1[0,y)(xn) ≥
N∑

n=1

1[0,βH)(xn)

=

H−1∑
h=0

N∑
n=1

(
1Kh

(xn)− λ(Kh)
)
+N

H−1∑
h=0

λ(Kh) (5)
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and
N∑

n=1

1[0,y)(xn) ≤
N∑

n=1

1[0,βH+1)
(xn)

=

H∑
h=0

N∑
n=1

(
1Kh

(xn)− λ(Kh)
)
+N

H∑
h=0

λ(Kh). (6)

Let us define the functions ΔKh
: [0, 1)d → [−1, 1], ΔKh

(x) := 1Kh
(x)− λ(Kh)

for h ∈ {0, . . . , H}. A crucial step for the proof of the main result will be to
use Bernstein’s inequality to give a lower bound on the probability that the
inequality ∣∣∣∣∣

N∑
n=1

ΔKh
(xn)

∣∣∣∣∣ ≤ th

holds simultaneously for all h ∈ {0, . . . , H} and for some th > 0 to be specified
later. First of all observe that

E
(
ΔKh

(xn)
)
= 0, E

2
(
ΔKh

(xn)
)
= λ(Kh)

(
1− λ(Kh)

)
and |ΔKh

(xn)| ≤ 1

for all h ∈ {0, . . . , H} and n ∈ {1, . . . , N}.
Unfortunately for h ∈ {0, . . . , H} the random variables ΔKh

(x1),ΔKh
(x2), . . .

. . . ,ΔKh
(xN ) are not independent in general. We will see how to overcome this

problem in the next section.

3.3. Independence of ΔKh
(xn)

Before we begin we point out the following easy algebraic characterization
of Laurent series whose image under φ belongs to a certain type of intervals:

for p ∈ Z
∗
q((t

−1)) of the form p = p1t
−1 + p2t

−2 + p3t
−3 + · · · , for r ∈ N and

k ∈ {0, . . . , qr − 1} with q-adic expansion k = k0 + k1q+ · · ·+ kr−1q
r−1 we have

that

φ(p) ∈
[
k

qr
,
k + 1

qr

)
⇔ p1 = kr−1, p2 = kr−2, . . . , pr = k0.

Throughout the proof the underlying probability measure is the measure μd

from Definition 2. However, out of habit we will in the following denote the
probability by P.

����
 8� Let κh := log2(h+2+
logq d�) and let γ ∈ {0, . . . , 2κh−1}. Moreover,
let

Q(N, κh, γ) :=
{
n ∈ {1, . . . , N} : n ≡ γ (mod 2κh)

}
.
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Then for n1, . . . , nl ∈ Q(N, κh, γ) and l ∈ {1, . . . , |Q(N, κh, γ)|} the random
variables ΔKh

(
xn1

)
,ΔKh

(
xn2

)
, . . . ,ΔKh

(
xnl

)
are independent, i.e.,

P
(
ΔKh

(xn1
) = c1, . . . ,ΔKh

(xnl
) = cl

)
=

l∏
r=1

P
(
ΔKh

(xnr
) = cr

)
.

P r o o f. The proof is based on the ideas from [21]. We will show the case l = 2.
The general case follows by induction. Let h ∈ {0, . . . , H}, γ ∈ {0, . . . , 2κh − 1}
and n,m ∈ Q(N, κh, γ) with n > m. We want to show that ΔKh

(xn),ΔKh
(xm)

are independent. To this end we consider the following decomposition of [0, 1)d:

Σn−1 :=

{
d∏

i=1

[
ai

qn−1
,
ai + 1

qn−1

)
: ai ∈

{
0, . . . , qn−1 − 1

}}
.

Since the underlying structure of the sequence (xk)k≥1 is Zq((t
−1)) we are con-

sidering the preimage of Σn−1.

Λn−1 :=

{
φ−1(S) ∩

(
Z
∗
q((t

−1))
)d

: S ∈ Σn−1

}
,

For A = (ai,j)
d,n−1
i=1,j=1 ∈ Z

d×(n−1)
q let us define

BA :=

d∏
i=1

{
g ∈ Z

∗
q((t

−1)) : (g1, . . . , gn−1) = (ai,1, . . . , ai,n−1)
}
.

where (ai,1, . . . , ai,n−1) is the i-th row of A. One can easily check that

Λn−1 =
{
BA : A ∈ Z

d×(n−1)
q

}
.

For matrices A1, A2 ∈ Z
d×(n−1)
q , Aj = (aj,i,k)

d,n−1
i=1,k=1 for j ∈ {1, 2} we define

αA1,A2
:
(
Zq((t

−1))
)d → (

Zq((t
−1))

)d
,(

g(1), . . . , g(d)
)
�→
(
g(1) + u

(1)
A1A2

, . . . , g(d) + u
(d)
A1A2

)
,

where for i ∈ {1, . . . , d}, u(i)
A1A2

=
∑∞

k=1 u
(i)
A1A2,k

t−k ∈ Zq((t
−1)) and

u
(i)
A1A2,k

=

{
a2,i,k − a1,i,k if 1 ≤ k ≤ n− 1,

0 if k > n− 1.

With this definition we have

αA1,A2
(BA1

) = BA2
.
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Before we can prove the independence of ΔKh
(xn) and ΔKh

(xm), we need to
show four claims:

�	
�� 1� Let c ∈ R, A1, A2 ∈ Z
d×(n−1)
q , f ∈ BA1

and (yn)n≥1 in [0, 1)d with

yn = φ({tn−1f}) with f = αA1A2
(f). Then we have that

P
(
ΔKh

(xn) = c | f ∈ BA1

)
= P
(
ΔKh

(yn) = c | f ∈ BA2

)
.

P r o o f o f C l a i m 1. For i ∈ {1, . . . , d} we have that

yn,i=φ
({

tn−1f
(i)
})

=φ

({
tn−1f (i)+

(
tn−1u

(i)
A1A2

)})
=φ
({

tn−1f (i)
})

=xn,i.

Note that the second last equality is true because u
(i)
A1A2,k

= 0 for k ≥ n.

Additionally it holds that f ∈ BA1
⇔ f ∈ BA2

. Therefore the claim follows. �

�	
�� 2� Let h ∈ {0, . . . , H} and p =
(
p(1), . . . , p(d)

) ∈ (Z∗
q((t

−1))
)d

with

p(i) =
∑∞

j=1 p
(i)
j t−j . Then the d(h+2+
logq d�) coefficients p

(i)
1 , . . . , p

(i)
h+2+�logq d�

for i ∈ {1, . . . , d} determine if φ(p) ∈ Kh.

P r o o f o f C l a i m 2. For p =
(
p(1), . . . , p(d)

) ∈ (Z∗
q((t

−1))
)d
, we have that

φ(p) ∈ Kh ⇔ φ(p) ∈ [0,βh+1)\[0,βh)

⇔ ∀i ∈ {1, . . . , d} : φ
(
p(i)
) ∈ [0, β(i)

h+1

)
and

∃j∈ {1, . . . , d} : φ
(
p(j)
) ∈ [β(j)

h , 1
)
,

(7)

where βh+1 =
(
β
(1)
h+1, . . . β

(d)
h+1

)
with

β
(i)
h+1 =

bi

qh+2+�logq d� for some bi ∈
{
0, 1, . . . , qh+2+�logq d� − 1

}
,

and similarly, βh = (β
(1)
h , . . . β

(d)
h ) with

β
(i)
h =

b̄i

qh+1+�logq d� for some b̄i ∈
{
0, 1 . . . , qh+1+�logq d� − 1

}
.

We can write [
0, β

(i)
h+1

)
=

bi−1⋃
k=0

[
k

qh+2+�logq d� ,
k + 1

qh+2+�logq d�

)
.
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Hence φ
(
p(i)
) ∈ [0, β(i)

h+1

)
if and only if there exists a k ∈ {0, . . . , bi − 1} such

that

φ(p(i)) ∈
[

k

qh+2+�logq d� ,
k + 1

qh+2+�logq d�

)
.

Since φ(p(i)) =
∑∞

j=1 p
(i)
j q−j the last condition is satisfied if and only if

p
(i)
1 = kh+1+�logq d�, p

(i)
2 = kh+�logq d�, . . . , p

(i)
h+2+�logq d� = k0,

whenever k has q-adic expansion k = k0 + k1q + · · ·+ kh+1+�logq d�qh+1+�logq d�.
In the same vein we can write

[
β
(j)
h , 1

)
=

qh+1+�logq d�−1⋃
�=b̄j

[
�

qh+1+�logq d� ,
�+ 1

qh+1+�logq d�

)
.

Hence φ
(
p(j)
) ∈ [β(j)

h , 1
)
if and only if there exists a � ∈ {b̄j , qh+1+�logq d� − 1

}
such that

φ
(
p(j)
) ∈ [ �

qh+1+�logq d� ,
�+ 1

qh+1+�logq d�

)
.

Since φ
(
p(j)
)
=
∑∞

k=1 p
(j)
k q−k the last condition is satisfied if and only if

p
(j)
1 = lh+�logq d�, p

(j)
2 = lh+�logq d�−1, . . . , p

(j)
h+1+�logq d� = l0,

whenever � has q-adic expansion � = l0 + l1q + · · ·+ lh+�logq d�qh+�logq d�.

Together with (7) it follows that the coefficients p
(i)
1 , . . . , p

(i)
h+2+�logq d�

for i ∈ {1, . . . , d} determine whether or not φ(p) belongs to Kh. This proves
the second claim. �

Recall that m ∈ Q
(
N, κh, γ

)
and m < n. Define

δm : Zq((t
−1)) → Zq((t

−1)), p �→ {tm−1p}.
�	
�� 3� For all h ∈ {0, . . . , H} and for all A ∈ Z

d×(n−1)
q we have that ΔKh

is
constant on φ

(
δm(BA)

)
.

P r o o f o f C l a i m 3. Let p =
(
p(1), . . . , p(d)

) ∈ BA with p(i) =
∑∞

j=1 p
(i)
j t−j .

Note that for each i ∈ {1, . . . , d} the first n− 1 coefficients p
(i)
1 , . . . , p

(i)
n−1 of p(i)

are equal to the entries in the i-th row of A. Now we have

δm

⎛
⎝ ∞∑

j=1

p
(i)
j t−j

⎞
⎠ =

⎧⎨
⎩

∞∑
j=1

p
(i)
j tm−1−j

⎫⎬
⎭ =

∞∑
j=1

p
(i)
m−1+jt

−j .
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Because of Claim 2, the coefficients p
(i)
m , . . . , p

(i)
m+h+1+�logq d� for i ∈ {1, . . . , d}

determine if φ
(
δm(p)

) ∈ Kh. Since n − m ≥ h + 2 + 
logq d� these coeffi-

cients are fixed by the choice of BA. Hence it follows that φ
(
δm(BA)

) ∩ Kh ∈{∅, φ(δm(BA)
)}

. Therefore the function ΔKh
(x) = 1Kh

(x)− λ(Kh) is constant

on φ
(
δm(BA)

)
. This proves the claim. �

Define for c ∈ R,

ΛKh,c :=
{
BA ∈ Λn−1 : ΔKh

(
φ
(
δm(BA)

))
= c
}
.

Note that ΛKh,c is well-defined according to Claim 3.

�	
�� 4� Let c ∈ R and h ∈ {0, . . . , H}. Then we have

ΔKh
(xm) = c ⇔ ∃BA ∈ ΛKh,c such that f ∈ BA.

P r o o f o f C l a i m 4. Let c ∈ R and suppose that there exists BA ∈ ΛKh,c

such that f ∈ BA. Since xm = φ
(
δm(f)

)
we have

ΔKh
(xm) = ΔKh

(
φ
(
δm(f)

))
.

Since δm(f) ∈ δm(BA) we get that ΔKh
(xm) = c.

Now assume that ΔKh
(xm) = c which is equivalent to ΔKh

(
φ(δm(f))

)
= c.

Now there exists A′ ∈ Z
d×(n−1)
q such that BA′ ∈ ΛKh,c and δm(f) ∈ δm(BA′)

and we get that(
f
(i)
m+1, . . . , f

(i)
n−1

)
= (a′i,m+1, . . . , a

′
i,n−1) for i ∈ {1, . . . , d}.

On the other hand, there exists A ∈ Z
d×(n−1)
q with f ∈ BA. We obtain that(

f
(i)
m+1, . . . , f

(i)
n−1

)
= (ai,m+1, . . . , ai,n−1) for i ∈ {1, . . . , d}.

Altogether we have that(
a′i,m+1, . . . , a

′
i,n−1

)
= (ai,m+1, . . . , ai,n−1) for i ∈ {1, . . . , d}.

Now it follows by Claim 2 that

ΔKh

(
φ
(
δm(BA)

))
= ΔKh

(
φ
(
δm(BA′)

))
= c.

This means that BA ∈ ΛKh,c and f ∈ BA and this proves the claim. �
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Now we can prove the independence of ΔKh
(xn) and ΔKh

(xm) for n,m ∈
Q(N, κh, γ) with n > m. For c ∈ R and BA′ ∈ Λn−1 we have

P
(
ΔKh

(xn) = c
)
=

∑
BA∈Λn−1

P
(
ΔKh

(xn) = c | f ∈ BA

)
P(f ∈ BA)

= P
(
ΔKh

(yn) = c | f ∈ BA′
) ∑
BA∈Λn−1

P(f ∈ BA)

= P
(
ΔKh

(yn) = c | f ∈ BA′
)
, (8)

where we used Claim 1 with A1 = A and A2 = A′. By Claim 4 and (8) we get

for c1, c2 ∈ R and A′ ∈ Z
d×(n−1)
q that

P
(
ΔKh

(xn) = c2 | ΔKh
(xm) = c1

)
=

P
(
ΔKh

(xn) = c2,ΔKh
(xm) = c1

)
P
(
ΔKh

(xm) = c1
)

=

∑
BA∈Λn−1

P(ΔKh
(xn)=c2,ΔKh

(xm) = c1 | f ∈ BA)P(f ∈ BA)

P(ΔKh
(xm) = c1)

=
∑

BA∈ΛKh,c1

P
(
ΔKh

(xn)=c2 | f ∈ BA

) P(f ∈ BA)

P(ΔKh
(xm)=c1)

= P
(
ΔKh

(yn) = c2 | f ∈ BA′
)∑BA∈ΛKh,c1

P(f ∈ BA)

P(ΔKh
(xm) = c1)

= P
(
ΔKh

(yn) = c2 | f ∈ BA′
)

= P
(
ΔKh

(xn) = c2
)
.

This implies the desired result. �

3.4. Applying Bernstein’s inequality and finalizing the proof
of Theorem 3

P r o o f. We may assume that N ≥ d logq d since otherwise the discrepancy
bound is trivial. First of all we set

H =

⌈
1

2
logq

(
N

d logq d

)⌉
∈ N. (9)

With this choice we obtain

1

qH
≤
√

d logq d

N
and q2H ≤ q2

N

d logq d
.

Recall the definition of Q(N, κh, γ) = {n ∈ {1, . . . , N} : n ≡ γ mod 2κh}
and note that Q(N, κh, γ) for γ ∈ {0, . . . , 2κh − 1} are a partition of {1, . . . , N}
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and that

|Q(N, κh, γ)| ≤
⌊
N

2κh

⌋
+ ξ for some ξ ∈ {0, 1}.

With the help of Lemma 8 we are able to apply Bernstein’s inequality (Lemma 5).
For h ∈ {0, . . . , H} we get that

P

(∣∣∣∣∣
N∑

n=1

ΔKh
(xn)

∣∣∣∣∣ > th

)
≤

2κh−1∑
γ=0

P

⎛
⎝
∣∣∣∣∣∣

∑
n∈Q(N,κh,γ)

ΔKh
(xn)

∣∣∣∣∣∣ >
th
2κh

⎞
⎠

≤ 2

2κh−1∑
γ=0

exp

(
− t2h/2

2κh

2|Q(N, κh, γ)|λ(Kh)(1− λ(Kh)) + 2th/(3 · 2κh)

)

≤ 2κh+1 exp

(
− t2h/2

κh

2(1 + 2κh/N)Nq−h + 2th/3

)
.

Since

2κh

N
=

h+ 2 + 
logq d�
N

≤ 1

N

(
1

2
logq

(
N

d logq d

)
+ 4 + logq d

)

≤ 1

2

logq N

N
+ 4+

1

d
≤ 5,

we obtain

P

(∣∣∣∣∣
N∑

n=1

ΔKh
(xn)

∣∣∣∣∣ > th

)
≤ 2κh+1 exp

(
− t2h/2

κh

12Nq−h + 2
3 th

)
. (10)

For the choice of th we will distinguish two cases

th :=

{
C1

√
Ndhq−h2κh if h ∈ {1, . . . , H},

C2

√
Nd2κ0 if h = 0

(11)

for constants C1, C2 > 0 to be specified later.

Let us consider first the case h ∈ {1, . . . , H}. By κh = log2(h + 2 + 
logq d�)
we get that

2κhqhh ≤ 2κHqHH ≤ H2qH(4 + logq d) ≤ 2q2H(4 + logq d)

≤ 2q2
N

d

(
1 +

4

logq d

)
≤ c(q)

N

d
,

where c(q) = 2q2
(
1 + 4

logq 2

)
. Thus we obtain for h ∈ {1, . . . , H},

th = C1

√
Ndhq−h2κh ≤ C1

√
c(q)q−hN.

80



METRICAL STAR DISCREPANCY BOUNDS FOR DIGITAL KRONECKER-SEQUENCES

Furthermore, we get

t2h/2
κh

12q−hN + 2
3 th

≥ C2
1Ndhq−h

12q−hN + 2
3C1

√
c(q)q−hN

=
C2

1dh

12 + 2
3C1

√
c(q)

. (12)

Combining (10) and (12) we get

P

(∣∣∣∣∣
N∑

n=1

ΔKh
(xn)

∣∣∣∣∣ > C1

√
Nhq−h2κhd

)

≤ 2 exp

(
κh log 2− C2

1

12 + 2
3C1

√
c(q)

dh

)
. (13)

Consider the case h = 0, i.e., t0 = C2

√
N2κ0d. We have

2κ0d ≤(3 + logq d)d ≤ Nc(q).

After continuing with the same steps as in the first case we end up with

P

(∣∣∣∣∣
N∑

n=1

ΔK0
(xn)

∣∣∣∣∣>C2

√
N2κ0d

)

≤ 2 exp

(
κ0 log 2− C2

2

12+ 2
3C2

√
c(q)

d

)
. (14)

Recall that βh and Kh are dependent on a point y ∈ [0, 1)d, respectively.
Moreover, we defined

Sh =
{
Kh(y) : y ∈ [0, 1)d

}
with |Sh| ≤ 1

2
(2e)d(qh+3 + 1)d.

Additionally we define

AKh,N,d :=

{
f ∈ (Z∗

q((t
−1))

)d
:

∣∣∣∣∣
N∑

n=1

ΔKh
(xn)

∣∣∣∣∣ > th

}

with th defined as in (11) and set

C3 :=
C2

1

12 + 2
3C1

√
c(q)

, and C4 :=
C2

2

12 + 2
3C2

√
c(q)

. (15)
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MARIO NEUMÜLLER — FRIEDRICH PILLICHSHAMMER

Then with (13) and (14) we have

P

(
H⋂

h=0

⋂
Kh∈Sh

{∣∣∣∣∣
N∑

n=1

ΔKh
(xn)

∣∣∣∣∣ ≤ th

})
= 1− P

(
H⋃

h=0

⋃
Kh∈Sh

AKh,N,d

)

≥ 1−
∑

K0∈S0

P(AK0,N,d)−
H∑

h=1

∑
Kh∈Sh

P(AKh,N,d)

≥ 1− |S0|2eκ0 log 2−C4d −
H∑

h=1

|Sh|2eκh log 2−C3dh

≥ 1−(2q3 + 2)ded(1−C4)+κ0 log 2−
H∑

h=1

(2qh+3 + 2)ded(1−C3h)+κh log 2. (16)

We will now choose C1 = C1(ε) and C2 = C2(ε) such that

(2q3 + 2)ded(1−C4)+κ0 log 2 ≤ ε

2
(17)

and (
2qh+3 + 2

)d
ed(1−C3h)+κh log 2 ≤ ε

2h+1
. (18)

From (16), (17) and (18) we then obtain that

P

(
H⋂

h=0

⋂
Kh∈Sh

{∣∣∣∣∣
N∑

n=1

ΔKh
(xn)

∣∣∣∣∣ ≤ th

})
≥ 1− ε.

Inequality (17) is equivalent to

C4 ≥ 1

d

(
d log(2q3 + 2) + d+ log(2 + 
logq d�) + log

2

ε

)
.

This is certainly satisfied for the choice

C4 = log(2q3 + 2) + 2 + log
2

ε
= log

(
4(q3 + 1)e2

ε

)
.

With (15) it follows that we choose

C2 = C4
1

3

√
c(q) +

√
C2

4

1

9
c(q) + 12C4 � log

1

ε
.

Inequality (18) is equivalent to

C3 ≥ 1

dh

(
d log(2qh+3 + 2) + d+ log(h+ 2 + 
logq d�) + log 2h + log

2

ε

)
.
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This is certainly satisfied for the choice

C3 = log
(
2(q4 + 1)

)
+ 2 +

log 2

2
+ log

2

ε
= log

(
4
√
2(q4 + 1)e2

ε

)
.

With (15) it follows that we choose

C1 = C3
1

3

√
c(q) +

√
C2

3

1

9
c(q) + 12C3 � log

1

ε
.

Finally, by (6), (13), (14) we obtain with probability at least 1− ε

N∑
n=1

1[0,y)(xn) ≤
N∑

n=1

H∑
h=0

ΔKh
(xn) +Nλ([0,βH+1))

≤
N∑

n=1

ΔK0
(xn) +

H∑
h=1

N∑
n=1

ΔKh
(xn) +Nλ([0,y))+

N
(
λ([0,βH+1))− λ([0,y))

)
≤

√
Nd

(
C2

√
2κ0 +

H∑
h=1

C1

√
2κh

√
hq−h

)
+N

(
λ([0,y)) + q−H

)

≤
√
Nd

(
C2

√
2κ0 +

∞∑
h=1

C1

√
2κh

√
hq−h

)
+
√
Nd logq d+Nλ([0,y))

≤
√
Nd

(
C2

√
2κ0 +

∞∑
h=1

C1

√
(h+ 3)hq−h +

√
logq d

∞∑
h=1

C1

√
hq−h

)

+
√
Nd logq d+Nλ([0,y)), (19)

where we used that

λ
(
[0,βH+1)

)− λ
(
[0,y)

) ≤ λ(KH(y)) ≤ q−H .

By the choices for C1 and C2 we obtain that

1

N

N∑
n=1

1[0,y)(xn)− λ([0,y)) ≤ C5(q, ε)

√
d log d

N
, (20)

where C5(q, ε) � log 1
ε .

If we use (5) instead of (6) and the fact that

λ([0,y))− λ([0,βH)) ≤ λ(KH(y)) ≤ q−H ,
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we get that
1

N

N∑
n=1

1[0,y)(xn)− λ([0,y)) ≥ −C5(q, ε)

√
d log d

N
(21)

with C5(q, ε) as before.

Finally, (20) and (21) imply∣∣∣∣∣ 1N
N∑

n=1

1[0,y)(xn)− λ([0,y))

∣∣∣∣∣ ≤ C5(q, ε)

√
d log d

N
.

Since y ∈ [0, 1]d was arbitrary we get that

D∗
N

(PN (f)
) ≤ C5(q, ε)

√
d log d

N

holds with probability at least 1− ε. This finishes the proof. �

3.5. The proof of Corollaries 2 and 4

P r o o f. Since the proofs of the two corollaries are very similar we only present
the proof of Corollary 4.

Let c(q)>0 be such that C(q, ε) from Theorem 3 satisfies

C(q, ε)≤c(q) log ε−1.

For δ ∈ (0, 1) and N ≥ 2 let εN = 6δ/(πN)2 and

AN :=

{
f ∈ (Zq((t

−1))
)d

: D∗
N (PN (f)) ≤ c(q) log ε−1

N

√
d log d

N

}
.

According to Theorem 3 we have P(AN ) ≥ 1− εN .

Set

A :=

{
f ∈ (Zq((t

−1))
)d

: D∗
N

(PN (f)
)≤c(q) log ε−1

N

√
d log d

N
for all N≥2

}
.

Then obviously, A =
⋂

N≥2 AN and hence

P(Ac) = P

⎛
⎝ ⋃

N≥2

Ac
N

⎞
⎠ ≤

∑
N≥2

P(Ac
N ) ≤

∑
N≥2

εN ≤ δ,

where Ac is the complement of A in
(
Zq((t

−1))
)d

and similarly for Ac
N . Hence

P(A) ≥ 1− δ and the result follows. �
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