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ON THE DISCREPANCY OF TWO FAMILIES

OF PERMUTED VAN DER CORPUT SEQUENCES

Florian Pausinger — Alev Topuzoğlu

ABSTRACT. A permuted van der Corput sequence Sσ
b in base b is a one-

dimensional, infinite sequence of real numbers in the interval [0, 1), generation
of which involves a permutation σ of the set {0, 1, . . . , b−1}. These sequences are

known to have low discrepancy DN , i.e. t(Sσ
b ) := lim supN→∞ DN (Sσ

b )/ logN is
finite. Restricting to prime bases p we present two families of generating permuta-
tions. We describe their elements as polynomials over finite fields Fp in an explicit
way. We use this characterization to obtain bounds for t(Sσ

p ) for permutations σ
in these families. We determine the best permutations in our first family and show
that all permutations of the second family improve the distribution behavior of

classical van der Corput sequences in the sense that t(Sσ
p ) < t(Sid

p ).

Communicated by Friedrich Pillichshammer

1. Introduction

The irregularities of distribution of an infinite sequence X = (xk)k≥1 ⊂ [0, 1)
can be quantified by various notions of discrepancy; see [4, 5, 15]. In this pa-
per, we study the extreme discrepancy, DN (X), of an infinite sequence X. We
remark that we follow F a u r e and define discrepancy without the scaling fac-
tor 1/N . A sequence X is a low discrepancy sequence if there exists a constant
K independent of N such that DN (X) ≤ K · logN for all N . This terminology
is motivated by a well-known result of S c h m i d t [22] who showed that there
exists an absolute constant κ such that for all infinite sequences X ⊂ [0, 1), we
have DN (X) > κ · logN for infinitely many N . The currently best known bound
κ > 0.121128 is due to L a r c h e r [16].
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Let b ≥ 2 be an integer and let Sb denote the set of all permutations σ
of {0, 1, . . . , b − 1}. Classical (for σ = id) and permuted van der Corput se-
quences, Sσ

b , are well-known examples of low discrepancy sequences. These se-
quences are the basic building blocks of multi-dimensional Halton sequences,
which play an important role in numerical integration and quasi-Monte Carlo
methods; see [12] and Section 6. F a u r e presented explicit formulas for the
discrepancy of these sequences and showed that DN (Sσ

b ) ≤ DN (Sid
b ) for all

σ ∈ Sb and all N ∈ N; see [6, 8]. Furthermore, F a u r e developed a framework
to compute the asymptotic value

t(Sσ
b ) := lim sup

N→∞
DN (Sσ

b )

logN
,

which is known to be finite. This quantity can be used to compare sequences
obtained by varying permutations in the sense that smaller values of t indicate
sequences with more regular distribution. In particular, it is known [6] that

t(Sσ
b ) ≤ t(Sid

b ), (1)

for every permutation σ ∈ Sb. Therefore the main question in this context is to
determine permutations that improve the distribution properties of the classical
van der Corput sequence. F a u r e calculated in [6, Théorème 6],

t(Sid
b ) =

{
b−1
4 log b

if b is odd,
b2

4(b+1) log b if b is even.

On the other hand, the smallest known asymptotic values within the family of
permuted van der Corput sequences given in [6, 7] have recently been improved
by O s t r o m o u k h o v [20] to t(Sσ

84) = 0.353494 . . . for a particular permuta-
tion in base 84. Furthermore, F a u r e [7] introduced an algorithm that outputs
exactly one permutation σF ∈ Sb for every b ≥ 2 such that t(SσF

b ) < 1/ log 2,
which beautifully contrasts the result for the identity permutations.

The aim of our paper is to study the asymptotic constants t(Sσ
b ) for permu-

tations σ, which belong to sets of structurally similar permutations F ⊆ Sb

thus providing larger sets of good generating permutations in a given base. We
focus on the case b = p, for a prime p, with the advantage that finite fields Fp

of p elements are polynomially complete. This means that any self map, and
in particular any permutation of Fp, can be expressed as a polynomial over Fp.
Therefore, we consider permutation polynomials in Fp[x], where, as usual, we
identify Fp with {0, 1, . . . , p − 1}. We are mainly interested in two essentially
different families of permutations; i.e., affine permutations and fractional affine
permutations. For a0 ∈ Fp \ {0} = F

∗
p and a1 ∈ Fp we call the permutation

σ = σa0,a1
affine if

σa0,a1
(x) = a0x+ a1,
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and we denote the family of affine permutations in base p with F (a)
p . Note that

affine permutations are also known as linear digit scramblings. This name goes
back to a paper of M a t o u š e k [17] and is discussed in a recent survey by
F a u r e et al [11]. Our notation is motivated by the underlying geometric inter-
pretation and should highlight its algebraic relation to our second family.

Our main result for affine permutations σ = σa0,a1
is an upper bound for

t(Sσ
p ) in terms of the parameter a0. We refer to the book of K h i n c h i n [14] for

an introduction to continued fractions. Using the standard notation we denote
the finite continued fraction expansion of the rational number α ∈ [0, 1) by

α = [0, α1, α2, . . . , αm].

������� 1.1� For a prime p, let a0 ∈ F
∗
p, a1 ∈ Fp and σ = σa0,a1

∈ F (a)
p .

Let a0/p=[0, α1, α2, . . . , αm] and set αmax=max1≤i≤m αi. Then, for all N ∈N,

DN (Sσ
p ) ≤

αmax + 1

log(αmax + 1)
log(N + 1) and t(Sσ

p ) ≤
αmax + 1

log(αmax + 1)
.

Since id ∈ F (a)
p (for a0 = 1, a1 = 0) it is clear that the number αmax may

depend on p; i.e., the continued fraction expansion of 1/p contains p. One in-
teresting problem is therefore to determine, in case there are any, which values
of a0 and p guarantee an absolute bound for αmax, i.e., a bound, which is inde-
pendent of p. There is a close relation between this problem and the well-known
conjecture of Z a r e m b a [24]. Indeed, recent progress on this conjecture [1, 13]
shows the existence of an infinite set N of primes such that for each p ∈ N, there
exists an a0 with αmax ≤ 5.

Remark 1.2. Since the current results on the conjecture of Zaremba are only
for an infinite subset of primes and are non-constructive, one may wonder if
Theorem 1.1 is applicable at all. The bound in Theorem 1.1 is favorable only
when a0 and p are chosen such that αmax is small. We call such a parameter a0
a good multiplier in base p. In fact, for practical purposes one can easily obtain
good multipliers by looking at the continued fraction expansions of a0/p. Table 1
gives a list of such multipliers for 11 ≤ p ≤ 151, with αmax(a0/p) ≤ 3.

To present our second main result, we turn to another family of permutations.
For a0 ∈ F

∗
p and a1, a2 ∈ Fp we call the permutation π = πa0,a1,a2

fractional
affine if

πa0,a1,a2
(x) = (a0x+ a1)

p−2 + a2,

and we denote the family of fractional affine permutations with F (f)
p . This family

does not contain the identity; in fact F (a)
p and F (f)

p are always disjoint. Inter-

estingly, it turns out that permutations in F (f)
p define sequences all of which are
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Table 1. Good multipliers a0 with αmax(a0/p) ≤ 3 for prime bases 11 ≤ p ≤ 151.

p a0

11 3, 4
13 5
17 5, 7
19 7, 8
23 7, 10
29 8, 11, 12
31 12, 13
37 10, 11
41 11, 12, 15, 16, 17, 18
43 12, 18
47 13, 18
53 14, 19, 23
59 18, 23, 25, 26
61 17, 18, 22, 25
67 18, 26
71 21, 26, 27, 30

p a0

73 27
79 23, 24, 29, 30
83 22, 30, 34, 36
89 24, 25, 26, 27, 32, 33, 34
97 26, 35, 36, 41
101 30, 37, 39, 44
103 37, 39
107 41, 47
109 30, 33, 40, 45, 46
113 30, 49
127 34, 56
131 36, 40, 47, 50, 55
137 37
139 39, 41, 57, 61
149 40, 41, 44, 55, 65
151 56, 59, 62, 64

better distributed than the classical van der Corput sequence in the same base;
compare (1) and (2).

������� 1.3� Let a0 ∈ F
∗
p and a1, a2 ∈ Fp and let π = πa0,a1,a2

∈ F (f)
p . Then,

t(Sπ
p ) < t(Sid

p ). (2)

Remark 1.4. It is interesting to note that even if the set of permutations F (f)
p

is much larger than F (a)
p , the range of values for t(Sπ

p ) is smaller; see Table 2 and

Section 6.3. While F (a)
p contains permutations generating sequences with very

small as well as largest possible discrepancy (in the context of permuted van der

Corput sequences), the permutations in F (f)
p avoid this extremal behavior.

Our theorems offer two assets to the practitioner. Firstly, we provide a crite-
rion based on continued fractions to choose a provably good multiplier for linear
digit scrambling in prime base p. Secondly, we show that picking any permuta-

tion from F (a)
p ensures to avoid extremal discrepancy behavior of the resulting

sequence - independent of the particular choice of parameters as illustrated in
Table 2. That is, any choice of parameters a0, a1, a2 gives a sequence that is
better than the worst and worse than the best sequences in base p.
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We recall the necessary background on the discrepancy of permuted van der
Corput sequences in Section 2 and prove Theorem 1.1 in Section 3. Theorem 1.3

is proven in Section 4, before we discuss a useful extension of F (f)
p in Section 5.

We conclude our paper with three remarks on directions for future research in
Section 6.

2. Discrepancy of van der Corput sequences

In this section we recall the main definitions of uniform distribution theory
as well as the main results of Faure concerning the exact computation of the
discrepancy of permuted van der Corput sequences.

2.1. Discrepancy

Let [α, β) ⊆ [0, 1) be a subinterval of the half open unit interval. For an
infinite sequence X = (xk)k≥1 in [0, 1) and for N ≥ 1, let A([α, β), N,X) denote
the number of indices k ≤ N for which xk ∈ [α, β) and let E([α, β), N,X) :=
A([α, β), N,X)−(β−α)N denote the discrepancy function. An infinite sequence
X is uniformly distributed if

lim
N→∞

A([α, β), N,X)

N
= β − α,

for every subinterval [α, β). The extreme discrepancy, DN (X), of the first N
points of X is defined as

DN (X) = sup
[α,β)⊆[0,1)

|E([α, β), N,X)|.

A sequence X is uniformly distributed if and only if lim
N→∞

DN (X)/N = 0 and it

is a low discrepancy sequence if for all N, there exists a constant K, independent
of N , such that DN (X) < K log(N).

2.2. Permuted van der Corput sequences

The classical van der Corput sequences Vb =
(Vb(k)

)
k≥1

in base b are one-

dimensional, infinite sequences of real numbers in the half-open unit interval
[0, 1), which are defined by the radical inverse function. Let

∑∞
j=0 aj(k)b

j be the

b-adic representation of the integer k ≥ 0, with 0 ≤ k < bn and aj(k) = 0 if

j ≥ n. Put Vb(k) =
∑∞

j=0
aj(k)
bj+1 .
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Let Sb denote the set of all permutations of {0, 1, . . . , b − 1}. We follow
F a u r e [6] and define the permuted (generalized) van der Corput sequence,
Sσ
b =

(Sσ
b (k)

)
k≥1

, for a fixed base b ≥ 2 and σ ∈ Sb by

Sσ
b (k) =

∞∑
j=0

σ(aj(k))

bj+1
, k ≥ 1. (3)

Hence Vb(k) = Sid
b (k), k ≥ 0, where id denotes the identity permutation in Sb.

2.3. Analysis of discrepancy

The analysis of the discrepancy of Sσ
b is based on auxiliary functions that were

introduced in [6]. For σ ∈ Sb, let Zσ
b :=

(
σ(0)/b, σ(1)/b, . . . , σ(b − 1)/b

)
. For

h ∈ {0, 1, . . . , b− 1} and x ∈ [
k−1
b , kb

)
, where 1 ≤ k ≤ b is an integer, we define

ϕσ
b,h(x) :=

{
A([0, h/b), k,Zσ

b )− hx if 0 ≤ h ≤ σ(k − 1),

(b− h)x−A([h/b, 1), k,Zσ
b ) if σ(k − 1) < h < b.

The function ϕσ
b,h is extended to the reals by periodicity. Note that ϕσ

b,h(0) = 0

for any σ ∈ Sb and any h ∈ {0, . . . , b−1}. F a u r e [6] introduced a further class
of functions which are based on ϕσ

b,h as

ψσ
b := max

0≤h≤b−1
(ϕσ

b,h) + max
0≤h≤b−1

(−ϕσ
b,h).

Moreover, in [6, Théorème 1 and Théorème 2] a technique is developed to com-
pute the discrepancy of Sσ

b exactly. Firstly, it is shown that for all N ≥ 1

DN (Sσ
b ) =

∞∑
j=1

ψσ
b

(
N

bj

)
. (4)

Secondly, for

ασ
b := inf

n≥1
sup
x∈R

⎛
⎝ 1

n

n∑
j=1

ψσ
b

( x
bj

)⎞⎠
Faure obtains

t(Sσ
b ) = lim sup

N→∞
DN (Sσ

b )

logN
=

ασ
b

log b
. (5)

Note that the extremal values of ψσ
b (y), y ∈ [0, 1) are attained when y = k/b,

where 1 ≤ k ≤ b−1. Considering ψσ
b (0) = ψσ

b (1) = 0 and putting maxψσ
b := α0,

one has 1/n
∑n

j=1 ψ
σ
b (xb

−j) < α0 and hence an upper bound for the asymptotic
constant can be obtained as

t(Sσ
b ) ≤

α0

log b
, see [10, Lemma 1].
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ON THE DISCREPANCY OF PERMUTED VAN DER CORPUT SEQUENCES

We conclude this section with a useful lemma:

����	 2.1� Let 0 < a < b be an integer, let σ ∈ Sb and let σ′, σ′′ ∈ Sb be
defined as

σ′(x) = σ(x) + a (mod b), and σ′′(x) = −σ(x) (mod b)

for 0 ≤ x ≤ b− 1, then for all N,

DN (Sσ
b ) = DN

(
Sσ′
b

)
and DN (Sσ

b ) = DN

(
Sσ′′
b

)
.

P r o o f. In the following we think of [0, b) as a torus; i.e., addition and sub-
straction is performed modulo b and for α, β ∈ [0, b) with α > β we define
[α, β) := [0, β)∪[α, b). Note that the first part of the lemma was already observed
by C h a i x and F a u r e [3, Théorème 4.4]. Their proof relies on the observation
that if σ(x) ∈ [α, β) ⊂ [0, b), then σ′(x) ∈ [α+ a, β + a) ⊂ [0, b). The second as-
sertion can be shown along the same lines, observing that if σ(x) ∈ [α, β) ⊂ [0, b)
then σ′′(x) ∈ (−β,−α] and therefore σ′′(x) ∈ [−β + 1,−α+ 1) ⊂ [0, b). �

3. Affine permutations

We obtain Theorem 1.1 by combining two earlier results. For the first part

we observe that a bound for ψσ
p , σ ∈ F (a)

p , can be given using an idea that
N i e d e r r e i t e r used to bound the discrepancy of Kronecker sequences. The
second part follows by applying a method of Faure.

����	 3.1� For a prime p, let σ = σa0,a1
∈ F (a)

p and a0/p = [0, α1, α2, . . . , αm]
be the finite continued fraction expansion of a0/p. Then for 1 ≤ N < p,

DN (Sσ
p ) = ψσ

p (N/p) ≤ Kαmax
logN,

where αmax := max1≤i≤m αi and Kαmax
is a constant that depends on αmax only.

P r o o f. First we note by Lemma 2.1 that the parameter a1 has no influence
on the discrepancy of S

σa0,a1
p . Therefore, in what follows we set a1 = 0. We

prove this lemma by a finite version of the argument of Niederreiter for infinite
Kronecker sequences; see [15, Chapter 2, Theorem 3.4]. To see the connection to
Kronecker sequences, we observe that the first p points of S

σa0,a1
p are of the form

{k · a0/p} for k = 0, 1, . . . , p− 1, where {β} denotes the fractional part of β.

Now, let 1 = q0 < q1 < · · · < qr < · · · < p be the denominators of the
convergents (see [14] for a definition) to a0/p. For a given 1 ≤ N ≤ p, there
exists r ≥ 0 such that qr ≤ N < qr+1 and we have N = brqr + Nr−1 with
0 ≤ Nr−1 < qr.
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We note that (αr+1 + 1)qr ≥ qr+1 > N , and so, br ≤ αr+1. If r > 0, we
may write Nr−1 = br−1qr−1 + Nr−2 with 0 ≤ Nr−2 < qr−1. Again we find
br−1 ≤ αr. Continuing in this manner, we arrive at a representation for N of the
form N =

∑r
i=0 biqi with 0 ≤ bi ≤ αi+1 for 0 ≤ i ≤ r, and br ≥ 1.

We decompose the interval [1, N ] into br + br−1 + · · ·+ b0 subintervals, such
that the first br intervals are of length qr, the next br−1 intervals are of length
qr−1 and so on. Using this decomposition, we also decompose the given se-
quence {a0/p}, {2a0/p}, . . . , {Na0/p} into br+br−1+ · · ·+b0 sequences {na0/p}
in which n runs through the corresponding subintervals of [1, N ] We estimate
the discrepancy of such a finite sequence {na0/p}, in which n runs through qi
consecutive integers, say n = n0 + j with 1 ≤ j ≤ qi. We have

a0
p

=
pi
qi

+
x

qiqi+1
, with |x| ≤ 1.

Therefore, {
n
a0
p

}
=

{
n0
a0
p

+
jpi
qi

+
jx

qiqi+1

}
.

Referring to the proof of N i e d e r r e i t e r we can conclude that the discrep-
ancy Dqi of the finite sequence {na0/p}, n0 + 1 ≤ n ≤ n0 + qi, satisfies

1

N
Dqi ≤

1

qi
+

1

qi+1
.

Consequently, by [15, Chapter 2, Theorem 2.6] we can estimate the discrep-
ancy of the original sequence based on the decomposition we chose, and get

DN (Sσ
p ) ≤

r∑
i=0

bi

(
qi
qi+1

+ 1

)
≤ r + 1 +

r∑
i=0

bi,

which is shown to simplify to

DN (Sσ
p ) ≤ 3 +

(
1

log ξ
+

αmax

log(αmax + 1)

)
logN,

for ξ = (1 +
√
5)/2. In [18], see also [19, Corollary 3.5], N i e d e r r e i t e r im-

proved this result to

DN (Sσ
p ) ≤

αmax + 1

log(αmax + 1)
log(N + 1).

�
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����	 3.2� For a prime p, let σ = σa0,a1
∈ F (a)

p and let αmax be defined
as above. Then we have that

t(Sσ
p ) ≤

αmax + 1

log(αmax + 1)
. (6)

P r o o f. Starting from the bound on the maximum of ψσ
p (N/p), we apply the

asymptotic method of F a u r e [6, Théorème 2]. Recall that

t(Sσ
p ) = lim

N→∞
DN (Sσ

p )

logN
=

ασ
p

log p
, with ασ

p = inf
n≥1

sup
x∈R

⎛
⎝1/n

n∑
j=1

ψσ
p (x/p

j)

⎞
⎠ .

Since,

ασ
p ≤ max

x∈[0,1]
ψσ
p (x) ≤

αmax + 1

log(αmax + 1)
· log p,

we get

t(Sσ
p ) =

ασ
p

log p
≤ 1

log p

αmax + 1

log(αmax + 1)
· log p = αmax + 1

log(αmax + 1)
. �

4. Fractional affine permutations

The aim of this section is to prove Theorem 1.3. We first recall how Faure

calculated t(Sid
b ) before we show that t(Sπ

b ) < t(Sid
b ) for every π=πa0,a1,a2

∈F (f)
p .

Let σ ∈ Sb. Faure showed [6, Corollaire 3] that

ψσ
b

(
k

b

)
≤ k

(
1− k

b

)
, (7)

for 0 ≤ k ≤ b − 1. Since Dk(S
σ
b ) = ψσ

b (k/b) for 1 ≤ k ≤ b − 1, we obtain
equality in (7) if and only if all k points lie in an interval of length k/b, since

k − k2

b = k
(
1− k

b

)
. The identity permutation satisfies this for every k from

which Faure obtains

max
1≤k≤b

ψid
b (k/b) = ψid

b

(	b/2

b

)
and ψσ

b (x) ≤ ψid
b (x),

for all x ∈ [0, 1] and all σ ∈ Sb.
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Moreover, Faure finds for odd b [6, Théorème 6] that

αid
b = lim

n→∞
αid
b,n with αid

b,n =
1

n

n∑
j=1

ψid
b

(
x̃n
bj

)
,

in which

x̃n =

n∑
j=1

b− 1

2
bj−1.

In the following ⊕ denotes addition modulo b and we put for any σ ∈ Sb and
k ≤ b,

Jσ
k = {σ(x) : 1 ≤ x ≤ k}.

Hence, J id
k = {1, . . . , k} for any b ≥ 2, σ = id, k ≤ b. It turns out that fractional

affine permutations never map the set {0, 1, . . . , (p− 1)/2} to a set of the form
J id
(p−1)/2 ⊕ a, for an a ∈ Fp.

����	 4.1� Let π = πa0,a1,a2
∈ F (f)

p and q = (p− 1)/2. Then J
πa0
q �= J id

q ⊕ a
for all a ∈ Fp.

P r o o f. We apply again Lemma 2.1 and set a2 = 0 in the following. First, we
consider the case a1 = 0 and write πa0

= πa0,0,0. It suffices to show that for
every a0 ∈ F

∗
p there exist x, x′ ∈ {1, . . . , q} such that

πa0
(x′) = πa0

(x) + q, (8)

since this implies that no permutation πa0
maps the set {1, . . . , q} into an interval

of the form J id
q ⊕ a. We can solve (8) for x′ and get

x(1 + a0qx)
p−2 = x′. (9)

If we fix x in (9) and let a0 run through Fp, we obtain a permutation of Fp

that gives for every a0 and fixed x, the unique x′ such that (8) is satisfied.
In particular, note that x = x′ if and only if a0 = 0.

Next we write all q permutations of the form (9) into a matrix such that
row i contains the permutation for x = i and column j contains all solutions x′

of (8) for fixed a0 and x ∈ {1, . . . , q}. We observe that all q rows in this matrix
are shifted versions of each other; i.e., all q permutations are shifted versions of
(1 + a0q)

p−2 obtained for x = 1. In particular, there is a k such that

x
(
1 + (a0 + k)xq

)p−2
= (x+m)

(
1 + a0(x+m)q

)p−2
, (10)

for all x, m and a0. This means that the entry for x′ in row x and column a0+k
is the same as the entry in row x+m and column a0. Solving (10) for k leads to

k = m
(
qx(m+ x)

)p−2
. (11)
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Now, if there was a parameter resp. column ã0 such that for every x ∈
{1, . . . , q} we get x′ ∈ {q + 1, . . . , 2q}, then there must be a second parame-
ter −ã0 for which all x ∈ {q+1, . . . , 2q} are mapped to {q+1, . . . , 2q}. This can
be seen from the symmetry

(a0x)
p−2 =

(−a0(−x))p−2
. (12)

However, this means that we see q of the values {0, 1, . . . , q} in column −ã0 for
x ∈ {1, . . . , q}.

To conclude, we know that the column for a0 = 0 contains the value x in
row x. Moreover, assuming their exists a special parameter ã0, column ã0 always
contains all values q < y ≤ 2q for x ∈ {1, . . . , q}, whereas column −ã0 contains

all but one of the values 0 ≤ z ≤ q. Thus, in each row such a value y lies k̃ = ã0
columns away of the value x, whereas such a value z is −k̃ = −ã0 columns away
from x. This fixes the position of all elements in the shift permutation; i.e., this
determines all shifts observed in (11) when going from the permutation in row x

to the permutation in row x+1. All values z come at distance −k̃, thus implying
that the shift permutation has a linear structure, i.e., turning from row x to x+1
has to result in a shift by a multiple of −k̃, which contradicts our observation
in (11). Therefore, there can not exist a special parameter ã0.

In the case a1 �= 0, we observe that since (a0x+a1)
p−2 is a permutation of Fp,

there exists an x∗ ∈ {1, . . . , p− 1} such that

a0x
∗ + a1 = 0.

Therefore,
a0x+ a1 = a0x

∗ + a1 + a0(x− x∗) = a0(x− x∗)
and

(a0x+ a1)
p−2 =

(
a0(x− x∗)

)p−2
.

The proof of the corresponding assertion follows now along the same lines as in
the case a1 = 0 and is omitted for the sake of brevity. �

Remark 4.2. This proof shows nicely the difference between affine and frac-
tional affine permutations. Applying the same argument to affine permutations,
we get x′ = x − qap−2

0 in (9). Now we see that the rows of the corresponding
matrix are not shifted versions of each other, but are obtained via incrementing
each row by 1 when going from x to x+ 1. Thus, if two elements in row 1 have
a certain distance k, this row-wise increment ensures that we find q different
pairs of numbers with the same distance k. Therefore a special parameter ã0 can
indeed exist for linear permutations; for example ã0 = 1.

Thus, we conclude that

max
1≤k≤p

ψπ
b (k/p) < max

1≤k≤p
ψid
p (k/p), for all π = πa0,a1,a2

∈ F (f)
p . (13)
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P r o o f o f T h e o r e m 1.3. Since we know that ψπ
p (x)≤ψid

p (x) for all x∈ [0, 1]
we have that

απ
p = inf

n≥1
sup
y∈R

⎛
⎝ 1

n

n∑
j=1

ψπ
p

(
y

pj

)⎞⎠ ≤ αid
p ,

for all y ∈ R. However, we get from the result of Faure and by the periodicity
of ψid

p that

αid
p,n =

1

n

⎛
⎝ψid

p

(
p− 1

2p

)
+

n∑
j=2

ψid
p

(
x̃n
pj

)⎞⎠ ,

for the above stated x̃. We set

απ
p,n := sup

y∈R

⎛
⎝ 1

n

n∑
j=1

ψπ
p

(
y

pj

)⎞⎠ .

By Lemma 4.1 resp. (13) we know that max1≤k≤p ψ
π
p (k/p) < ψid

p

(
(p− 1)/(2p)

)
and hence

απ
p,n < αid

p,n ,

for all n from which the result follows. �

5. Extending the family of fractional permutations

The aim of this section is to show how fractional affine permutations can be
related in a natural way to permutations with similar distribution properties of
an even larger family by interchanging two elements in a systematic way.

Interchanging two elements of a permutation does in general not change the
asymptotic constant of the corresponding van der Corput sequence too much.
This follows from the fact that for 1 ≤ N ≤ p, the value of the discrepancy
function of all intervals that are affected by the interchange, will change by at
most 1, since the number of points in the interval either increases or decreases by
one. Writing σ for the original permutation and σ′ for the modified permutation,
we immediately see from the definition that

ασ′
p ≤ ασ

p + 1

and hence (5) implies

t
(
Sσ′
p

)
≤ ασ

p

log p
+

1

log p
.
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5.1. Fractional linear transformations

First, we consider fractional linear transformations

R1(x) =
α2x+ β2
α1x+ β1

, α2β1 − β2α1 �= 0,

and the permutations of Fp, defined as π(x) = R1(x) for x ∈ Fp \ {−β1/α1},
and π(−β1/α1) = −α2/α1. Clearly, π(x) can be expressed as

π(x) = πa0,a1,a2
(x) = (a0x+ a1)

p−2 + a2 , (14)

where a0 �= 0, α1 = a0, β1 = a1, α2 = a0a2, β2 = a1a2 + 1. Similarly, we consider
permutations

τ(x) = τA0,A1,A2,A3
(x) =

(
(A0x+A1)

p−2 +A2

)p−2
+A3 (15)

for A0, A2 ∈ F
∗
p and A1, A3 ∈ Fp, and the fractional transformations

R2(x) =
α3x+ β3
α2x+ β2

,

where α2, β2 are as above, and α3 = A0(A2A3 + 1), β3 = A1(A2A3 + 1) + a3.
We note that τ(x) = R2(x) for x ∈ Fp \ {X1, X2}, with X1 = −A1/A0, X2 =
−(A1A2 + 1)/(A0A2), and set τ(X1) = α3/α2, τ(X2) = R2(X1).

5.2. Interchanging elements

The following result shows that for every permutation π there exists a per-
mutation τ such that π(x) = τ(x) for all x ∈ Fp \ {X1, X2}.

������� 5.1� Fix a0, a1, a2 ∈ Fp, with a0, a2 �= 0 and set (in Fp)

A0 = −a0a22, A1 = −a1a22 − a2, A2 = 1/a2.

Consider π = πa0,a1,a2
∈ F (f)

p and τ = τA0,A1,A2,0. Then π(x) = τ(x) for all
x ∈ Fp, except for

X1 = −(a1a2 + 1)/a0a2, X2 = −a1/a0,

for which π(X1) = τ(X2) and π(X2) = τ(X1).
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P r o o f. Plugging into the above fractional linear transformations, we see that
π and τ have the same transformations

R2(x) =
A0x+A1

A0A2x+A1A2 + 1
=

−a2(a0a2x+ a1a2 + 1)

−a2(a0x+ a1)
= R1(x).

for all x but X1, X2, with

X1 = −A1

A0
= −a1a2 + 1

a0a2
and X2 = −A2A1 + 1

A2A0
= −a1

a0
.

For X1 and X2 we obtain

π(X1) = R1(X1) = 0 = τ(X2),

π(X2) = π(−a1/a0) = a2 = 1/A2 = τ(X1). �

From the last lines of the proof we see that τ is obtained from π by swapping 0
and a2. In this way, we associate a permutation τA0,A1,A2,0 to each permutation
πa0,a1,a2

. Note that by Lemma 2.1 the parameters a2, A3 have no importance for
the discrepancy of Sπ

p resp. Sτ
p . Hence we can replace a2 by zero to conclude

the following. To each πa0,a1,0 we can associate p−1 permutations τA0,A1,A2,−a2
,

for a2 ∈ {1, . . . , p− 1} such that the image of τ is obtained from the image of π
by swapping 0 and −a2. We illustrate this with an example. To emphasize how
different permutations are related, we represent a permutation σ =

(
0 1 2 3 4
0 4 3 2 1

)
as σ = (0, 4, 3, 2, 1), meaning that 0 is mapped to 0, 1 is mapped to 4 and so on.


�	��
� 5.2�

Let p = 11 with a0 = 2, a1 = 3 and a2 = 5. Then

π2,3,0 = (4, 9, 8, 5,0, 6, 3, 2, 7, 10, 1)
and

π2,3,5 = (9, 3, 2, 10, 5,0, 8, 7, 1, 4, 6).

Consequently, A0 = 5, A1 = 8 and A2 = 9, such that

τ5,8,9,−5 = (4, 9, 8, 5,6,0, 3, 2, 7, 10, 1)

and
τ5,8,9,0 = (9, 3, 2, 10,0,5, 8, 7, 1, 4, 6).

Now choose a′2 = 3. Then

π2,3,3 = (7, 1,0, 8, 3, 9, 6, 5, 10, 2, 4)

and A′
0 = 4, A′

1 = 3, A′
2 = 4, such that

τ4,3,4,−3 = (4, 9,0, 5,8, 6, 3, 2, 7, 10, 1)
and

τ4,3,4,0 = (7, 1,3, 8,0, 9, 6, 5, 10, 2, 4).
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6. Concluding remarks

6.1. Hammersley point sets and Halton sequences

Permuted Hammersley point sets are two dimensional point sets. Let b ≥ 2
be an integer and let Sσ

b be a permuted van der Corput sequence in base b. The
permuted two-dimensional Hammersley point set in base b consisting of bn points
for n ≥ 0 is defined by

Hσ
b,n :=

{(
Sσ
b (N),

N − 1

bn

)
: 1 ≤ N ≤ bn

}
.

In [10, Theorem 1] Faure proved a general formula for the star discrepancy
D∗

N (Hσ
b,n) of Hammersley point sets generated from arbitrary permutations.

Furthermore, he showed that the identity permutations generate up to a small
constant the worst point sets in a given base. He derived asymptotic results [10,
Theorem 3] that are similar to the one-dimensional case. His general formula
reduces the study of two-dimensional Hammersley point sets to the study of
one-dimensional van der Corput sequences and therefore all our results can be
immediately applied to Hammersley point sets.

A generalized Halton sequence is a multi-dimensional sequence, whose i-th
coordinate is a permuted van der Corput sequence. Halton sequences are uni-
formly distributed if the bases of the generating van der Corput sequences are
coprime. The paper [21] as well as our results sharpen and confirm some of the
observations and suggestions derived from the numerical results of [9, 12], where
various selection criteria for good (and bad) multipliers a0 (or f in the notation
of these papers) were stated. Our main contribution in this context is to give a
concrete criterion how to identify good and bad multipliers based on continued
fraction expansions. Moreover, we give a formal proof — relying on the Conjec-
ture of Zaremba — that, indeed, there always exist good multipliers as observed
in [9, Section 7].

6.2. Carlitz rank

Every permutation of Fp can be represented by a polynomial

Pn(x) =
(
. . .

(
(a0x+ a1)

p−2 + a2
)p−2

. . . + an

)p−2

+ an+1, n ≥ 0 (16)

for a0a2 · · · an �= 0, with an associated fractional transformation

Rn(x) =
αn+1x+ βn+1

αnx+ βn
,

where αi, βi, i ≥ 2 can be described recursively. This is due to a well-known
result of C a r l i t z [2], and leads to the concept of the Carlitz rank of per-
mutations. For details we refer the reader to [23] and the references therein.
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The Carlitz rank is a particular measure of the complexity of a permutation.
The results of our paper can be seen as a study of permutations of small Carlitz
rank, i.e., Carlitz rank 0, 1, 2. Thus, this is a first step towards a systematic study
of the distribution properties of permutations of fixed Carlitz rank n.

6.3. Numerical results and open problem

We conclude this paper with numerical results on the discrepancy of sequences

generated from permutations in F (a)
p and F (f)

p . As described in Section 2, we can
upper bound t(Sσ

p ) with α0/ log p, where α0 = max1≤k≤p ψ
σ
b (k/p). In Table 2 we

collect the parameters a0 resp. pairs a0, a1 generating affine resp. fractional affine
permutations in a given base p with minimal and maximal value for α0/ log p.

Table 2. Comparison of approximations to the asymptotic discrepancy
constants for affine permutations (left) and fractional affine permutations

(right). Columns 2 and 4 contain the parameters a0 generating an affine

permutation with minimal resp. maximal value α0/ log p within F(a)
p . Col-

umn 6 and 8 contain the parameters a0, a1 for the fractional affine permu-

tations having minimal resp. maximal value α0/ log p within F(f)
p .

p a0
α0
log p a0

α0
log p a0, a1

α0
log p a0, a1

α0
log p

13 5 0.4798 1 1.2596 4, 2 0.5098 1, 2 1.1996
17 5 0.5813 1 1.4949 6, 3 0.6436 5, 8 1.3288
19 7 0.5005 1 1.6087 2, 1 0.5362 5, 11 1.5730
23 5 0.5546 1 1.8303 10, 13 0.7071 4, 6 1.4282

29 8 0.5120 1 2.1505 13, 18 0.7065 12, 0 1.5975
31 12 0.4884 1 2.2545 2, 1 0.6575 4, 0 1.6720
37 8 0.5389 1 2.5598 4, 19 0.7035 3, 16 1.9161
41 16 0.5122 1 2.7585 2, 5 0.7618 7, 15 2.0229

43 12 0.5193 1 2.8565 2, 9 0.7605 5, 7 1.9662
47 13 0.4973 1 3.0504 14, 29 0.7626 2, 17 2.2215
53 14 0.5417 1 3.3361 4, 15 0.7080 25, 27 2.3096
59 25 0.5320 1 3.6163 4, 28 0.8188 16, 25 2.2612

61 22 0.5263 1 3.7086 21, 0 0.7417 5, 1 2.1295
67 18 0.5111 1 3.9827 9, 38 0.6992 14, 19 2.4066
71 26 0.5022 1 4.1632 27, 12 0.8689 1, 15 2.6168
73 27 0.4853 1 4.2528 33, 53 0.8844 2, 37 2.3882

79 29 0.4693 1 4.5193 16, 8 0.8806 20, 7 2.9085
83 30 0.5344 1 4.9651 33, 37 0.9515 3, 0 2.4320
89 34 0.4505 1 4.9563 35, 62 0.8636 30, 37 2.6233
97 35 0.5047 1 5.3003 20, 42 0.9802 16, 31 2.4743
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While there is an absolute constant K such that we can find a parameter a0
for infinitely many p with t(Sσ

p ) < K, σ ∈ F (a)
p , we conjecture that such a result

does not hold for affine fractional permutations. That is, even if t(Sπ
p ) < t(Sid

p )
for all π we conjecture that there exists a constant κ(p) that depends on p such
that κ(p) < t(Sπ

p ) for all affine fractional permutations π with κ(p) → ∞ when
p→ ∞; see also the numerical values in Table 2. A result of this kind was shown
in [21] for the particular set of affine permutations for which a0 either divides
p− 1 or p+ 1.
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