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QUESTIONS AROUND

THE THUE-MORSE SEQUENCE

Martine Queffélec

Dedicated to the memory of Pierre Liardet

ABSTRACT. We intend to unroll the surprizing properties of the Thue-Morse
sequence with a harmonic analysis point of view, and mention in passing some
related open questions.

Communicated by Jean-Louis Verger-Gaugry

P i e r r e L i a r d e t has been highly interested in symbolic dynamical systems
associated to expansions of real numbers or automatic sequences, but also in dis-
tribution and uniform distribution of sequences, and in many other related ques-
tions. More precisely, he paid much attention to the classification of dynamical
systems, those arising as an extension of some discrete system (q-multiplicative
sequences, Ostrovski’s sequence), and he encountered this way cocycle equa-
tions; he also studied the property of disjointness for dynamical systems (due to
F u r s t e n b e r g), with emphasis on number theoretical systems, by relaying the
notion of disjoint sequences developed by K am a e; this notion is central in Sar-
nak’s conjecture, and recent progress has been done by B o u r g a i n, S a r n a k
and Z i e g l e r , also by F e r e n c z i, M a u d u i t, R i v a t . . . involving the Thue-
-Morse sequence together with the Moebius function, and making use of the as-
sociated trigonometric polynomials; for a long time, Pierre has devoted himself
to bad distributions of sequences and quantitative aspects of this question, with
estimates for the discrepancy and description of bounded remainder sets.

I don’t forget many sharp contributions he published on numeration sys-
tems and continued fractions, but I chose to give an overview on the amazing
properties of the topical Thue-Morse sequence, which lends itself very well to
computations, with some remaining questions. It is also after a question of Pierre
on the Thue-Morse correlation that we met and became friends.

Keyword s: Thue-Morse, Rudin-Shapiro, sum of digits, trigonometric polynomial, correlation
measure, singular measure.
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1. Introduction and progression

I consider the Thue-Morse sequence (TM) on the ±1-alphabet which is de-
fined by

t = (tn) :=
(
(−1)S2(n)

)
, with S2(n)

the sum of the 2-digits of the integer n; its properties are well-known: t is a
non-periodic, 2-multiplicative (t2na+b = tatb, a ≥ 0, 0 ≤ b < 2n), 2-automatic
sequence with 0-mean. It enjoys quite a few extremal properties and, all those
informations can be derived from the quite simple recursive definition

t2n = tn, t2n+1 = −tn, t0 = 1. (1)

Despite this elementary symmetry property, many questions about it are widely
open and some others are still in progress, including generalizations to other
sequences, such as (e2iπαS2(n)) or Rudin-Shapiro sequences, more generally q-
-multiplicative and q-automatic sequences.

The aim of this survey is to give an overview of these fascinating properties
and to put together scattered existing results, with quite natural resulting ques-
tions. We shall follow the Ariane’s thread, more or less historically coherent:
from sub-sequences to polynomial estimates, from polynomials to correlation
measure and then back to sub-sequences. More about history of this sequence
can be found in [22].

We denote by (PN ) and (pn) the Thue-Morse polynomials defined by

PN (z) =
∑

k<N

tkz
k, pn = P2n , p0 = 1,

so that (1) gives, when restricted to |z| = 1,

∣∣PN (z)
∣∣ ≤

r∑

n=1

|pn(z)|, r = [log2 N ]. (2)

From (1) again, we get

pn+1(z) = (1− z)pn(z
2), (3)

leading to pn+1(z) =
∏n

j=0(1 − z2
j

), a factorization that appears under a more
general form in the study of q-multiplicative sequences. The recursive rela-
tions (3) can be gathered into a single one through the generating function

F (z) =
∑

n≥0

tnz
n = (1 − z)F (z2) = · · · =

∏

j≥1

(
1− z2

j)
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but the sequence of trigonometric polynomials (pn) plays a crucial role in the
dynamical study of the TM sequence as we shall see.

From now on, the circle T is identified with [0, 1) and we make use of the
classical notation: e(t) = e2πit. We denote by the same symbol (pn) the Thue-
-Morse trigonometric polynomials:

pn(t) := pn
(
e(t)

)

so that

pn+1(t) =

n∏

j=0

(
1− e(2jt)

)
. (4)

Concerning the uniform norm of pn, a first estimate can easily be obtained
from (4); actually,

|pn(t)| =
n−1∏

j=0

2| sin(π2jt)|, (5)

so that, by grouping terms 2 by 2 in (5), and making use of the elementary
inequality

| sinx sin(2x)| ≤ 4/3
√
3 for every x,

we deduce

||pn||∞ ≤ 2n
(

4

3
√
3

)n/2

= 2n(1−η) with η = log(3
√
3)/ log 4− 1 ∼ 0, 18.

Actually, a tricky observation of G e l f o n d [14] leads to the sharp estimate:

Theorem 1.1 (G e l f o n d). For every n ≥ 1,

sup
t∈[0,1]

|pn(t)| ≤
2√
3
2n log 3/ log 4.

Moreover, if ω is some primitive cubic root of the unity,

|1− ωk| =
√
3 for all k 6≡ 0 mod 3;

from this,

sup
t∈[0,1]

|pn(t)| ≥ |pn(ω)| =
n−1∏

k=0

∣∣∣1− ω2k
∣∣∣ = 3n/2 = 2n log 3/ log 4.

Together with (2), this gives the uniform exponent log 3/ log 4 ∼ 0.7925.
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2. First questions on the TM sequence

We begin this survey by two old, but still very active, subjects with recent
improvements involving the L1-estimate of the TM polynomials sequence, more
powerful than the L∞-one: subsequences and discrepancy.

2.1. Subsequences

One of the first questions we consider about this sequence concerns the behav-
ior of specific subsequences. After D. J. N e wm a n [25] and J. C o q u e t [6],
J. M. D um o n t [11] studied the restriction of (tn) to an arithmetic progression
(cf. also [35]) but the problem of dealing with a zero density sequence of indices
turned out to be much more difficult. For example, the study of the subsequences(
S2(p)

)
p∈P

, P the set of prime numbers, and
(
S2(n

2)
)
n≥1

of the sum of digits

has been achieved quite recently with the following precise results.

Improving a theorem from F o u v r y—M a u d u i t [13], M a u d u i t—R i -
v a t [23] proved

Theorem 2.1 (Mauduit-Rivat 2010). For any α ∈ R\Z, one can find σ(α) > 0
such that ∑

p≤x

p∈P

e
(
αS2(p)

)
≪ x1−σ(α), for x ≥ 2.

As a corollary, by taking α = 1/2, we get that the TM sequence has a zero
mean on the prime numbers: limN→∞

1
π(N)

∑
p≤N, p∈P tp = 0. (Before this esti-

mate, the existence of infinitely many either even or odd numbers in the sequence
S2(p) was an open question.)

Two years later (though the article has been published before), with additional
technics since the sequence of square numbers is more sparse than the prime
sequence, they proved [24]:

Theorem 2.2 (Mauduit-Rivat 2009). For any α ∈ R\Z, one can find c(α) > 0
et x0 such that

∑

n≤x

e
(
αS2(n

2)
)
≪ x1−c(α)(1 + log2 x)

5, for x ≥ x0.

In particular, the TM sequence has a zero mean when restricted to the square
numbers:

lim
N→∞

1

N

∑

n≤N

tn2 = 0.

A similar result is also proved for the sum of q-digits,

q ≥ 2 as long as (q − 1)α /∈ Z.
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The question of

lim
N→∞

1

N

∑

n≤N

t3n

seems to be hard and could be related to the uniform distribution modulus 1
of (3/2)n [19].

The asymptotic behavior of the L1-norm of the TM polynomials proves to be
relevant in the work of F o u v r y—M a u d u i t (behind the first quoted theo-
rem) and they make it clear through considerations on the associated Perron-
-Frobenius operator (defined later).

2.2. Discrepancy

We denote by n1 < n2 < · · · < nk < · · · the occurrence indices of 1
in the sequence (tn). The distribution modulo 1 of the sequence (nkα) has
been studied in the sixties and the set of all α for which the sequence (nkα)
is uniformly distributed has been identified to R\Q. In a recent article [1],
A i s t l e i t n e r, H o f e r & L a r c h e r analyze in a deep way the discrepancy of
(nkα) according to α ∈ R and once more reveal the role played by the L1-norm
of the TM polynomials.
Recall that, for any sequence (un) ⊂ [0, 1],

D∗
N (u1, . . . , uN ) = sup

a∈[0,1]

∣∣∣∣∣∣
1

N

∑

1≤n≤N

1[0,a](un)− a

∣∣∣∣∣∣

is the uniform discrepancy of the finite sequence u1, . . . , uN . Their result goes
as follows:

Theorem 2.3. Let be ε > 0. For almost all α ∈ R,

ND∗
N ({n1α}, . . . , {nNα}) = O(N1+log2 λ+ε),

ND∗
N ({n1α}, . . . , {nNα}) ≥ (N1+log2 λ−ε),

where λ > 2 depends on the L1-norm of pn:

2−N ||pN ||1 = λN (1 + o(1));

in other words,

1 + log2 λ = β if ||pN ||1 ≈ 2Nβ

The proof combines Koksma’s inequality together with Erdős-Turan’s one.
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3. L
1-norm of the TM polynomials

We are thus led to this question: how to describe the asymptotic behaviour of

L1-norm of the TM polynomials ? Starting with (5): |pn(t)| =
∏n−1

j=0 2| sin(π2jt)|,
we suggest sharper and sharper tricks for this estimate.

3.1. Interpolation method

Let us recall briefly the interpolation method: if p, q, r > 0 are such that
1/q = θ/p+ (1− θ)/r with 0 ≤ θ ≤ 1, then we have

||P ||q ≤ ||P ||θp||P ||(1−θ)
r .

• The interpolation inequality L1 − L2 − L∞, i.e., ||P ||22 ≤ ||P ||1||P ||∞, pro-
duces some lower bound for the L1-norm, provided that an upper bound is known
for ||PN ||∞: ||PN ||1 ≥ ||PN ||22/||PN ||∞ = N/||PN ||∞.
But, as observed in the introduction, ||pn||∞ ∼ 2n log 3/ log 4, and this interpola-
tion inequality cannot give a better estimate than

||pn||1 & 2nǫ with ǫ = 1− log 3/ log 4 ∼ 0.2075 . . .

• We get a better lower bound by using the interpolation L1 − L2 − L4, and
this is all the more interesting as an accurate computation of the L4-norm can
be performed.

Proposition 3.1. We have: ||pn||24 ≈ 2nγ with γ = log2(1 +
√
17)/2.

Corollary 3.1. As a consequence, ||pn||1 & 2nβ with β ∼ 0.3215 . . .

P r o o f. We begin with the estimate of the L4-norm which will be used later.
We consider the normalized polynomial qN := 2−N |pN |2 with spectrum into
]− 2N , 2N [; by the previous inequality (5),

qN (t) =
∏

n<N

(
1− cos(2π2nt)

)
=:
∑

|k|<2N

ake(kt).

Now, Parseval’s inequality takes the following form:

||pN ||44 = ||2NqN ||22 = 22N
∑

|k|<2N

|ak|2

and we are just led to estimate

σN :=
∑

|n|<2N

|an|2.
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By identifying the coefficients in the identity:
∑

|k|<2N

ake(kt) = (1− cos 2πt)
∑

|k|<2N−1

ake(2kt),

we can easily check the induction relation satisfied by the coefficients an:

a2k = ak = a−k, a2k+1 = −1

2
(ak + ak+1), for k ≥ 0. (6)

A first estimate follows:

Lemma 3.1. We have
∑

|n|<2N |an|2 ≈ κN = 2N log2 κ, where

κ =
1 +

√
17

4
. (7)

P r o o f. We have to estimate σN :=
∑

|n|<2N |an|2 and we first establish a rela-

tion satisfied by the (σN ) (up to O(1)), deduced from (6).
∑

|n|<2N+1

|an|2 =
∑

|n|<2N

|a2n|2 + |a2n+1|2 =
∑

|n|<2N

|an|2 +
1

4

∑

|n|<2N

|an + an+1|2;

so that, by expanding the square,

σN+1 = σN +
1

4
σN +

1

4
σN +

1

2

∑

|n|<2N

anan+1. (8)

In this last sum, dealing first with non negative n, we separate once more odd
and even indices to get via (6):

∑

n<2N

anan+1 =
∑

n<2N−1

a2na2n+1 +
∑

n<2N−1

a2n+1a2n+2

=
∑

n<2N−1

a2n+1(a2n + a2n+2) =
∑

n<2N−1

a2n+1(an + an+1)

=
∑

n<2N−1

a2n+1(−2a2n+1)

= −2
∑

n<2N−1

a22n+1 = −2

(
∑

n<2N

a2n −
∑

n<2N−1

a22n

)

= −2 (σN − σN−1) .

Plugging this identity into (8) and using an = a−n, we finally derive a linear
induction formula (up to O(1)) for σN :

σN+1 =
1

2
σN + σN−1.
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Hence the expected behavior, with some constant c,

∑

|n|<2N

|an|2 = cκN +O(1) = c
(1 +

√
17

4

)N
+ O(1)

since κ is given as a solution of 2x2 − x− 2 = 0. �

Turning back to the pN , we obtain

||pN ||44 = 22N
∑

|n|<2N

|an|2 ∼ c22NκN

and the proposition

||pN ||24 ≈ 2NκN/2 = 2Nγ ,

if

γ = 1 + (log2 κ)/2 = [log2(1 +
√
17)]/2. �

P r o o f. We now deduce the corollary.
Since

1/2 = 1/3 · 1 + 2/3 · 1/4,

the interpolation method leads to the following inequality:

||P ||2 ≤ ||P ||1/31 ||P ||2/34 , (9)

whence

||P ||1 ≥ ||P ||32/||P ||24;

and the L4-norm estimate for pn gives

||pn||1 ≥ ||pn||32/||pn||24 ≫ 23n/2 · 2−nκ−n/2 = 2nβ

with

β =
1

2
log2

(
8

1 +
√
17

)
∼ 0, 3215 �

Remark. The so-obtained estimates are not optimal and it seems that even
more general interpolation inequalities could not lead to the expected behavior.
However the following question remains: can we estimate ||pn||2k for any k ≥ 1 ?
This question has been investigated with some recent results for the Rudin-
Shapiro polynomials [25, 10, 30].
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3.2. Transfer operator

The right point of view, exploited by F o u v r y and M a u d u i t (1996) and
A i s t l e i t n e r, H o f e r and L a r c h e r (2015), consists in a functional inter-
pretation of these L1-norms: ||pn||1, by introducing the so-called transfer oper-
ator that we describe in this context.

Putting fn(t) = |pn(t)|, we have by (4)

fn(t) = 2| sinπt||pn−1(2t)| = 2| sinπt|fn−1(2t)

and we are led to consider the weighted composition operator L on L1(0, 1)
defined by

L(f) = w · f ◦ σ,
where σ denotes the 2-shift x 7→ 2x mod 1 and the weight w(t) is 2| sinπt|.
With this tool,

fn = Lfn−1 = · · · = Lnf0 = Ln1,

and the L1-norms of (pn) are nothing but

un :=

∫ 1

0

fn(t) d t =

∫
Ln1, n ≥ 0.

The difficulty with L lies in the fact that σ is an expansive transformation.

The operator L, adjoint to the operator L in the duality L1 −L∞, is defined on
L∞([0, 1]) by ∫

f · Lg =

∫
Lf · g, g ∈ L∞, f ∈ L1.

In view to get an explicit formula for the L-action, we just write

2

∫ 1

0

f(t)| sinπt|g(2t) d t =
∫ 1/2

0

+

∫ 1

1/2

for letting the two inverse branches of σ into play, and a simple change of variable
gives ∫ 1

0

g(t)

(
f
( t
2

)
| sinπt/2|+ f

(1 + t

2

)
| cosπt/2|

)
d t =:

∫
Lf · g,

with now

Lf(t) = f
( t
2

)
| sinπt/2|+ f

(1 + t

2

)
| cosπt/2| =

∑

σx=t

f(x)| sin πx|. (10)

Observe that L is positive in the lattice sense: f ≥ 0 implies Lf ≥ 0. Turning
back to un, we obtain by duality the following interpretation:

un =

∫ 1

0

Ln1 = ||Ln1||L1 .

9
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The following has been established in [13, 1]:

Theorem 3.1. The L1-norms of the TM polynomials

||pn||1 =

∫ 1

0

n−1∏

j=0

2| sin(π2jt)| d t ≈ 2nδ, δ = 0.40325 · · · ,

where 2δ can be realized as the spectral radius of the Perron-Frobenius operator:

Lf(t) = f
( t
2

)
| sinπt/2|+ f

(1 + t

2

)
| cosπt/2|

on a suitable Banach space.

S k e t c h o f P r o o f. We consider a more appropriate Banach space

E = Lip1(0, 1) with the norm ||f || = ||f ||∞+ sup
x 6=y

|f(x)− f(y)|
|x− y| ;

L is a bounded operator on E, not—but almost—compact, more precisely,
a quasi-compact operator, whose definition is contained in the following lemma.

Lemma 3.2. There exist a real number r ≥ 0 and a decomposition of the space
E = D ⊕ F into invariant closed subspaces with 1 ≤ dimF < ∞ such that

(i) the spectral radius r(L|D) < r;

(ii) the eigenvalues of L|F have modulus ≥ r.

In addition, L being positive in the lattice sense, L is a Perron-Frobenius operator
and this implies the following:

Lemma 3.3. The operator L admits a leading, positive eigenvalue λ, unique
with |λ| = r(L), which is simple and associated to a non-negative eigenfunction
ϕ ∈ E.

Now, by the lemmas, E = ker(L−λI)⊕G, where r(L|G) < λ; so we decompose
1 = αϕ + g, g ∈ G, and get Ln1 = αλnϕ + Lng; but ||Lng|| = o(λn) by the
dominating property of λ, and clearly, ||Lng||1 ≤ ||Lng||; it infers

||Ln1||1 = cλn + o(λn), with c = α||ϕ||1,

and the second claim. The first numerical estimates detailed in [13] have been
improved in [1]. �
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Remark. Actually, r(L) = limn→∞ ||Ln1||1/n∞ . To prove that, denote this limit
by ρ. Since ||Ln1||∞ ≤ ||Ln1||, we clearly have ρ ≤ r(L). Now, thanks to the pos-
itivity of L, ||Lnf ||∞ ≤ ||Ln1||∞||f ||∞ so that, taking f = ϕ the eigenfunction
associated to λ = r(L),

r(L)n||ϕ||∞ = ||Lnϕ||∞ ≤ ||Ln1||∞||ϕ||∞ and r(L) ≤ lim
n→∞

||Ln1||1/n∞ =: ρ.

4. The Thue-Morse measure

W i e n e r introduced in [37] a statistical tool in order to estimate the random-
ness of some deterministic sequence : the correlation measure. The TM sequence
enjoys this remarkable property that the correlation measure exists and can be
precisely described. This is once more a consequence of (1) and of the previous
polynomial estimates.

4.1. General facts about correlation measures

Recall that, for a general bounded complex sequence u = (un), its correla-
tion measure σu (when existing) is the probability measure on T whose Fourier
coefficients are given by

σ̂u(k) = lim
N→∞

1

N

∑

n≤N

un+kun if k ≥ 0,

extended to Z by σ̂u(−k) = σ̂u(k) for k ≥ 0. In other terms, σu is the weak∗–limit
of the sequence of trigonometric polynomials

RN (x) =
1

N

∣∣∣∣∣
∑

n<N

une
2πinx

∣∣∣∣∣

2

=:
1

N

∣∣PN

∣∣2 (11)

(assuming σu does exist). Therefore, polynomial estimates are relevant for the
analysis of σu.
Let W consist of the bounded complex sequences with a unique correlation
measure, called the Wiener space. If u ∈ W , σu is a continuous measure (with
no atoms) if and only if 1

N

∑
0≤n<N |σ̂u(n)|2 → 0.

Proposition 4.1. Let u ∈ W be a sequence with unimodular terms such that
RN (x) ≤ C for every x; then σu ≪ m with bounded Radon-Nykodym derivative
| dσu/ dm| ≤ C.

This is the case for the Rudin-Shapiro sequence (RS) but also for some so-called
generalized Rudin-Shapiro sequences ([2, 29]).
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P r o o f. Let (Fj) be the sequence of Fejér kernels; then

(RN ∗ Fj)(t) =
∑

|k|<j

(
1− |k|

j

)
R̂N (k)e(kt);

moreover,

||RN ∗ Fj ||∞ ≤ ||RN ||∞ ≤ C.

Then, by denoting σ := σu,

RN ∗ Fj → σ ∗ Fj pointwise as N → ∞,

and in addition,

||σ ∗ Fj ||∞ ≤ C.

Let now f ∈ L∞ be a weak∗–limit point of (σ ∗ Fj) in L∞; by testing against a

character e(kt), we see that f̂(k) = σ̂(k); this infers that the sequence (σ ∗ Fj)
has a unique weak∗–limit point, f ≥ 0, bounded, such that σ = f d t. �

Remark. The proposition remains true as soon as ||∑n<N une
2πint||p = O(

√
N)

for some p > 2. But the converse does not hold: if σu is an absolutely continuous
measure, one can only assert that the sequence (RN ) is bounded in L1-norm.

4.2. The Thue-Morse (correlation) measure

It is the probability measure on T with Fourier coefficients:

ρ̂(k) = lim
N→∞

1

N

∑

n<N

tn+ktn if k ≥ 0,

and symmetric: ρ̂(−k) = ρ̂(k). In a more condensed form,

ρ = weak∗− lim
N→∞

1

N
|PN |2 = weak∗− lim

n→∞

1

2n
|pn|2.

By using again the properties of (tn) or (pn),

ρ =
∏

n≥0

(
1− cos(2π2nt)

)

but in the weak∗–topology, and this characterization of its Fourier coefficients
follows (n ≥ 0):

ρ̂(2n) = ρ̂(n), ρ̂(2n+ 1) = −1

2

(
ρ̂(n) + ρ̂(n+ 1)

)
, ρ̂(0) = 1. (12)

As a first trivial observation, the image ρ̂(Z) is rational; whence a question of

P. S a r n a k [31]: does the convolution spectrum of ρ, i.e., ρ̂(Z) remain count-
able?
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Moreover, ρ enjoys the following extremal properties [28]:

• ρ is 2-invariant (12).

• ρ is continuous and singular.

• ρ is 2-mixing : ρ̂(2na+ b) → ρ̂(a)ρ̂(b), for all a ≥ 0, b < 2n.

• If ωn = 1
2n

∑
k<2n δk/2n , then ρ = qn · ρ ∗ ωn with qn = 1

2n |pn|2

(non-dissociated Riesz product).

The behavior of ρ̂ along subsequences of Z is very informative on the arith-
metic nature of the support of ρ. As for classical Riesz products, we could expect
that ρ̂ is sensitive to the 2-sum of digits, maybe in a more intricate way, but this
would help for the answer because of what follows.

The representations of an integer in both bases r and s, when r and s are
multiplicatively independent (i.e., log r/ log s /∈ Q), have already been studied
and compared: the following result appears as a consequence of a key result on
Bernoulli convolution measures.

Theorem 4.1 (Senge & Straus). The number of integers, the sum of whose
digits in each of two bases r and s lies below a fixed bound, is finite if and only
if log r/ log s is irrational.

In particular, since S3(3
k) = 1, S2(3

k) cannot be bounded. A few years later,
S t e w a r t gave a quantitative version of Senge and Straus’ theorem:

Theorem 4.2 (Stewart). If r and s are multiplicatively independent, there exists
d > 0, such that for every c, each m > 25 with max

(
Sr(m), Ss(m)

)
< c satisfies

log logm

log log logm+ d
< 2c+ 1.

Actually, by looking at the coefficients ρ̂(2k−1), we guess that another digital
function should be more pertinent for our problem, which counts the number of
times a digit different from the previous one is read.

Definition 4.1. We denote by DC(n, q) the number of changes of digits in the
writing of n to base q.

These two functions DC and S are related and can easily be compared since,
clearly,

DC(n, q) ≤ 2Sq(n) + 1,

but they are quite different on blocks of identical digits 6= 0, thus non-equivalent.
The following property of ρ has been established by K am a e [20]

Theorem 4.3. There exists 0 < δ < 1 such that ρ̂(n) ≪ δDC(n,2);
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K am a e referred for that to the TM dynamical system viewed as an extension
of the 2-odometer by a cocycle [16, 21].

In 2013, B u g e a u d, C i p u and M i g n o t t e proposed a DC-version of
Stewart’s result, which, by the remarks above, provides an improvement of it.

Theorem 4.4 (B u g e a u d, C i p u & M i g n o t t e 2013). If r and s are mul-
tiplicatively independent, there exists C such that

DC(m, r) +DC(m, s) ≥ log logm

log log logm+ C
− 1 for m > 25.

Combining these two last theorems, we deduce

ρ̂(3n) ≪ δ
log n

loglog n+K

for some constant K > 0; also, if n > m, since DC(3n − 3m, 3) = 1,

ρ̂(3n − 3m) ≪ δ
log n

loglog n+K .

4.3. Analysis of singular measures

Different parameters make it possible to classify singular measures according
to their “size” and some of them are linked to the Fourier coefficients (a good
reference for that is [12]; see also [38]). The sought-after goal is to compare the
given measure with the Hausdorff family of outer measures (Hα).

Definition 4.2. A measure µ on R (or Rd) is α-Hölder with α ≥ 0 if there
exists C > 0 such that

µ
(
B(x, r)

)
≤ Crα, for all x, for all 0 ≤ r ≤ 1. (13)

(In fractal geometry µ is called a Frostman measure). We put

α(µ) = inf{α such that (13) holds}.

A deeper analysis consist in studying the local exponents α(x) defined by

µ
(
B(x, r)

)
∼ Crα(x) (14)

when r → 0 and, for any given α > 0,

Eα = {x, α(x) = α};

this leads to the multifractal analysis of the measure by computing dimEα.
From now on, we restrict ourselves to [0, 1) (identified with T).

14
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4.3.1. Energy

The exponent coming out in the L4-norms has some meaning in terms of the
TM correlation measure as we shall see. What about the L2k-norms ?

The energy represents in some sense a mean value of the local exponents; this
notion originally comes from potential theory.

Definition 4.3. Let µ be some probability measure on [0, 1); we consider

Iβ(µ) :=

∫∫
dµ(x) dµ(y)

|x− y|β ;

the energy exponent (or capacity) of µ is

e(µ) = sup{0 ≤ β ≤ 1; Iβ(µ) < ∞}

Before explaining the role it will play, it is convenient to give another expression
of e(µ) in terms of the Fourier coefficients of µ.

Proposition 4.2. We have

e(µ) = sup

{
0 ≤ α < 1;

∑

Z∗

|µ̂(n)|2|n|α−1 < +∞
}

= 1−inf



0 ≤ β < 1; lim supN−β

∑

|n|<N

|µ̂(n)|2 < +∞



 .

We retain that, if some 0 ≤ δ ≤ 1 exists such that 1
N

∑
|n|<N |µ̂(n)|2 = O(N−δ),

then e(µ) ≥ δ. An old result of Wiener can be revisited in that way (see [17]):

Proposition 4.3. For every probability measure on [0, 1),

e(µ) ≥ α(µ).

4.3.2. Dimension of measure

When µ is a singular probability measure, we take the liberty to speak of “the”
Borel support of µ although it is far from being unique when µ is continuous!
Such a support being negligible, we are reduced to evaluate its Hausdorff dimen-
sion and therefore the size of the measure:

Definition 4.4. The following exponent is called: dimension of the measure µ
and we denote it by d (µ) ([12]):

d (µ) = inf{dimH(E); µ(E) = 1}.

15



MARTINE QUEFFÉLEC

Proposition 4.4. For every probability measure on [0, 1),

d (µ) ≥ e(µ).

Remark. In the general case, those parameters are distinct, but they coincide
for self-similar measures, such as the Cantor-Lebesgue measure, for example.
What about the TM measure ?

4.3.3. Entropy

The last two parameters we mention are available in a dynamical context, with
µ an invariant (and ergodic) probability measure for some transformation T of
the interval (a good reference is [26]).

1. The entropy of µ; in the case of a Markov shift (with (Pn) as generating par-
titions of intervals), it can be recovered (defined), with the help of the Shannon-
MacMillan theorem, as an almost everywhere limit:

h(µ) := lim
n→∞

1

n
logµ

(
In(x)

)
a.e.,

where In(x) is the element of Pn containing x.

When, in addition, the transformation T is an expanding C1-piecewise trans-
formation of the interval, we have at our disposal an auxiliary tool:

2. The Lyapounov exponent λ = λ(µ) = limn→∞
1
n

∫
log(T n)′ dµ,

which measures the mean ratio of dilation.

A very useful formula due to Young [39] connects these quantities in the latter
case:

Proposition 4.5. In these “good” cases, h(µ) = d (µ)λ(µ).

4.4. Back to ρ

We try to compute those parameters for the measure ρ. Many things are
well-known for self-similar measures, but ρ is not self-similar. . . However it is
interesting to determine what remains despite that for this very simple measure.

First of all, its closed support (the smaller closed set with negligible comple-
mentary) is the whole circle contrary to canonical self-similar measures. This is
a consequence of the famous Rokhlin’s lemma.

4.4.1. e(ρ) and h(ρ)

We are able to describe two of these parameters for ρ:
1. The energy exponent e(ρ) can be computed by using proposition 4.2 and the

16
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description (12) of the coefficients ρ̂(n); we proceed exactly as for the L4-norm
to get: ∑

|n|<N

|ρ̂(n)|2 ≈ Nγ

with γ = log2 κ when N is some power of 2; it follows that

inf{0 ≤ β < 1; lim sup
N→∞

N−β
∑

|n|<N

|ρ̂(n)|2 < +∞} ≥ γ

since, for β < γ,

lim sup
N→∞

N−β
∑

|n|<N

|ρ̂(n)|2 ≥ lim sup
N→∞

2−nβ
∑

|k|<2n

|ρ̂(k)|2 = ∞.

For the upper bound,N being arbitrary, say 2K ≤ N < 2K+1, we haveNγ ≥ 2Kγ

and

N−γ
∑

|n|<N

|ρ̂(n)|2 ≤ 2−Kγ
∑

|k|<2K+1

|ρ̂(k)|2 = 2γ2−(K+1)γ
∑

|k|<2K+1

|ρ̂(k)|2;

thus

lim sup
N→∞

N−γ
∑

|n|<N

|ρ̂(n)|2 < ∞

and

inf{0 ≤ β < 1; lim sup
N→∞

N−β
∑

|n|<N

|ρ̂(n)|2 < +∞} ≤ γ.

Finally, e(ρ) = 1− log2 κ ∼ 0.643, where κ appeared in (7).

2. We can compute: h(ρ) = log 2−
∫
log(1− cos 2πx) d ρ(x) whence an implicit

expression of d(ρ):

d (ρ) = 1−
∫

log2(1− cos 2πx) d ρ(x),

according to Young’s identity.

P r o o f. Actually, there is a general result for q-invariant measures thanks to the
Kolmogorov-Sinäı theorem (see [18]). In our case (not so specific by the way)
let us start with the generalized Riesz product property of ρ:

ρ = qnρn := qn · ρ ∗ ωn, where qn = 2−n|pn|2,
and ωn is the Haar measure of the group of dyadic rational numbers {k/2n}.
From the cocycle equation

qn(x) = q1(x)q1(2x) · · · q1(2n−1x) with q1(x) = (1 − cos 2πx),

17
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we can deduce that for ρ-almost all x,

lim
n→∞

1

n
log qn(x) = lim

n→∞

1

n

∑

j<n

log q1(2
jx) =

∫
q1(x) d ρ(x) =: α,

since ρ is a 2-ergodic measure. For such a generic point x and n ≥ 1, let
In(x) = [j(x)2−n, (j(x) + 1)2−n[ be the interval of the partition Pn = {[j2−n,
(j + 1)2−n[, 0 ≤ j ≤ 2n − 1}, containing x. By the above limit, for ε > 0, there
exists N(ε) such that, if n ≥ N(ε) and t ∈ In(x),

en(α−ε) ≤ qn(t) ≤ en(α+ε)

so that
en(α−ε)ρn

(
In(x)

)
≤ ρ
(
In(x)

)
≤ en(α+ε)ρn

(
In(x)

)
.

Now, by definition of ρn and putting I := In(x), we have

ρn(I) =
1

2n

2n−1∑

k=0

∫
1I

(
t+

k

2n

)
d ρ(t) =

1

2n

∫ 2n−1∑

k=0

1I+ k
2n
(t) d ρ(t) =

1

2n
;

Finally, we have proved that

lim
n→∞

1

n
log ρ

(
In(x)

)
= α− log 2, as expected. �

Remark. This implicit formula for d(ρ) is not so convenient and does not allow
to answer a question of V e r s h i k on the value of d (ρ) ? Note the equivalent
formulation: d (ρ) = − 1

log 2

∑
j 6=0 ρ̂(j)/|j|, quite as implicit, but it seems to infer

d (ρ) > e(ρ) ?

4.4.2. Multifractal analysis

We do expect something close to fractal regularity for the TMmeasure; numerical
estimations have been carried out ([15, 3]) and let think that the Hölder exponent

α(ρ) = inf{α(x), x ∈ [0, 1]} = 2− log 3
log 2 ∼ 0.415037. The multifractal study of ρ

has to be completed.

4.4.3. Borel supports of ρ

A description of Borel sets charged by ρ remains an interesting problem. It seems
quite natural, for a q-invariant measure, to set the question of support in terms of
distribution mod 1 of reals numbers; indeed, a first elementary observation is the
following one: any q-invariant, ergodic and non absolutely continuous probability
measure (thus singular) µ does not charge the set of q-normal numbers. Let us
recall some definitions.

18
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Definition 4.5. The real number x is q-normal if {qnx} is uniformly dis-
tributed. If Λ = {nk} is some increasing sequence of integers, x is Λ-normal if
{nkx} is uniformly distributed.

If µ 6= m the Lebesgue measure on T, by choosing k with µ̂(k) 6= 0 and using
the ergodic theorem, we get indeed

1

N

∑

n<N

e(kqnx) → µ̂(k) 6= 0 µ− a.e.

while the lefthandside tends to 0 if x is q-normal (Weyl criterion); so µ-almost
no x is q-normal.

After C a s s e l s has proved that the Cantor-Lebesgue measure supports the
set of 2-normal numbers (which are not 3-normal) [5], the analogous question
arose for the TM measure and the set of 3-normal numbers. K am a e [20] proved
in turn:

Theorem 4.5. ρ-almost all numbers are normal to base 3, i.e., ρ charges the
set of 3-normal numbers which are not 2-normal.

The proof rests on a classical and very efficient technique ([8]) that C a s s e l s
has already used; it reduces the proof to the following:

Lemma 4.1. For every k 6= 0,

∑

N

1

N3

∫ ∣∣∣∣∣
∑

n<N

e(3nkx))

∣∣∣∣∣

2

d ρ(x) < ∞

S k e t c h o f p r o o f. By expanding the square of the sum, we are led to esti-
mate quantities such as ρ̂(k(3n − 3m)). By theorem 4.3, we see that, k being
fixed, there exists ε > 0 such that

∑

1≤n,m≤N

ρ̂
(
(3n − 3m)k

)
= O

(
N2

(logN)1+ε

)

whence the lemma and the theorem. �

In the same period, W. S c hm i d t constructed a measure supporting r-
normal but non s-normal numbers, for multiplicatively independent r et s;
Cassels’ and Kamae’s theorems have the advantage to provide a natural ex-
ample of such a measure.

Let us recall a more general result of B. H o s t [18].
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Theorem 4.6. Let p et q be two integers ≥ 2 and coprime, and let µ be a
p-invariant and p-ergodic probability measure with positive entropy (for the p-
-shift). Then µ- almost all number is q-normal.

Remark. If we denote by Wα the set of α-approximable numbers e.g. the num-
bers with irrationality exponent greater than or equal α, W = ∪α>2Wα is the
set of well-approximable numbers. B. Weiss [36] has proved that µ(W ) = 0 for
the Cantor-Lebesgue measure µ.
Though it is far from evident, could we explore the support of ρ in a similar
arithmetical way ?

5. Back to sequences

We intend to deduce some information on the initial sequence from its corre-
lation measure, and, by the way, to come full circle in our survey. The following
elementary fact is somewhat promising. If u ∈ W ,

lim
N→∞

1

N

∑

n≤N

une(nα) = 0 ⇐⇒ σu{α} = 0.

We could expect something better indeed for the TM sequence.

5.1. Affinity of measures

The notion of disjoint dynamical systems has been introduced by F u r s t e n -
b e r g (1967), in terms of coupling of measures, and a stronger property is the
spectral disjointness of systems, which means that the maximal spectral types
of those systems are mutually singular. How to detect this property ?

Definition 5.1. Let µ and ν be two positive measures in M(T) and λ ∈ M(T)
be such that both µ ≪ λ and ν ≪ λ. The affinity ρ(µ, ν) of the measures µ and
ν is the quantity

ρ(µ, ν) =

∫

T

( dµ

dλ

)1/2( d ν

dλ

)1/2
dλ, (15)

obviously independent of the choice of λ.

Note that

ρ(µ, ν) = 0 if and only if µ ⊥ ν.

We can say a little bit more . . . if we are aware of the following proposition:
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Proposition 5.1. Let (µn) and (νn) be two sequences of positive measures on T
such that µn → µ and νn → ν in the weak-star topology of M(T). Then

lim sup
n→∞

ρ(µn, νn) ≤ ρ(µ, ν),

where ρ denotes the affinity defined in (15)

Applied with correlation measures, this provides a weak form of disjunction
for the systems generated by sequences.

Proposition 5.2. Let u and v be two bounded sequences in the Wiener space
with σu and σv as their correlation measures. Then,

lim sup
N→∞

1

N

∣∣∣∣∣
∑

n<N

unvn

∣∣∣∣∣ ≤ ρ(σu, σv).

In particular, σu ⊥ σv implies

1

N

∑

n<N

unvn → 0. (16)

By extension, we say that the sequences u and v are orthogonal and note
u ⊥ v if (16) holds. As a consequence, if σu is a singular measure and RN is
given by (11),

∫

T

(RN )1/21 d t =

∫

T

1√
N

∣∣∣∣∣
∑

n<N

une
2πint

∣∣∣∣∣ d t → 0

when N → ∞, i.e.,

||PN ||1 = o(
√
N).

And σu is a continuous measure if and only if limN→∞
1
N

∑
n<N une(nx) = 0

for every x, but when does it hold uniformly in x ?

Example. The TM sequence (−1)S2(n) and (−1)S3(n) are orthogonal; so are the
TM and the RS sequences, whence 1

N

∑
n<N(−1)#1(n)(−1)#11(n) → 0, since the

Rudin-Shapiro sequence counts the number of patterns 11 in the representation
of n.

A famous example has been extensively studied these last years: the Moebius
sequence ([32]).
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5.2. Moebius’ orthogonality and Sarnak’s conjecture

Let us recall:

Definition 5.2. The Moebius function µ is so defined: µ(1) = 1 and

µ(n) =

{
(−1)r if n = p1p2 · · · pr, pj distinct,
0 if n has a square factor.

We summarize in a few lines the important properties of the function µ in the
spirit of our survey. We must keep in mind the following conjecture: the correla-
tion measure of the Moebius sequence is absolutely continuous with respect to
the Lebesgue measure.

1. The Prime Number Theorem is equivalent to:
∑

n≤N

µ(n) = o(N).

2. The Riemann hypothesis is equivalent to the estimate:

∀ε > 0,
∑

n≤N

µ(n) = Oε(N
1/2+ε).

3. Davenport has proved:

Theorem 5.1. For every A ≥ 1, there exists some constant C such that

sup
x∈[0,1]

∣∣∣∣∣∣

∑

n≤N

µ(n)e(nx)

∣∣∣∣∣∣
≤ C

N

(logN)A

4. Under Riemann Hypothesis:

Theorem 5.2 (Huxley & Ramaré). For every ε > 0 there exists some constant
C such that

sup
x∈[0,1]

∣∣∣∣∣∣

∑

n≤N

µ(n)e(nx)

∣∣∣∣∣∣
≤ CN3/4+ε

while 1/2 is the expected exponent.

In terms of disjointness, the assertion 1. means that µ ⊥ 1 and could be inter-
preted as: the correlation of µ has no point mass on 0.

The estimate in 2. means 1
N |∑n≤N µ(n)|2 = O(Nε) and is of no help in

tackling the conjectured property of µ. Does Davenport’s result imply that σµ

is a continuous measure and nothing more . . . ?

A pioneer result on Moebius’ orthogonality is at the origin of many works
([9, 23]).
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Theorem 5.3 (Dartyge-Tenenbaum, Mauduit-Rivat). The TM sequence is or-
thogonal to the Moebius one:

∑
n≤N tnµ(n) = o(N).

Of course, this could be derived from the pre-supposed absolute continuity
of σµ. This orthogonality property has been enlarged to many sequences (or sys-
tems) with low complexity, with the final conjecture formulated by S a r n a k [32]
as a focal point, asserting that:

Sarnak's Conje
ture. For any deterministic (with 0-entropy) dynamical sys-
tem (X,T ),

∑

n<N

µ(n)f(T nx) = o(N) for every f ∈ C(X) and x ∈ X.

6. Recapitulating questions

We collect in this last section different questions arising from this survey,
some of them seeming accessible . . .
• What is the limN→∞

1
N

∑
n<N t3n ?

• The uniform bound of the TM polynomials is attained at a 2-periodic cycle
for the 2-shift: {1/3, 2/3}; what about the uniform bound of the polynomials
associated to (e2iπαS2(n)) for some α ∈ Q ?
• Can we estimate ||pn||2k for any k ≥ 1 ?
• Let (ǫn) be the Rudin-Shapiro sequence and Pn(t) =

∑
0≤k<2n ǫke(kt).

Prove that for every q > 0
∫

T

(
|Pn(t)|2

2n

)q

d t → 1

2

∫ 2

0

xq dx =
2q

q + 1

(see [10] for an approach, [30] for a solution).

• Does the convolution spectrum of ρ, i.e., ρ̂(Z), remain countable?
• Is there a closed form for d (ρ) to be compared with e(ρ) ?
• Could we compute the energy exponent for other q-multiplicative sequences?
• Achieve the multifractal study of ρ and of σu for a q-multiplicative sequence u ?
• Can we identify the Walsh-Fourier coefficients of ρ :

∫
T
wA(x) d ρ(x) ? (See [27],

for example.)
• (Fürstenberg’s conjecture) Every continuous both 2- and 3- invariant proba-
bility measure must be Lebesgue?

Acknowledgment The author is very grateful to the referee for his pertinent
suggestions and improvements.
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University Lille 1
59655 Villeneuve d’Ascq cedex
FRANCE

E-mail : martine.queffelec@univ-lille1.fr

25

 https://arxiv.org/pdf/1606.01637

	1. Introduction and progression
	2. First questions on the TM sequence
	2.1.  Subsequences
	2.2. Discrepancy

	3. L1-norm of the TM polynomials
	3.1. Interpolation method
	3.2. Transfer operator

	4. The Thue-Morse measure
	4.1. General facts about correlation measures
	4.2. The Thue-Morse (correlation) measure
	4.3. Analysis of singular measures
	4.4. Back to 

	5. Back to sequences
	5.1. Affinity of measures
	5.2. Moebius' orthogonality and Sarnak's conjecture

	6. Recapitulating questions
	REFERENCES

