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UNIFORM DISTRIBUTION

WITH RESPECT TO DENSITY

Ligia L. Cristea — Milan Paštéka

ABSTRACT. The paper deals with a generalisation of uniform distribution.
The analogues of Weyl’s criterion are derived.

Communicated by Oto Strauch

1. Introduction

The notion of uniformly distributed sequence was for the first time defined
and studied by Herman Weyl in 1916 in his paper [W]. Since then the theory of
uniform distribution was developed in a lot of directions by numerous authors.
For a survey we refer to the monographs [HLA], [K-N], [D-T], [S-P]. Since a
sequence is a mapping defined on the set of positive integers, the uniform dis-
tribution is based on the asymptotic density of coimages of intervals, as defined
below.

Let N be the set of non-negative integers. If for some A ⊂ N there exists the
limit

lim
n→∞

1

n

∣

∣{k ≤ n : k ∈ A}
∣

∣ := d(A),

we say that A has asymptotic density, and the value d(A) is called the asymp-
totic density of A. Denote by D the system that consists of the sets having
asymptotic density (see [PA]). A sequence {xn} of elements of the interval [0, 1]
is uniformly distributed modulo 1 if and only if for each subinterval I ⊂ [0, 1] the
set {n;xn ∈ I} belongs to D and its asymptotic density is equal to the length of
the interval I.
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In [KN, Chap. 3] uniform distribution is defined on a compact Hausdorff
space X equipped with a normed Borel measure P and the sequence {xn} in X
is uniformly distributed if and only if

1

N

N
∑

n=1

f(xn) =

∫

X

fdP

for every continuous function f (called Weyl’s Criterion).

In Unsolved Problems, Section 2.1 [UP], the concept of generalisation of uni-
form distribution is presented as a theory of the integral equation

∫

X

f(x)dx =

∫

Y

f
(

u(y)
)

dy,

where u(y) is called the uniform distribution preserving map, see also [S-P, 1.5].

This paper is inspired by [S-P, 1.5], where a h-uniformly distributed sequence
{xn}, xn ∈ [0; 1) is defined as follows: for every x ∈ [0, 1) we have

h
(

{

n ∈ N;xn ∈ [0, x)
}

)

= x,

where h is a set function defined on a certain class of subsets of N. In this paper
we describe uniformity of distribution with respect to a larger class of finitely
additive probability measures defined on certain systems of sets.

In Section 2 we introduce the notions of density and π-uniformly measurable
mapping with respect to a density π. We give some examples of π-uniformly
measurable mappings defined on different spaces, and we prove a necessary and
sufficient condition for the existence of a π-measurable mapping.

In the third section, dedicated to Riemann integrability and the Weyl cri-
terion, we deal with real valued functions defined on a dense subset M of a
compact metric space Ω equipped with a Borel probability measure. We prove
a necessary and sufficient condition for Riemann integrability in terms of uni-
formly distributed sequences and finally derive a result in terms of asymptotic
density.

In Section 4 the role of the set M from the previous section is played by
the set of non-negative integers N. First, we prove results that relate π-uniform
measurability to uniform distribution modulo 1. In the sequel, the notions and
results are extended from real valued mappings to mappings with values in an
arbitrary compact metric space endowed with a Borel probability measure.
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2. Preliminaries

Let M be an arbitrary set and Y a system of subsets of M. Then Y is called
a q-algebra of sets if the following three conditions are satisfied :

i) M ∈ Y,
ii) A,B ∈ Y, A ∩B = ∅ =⇒ A ∪B ∈ Y,
iii) A,B ∈ Y, A ⊂ B =⇒ B \A ∈ Y.

It is well known that if in ii) the condition A ∩ B = ∅ is omitted and in iii)
the condition A ⊂ B, then Y is called an algebra of sets.

Let π be a finitely additive probability measure on the q-algebra Y fulfilling
the condition

A ∈ Y if and only if for arbitrary ε > 0 there exist A1, A2 ∈ Y such that

A1 ⊂ A ⊂ A2, π(A2)− π(A1) < ε. (1)

We call such a finitely additive probability measure density.

A mapping x : M → [0, 1] is called π-uniformly measurable if for each subin-
terval I ⊂ [0, 1] the set x−1(I) belongs to Y and

π
(

x−1(I)
)

= |I|. (2)

The property (1) provides that x is π-uniformly measurable if and only if (2)
holds for a set of intervals I, who’s set of endpoints is dense in the unit interval.

For a better illustration we show some examples.

Example 1. Let M = N and {cn} be a sequence of positive real numbers with
∑∞

n=1 cn = ∞. If for A ⊂ N there exists the limit

lim
n→∞

∑

k≤n:k∈A ck
∑n

k=1 ck
:= dc(A),

then we say that A has weight density with respect to the sequence {cn}. In the
case Y = Dc, the algebra of the sets having corresponding weight density dc
(see [PA]), and π = dc, the π-uniformly measurable mapping is a sequence that
is uniformly distributed with respect to dc.

Example 2. For M = N, Du the algebra of the sets having uniform density u

(see [PA]), and π = u, the π-uniformly measurable mapping is a well distributed
sequence.

Example 3. LetM = [0,∞). Denote by Y the family of all Lebesgue measurable
sets S ⊂ M such that there exists the limit

π(S) = lim
T→∞

λ(S ∩ [0, T ])

T
.
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Here the π-uniformly measurable mapping coincides with the continuous uniform
distribution (see [K-N], [D-T], [SP]).

We conclude with an example which is a special case of the object of study
in the next section.

Throughout the wohle paper, for any subset A of a topological space, cl(A)
will denote the topological closure of A, and Int(A) its interior in the given space.

Example 4. Consider once more M = N and Ω the ring of polyadic integers,
(see [N], [N1]). Then the set function µ∗(S) = P

(

cl(S)
)

, where P is the Haar
measure on Ω, is called Buck’s measure density, (see [BUC], [PA]). If Y = Dµ

is the algebra of all sets measurable in the sense of Buck and µ the restriction
of µ∗ on Dµ, we get Buck’s uniformly distributed sequences (see [PA], [PA1]).
Let us remark that in the paper [P-P] more general cases of Borel probability
measures on the ring of polyadic integers are constructed, and these can induce
densities on N in an analogous way. Similar examples of density are studied in
[P-T] in the case when M is a Dedekind domain with the finite norm property.

The definition of a π-uniformly measurable mapping leads to the question re-
garding the existence of such a mapping. We shall characterise it by the following
property.

We say that π has the Darboux property on Y if for every A ∈ Y and any non
negative α ≤ π(A) there exists B ⊂ A, B ∈ Y with π(B) = α.

The following result can be proven analogously to Theorem 2.2 in [PS].

Proposition 1. Let Y be an algebra. The following statements are equivalent:

(1) π has the Darboux property on Y.

(2) For every B ∈ Y there exists B1 ⊂ B such that B1 ∈ Y and π(B1) =
1
2π(B).

(3) For arbitrary ε > 0 there exist the sets C1, . . . , Ck such that N = C1∪· · ·∪
Ck and π(Cj) < ε, j = 1, . . . , k.

Theorem 1. Let Y be an algebra. A π-uniformly measurable mapping exists if
and only if π has the Darboux property on Y.

P r o o f. The condition 2 in Proposition 1 provides that there exists a system
of decompositions of M {U(j, 2n), j = 0, . . . , 2n − 1}, n = 1, 2, . . . , such that
π
(

U(j, 2n)
)

= 1
2n and U(j, 2n) = U(2j, 2n+1) ∪ U(2j + 1, 2n+1).

In the same manner we can consider a system of closed intervals I(j, 2n)

= [ j
2n ,

j+1
2n ], for j = 0, . . . , 2n − 1, n = 1, 2, . . . For each k ∈ N we have a

uniquely determined system U(jnk , 2
n), n = 1, 2, . . . , such that k ∈ U(jnk , 2

n).
The corresponding intervals I(jk, 2

n) form a centered system of closed sets, thus
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its intersection is nonempty. Let us denote by x(k) the element of ∩∞
n=1I(j

n
k , 2

n).
Then we have a mapping x : M → [0, 1] such that

k ∈ U(j, 2n) =⇒ x(k) ∈ I(j, 2n), k ∈ M.

Thus U(j, 2n) ⊂ x−1
(

I(j, 2n)
)

. Clearly, if x(k) ∈ Int
(

I(j, 2n)
)

, then k ∈ U(j, 2n)

and thus x−1
(

Int
(

I(j, 2n)
))

⊂ U(j, 2n), where Int denotes the interior with
respect to the topology induced by the Euclidean metric.

Each y ∈ [0, 1] can be contained in some interval I(j, 2n)∪I(j+1, 2n). There-
fore x−1({y}) ⊂ U(j, 2n)∪U(j+1, 2n), n ∈ N. This yields π

(

x−1({y})
)

= 0, and

thus π
(

x−1
(

{ j
2n ,

j+1
2n }

))

= 0. Considering the inclusions

U(j, 2n) \ x−1

(

{ j

2n
,
j + 1

2n

}

)

⊂ x−1
(

Int
(

I(j, 2n)
)

)

⊂ U(j, 2n),

we have x−1
(

Int
(

I(j, 2n)
)

)

∈ Y and π

(

x−1
(

Int
(

I(j, 2n)
)

)

)

= 2−n. Since the

set of endpoints of intervals I(j, 2n) is dense in the unit interval we thus have
proven that x is π-uniformly measurable.

The existence of a π-uniformly measurable mapping implies, by Proposition 1,
that π has the Darboux property on Y. �

3. Riemann integrability and the Weyl criterion

In this section the generalisation of Example 4 will be studied, as announced
above. We assume that M is a dense subset of a compact metric space (Ω, ρ)
equipped with a Borel probability measure P .

A sequence {an}, an ∈ Ω is called uniformly distributed in Ω if

lim
N→∞

1

N

N
∑

n=1

f(an) =

∫

fdP,

for every continuous real function f defined on Ω. Equivalently, this means that
for every measurable C ⊂ Ω with P

(

cl(C) \ Int(C)
)

= 0 the set of indices
A({an}, C) := {n; an ∈ C} has asymptotic density equal to P (C) (see [D-T],
[K-N], [S-P]). Here cl(C) and Int(C) denote the closure and, respectively, the
interior of the set C with respect to the topology on Ω that is induced by the
metric ρ.

A measurable set C ⊂ Ω with P
(

cl(C) \ Int(C)
)

= 0 is called set of
P -continuity (see [D-T], [K-N], [S-P]).
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We shall consider the set function

π∗(S) = P
(

cl(S)
)

. (3)

It can be easily checked that π∗ is a strong submeasure on the system of all
subsets of M. This yields that the system of sets Y, consisting of all A ⊂ M with
π∗(A) + π∗(M \ A) = 1, is an algebra of sets and the restriction π = π∗|Y is a
finitely additive probability measure on this algebra, fulfilling the condition (3).

An important role will be played by Riemann integrability and the Riemann
integral of bounded real valued functions defined on M.

We rewrite the definition of the Riemann integral from [Bi] and we reprove
the criterion from [Bi] for slightly more general conditions. Then we apply this
result in the investigation of uniformly distributed sequences.

Let C(Ω) be the set of all continuous real functions defined on Ω. For an
arbitrary bounded real valued function f defined on M the values

∗
∫

f = inf

{
∫

gdP ; g ≥ f, g ∈ C(Ω)

}

will be called the upper Riemann integral of f and
∫

∗

f = sup

{
∫

gdP ; g ≤ f, g ∈ C(Ω)

}

the lower Riemann integral of f, respectively. The function f will be called
Riemann integrable if ∗

∫

f =

∫

∗

f :=

∫

f,

in this case this value is called the Riemann integral of f .

As usually B(x, r) will be the open ball with center x ∈ Ω and radius r>0.
Since every system of disjoint sets of positive measure is countable we can con-
clude that for x ∈ Ω and positive r1 < r2 there is r, r1 < r < r2 such that the
ball B(x, r) is a set of P -continuity. From the compactness of Ω we can derive
that for each α the set Ω can be covered by a finite system of open balls with
radius smaller than α, and from these balls we can construct disjoint sets of
P -continuity L1, . . . , Lm such that

Ω =

m
⋃

j=1

Lj ,

where diam(Lj) < α, for j = 1, . . . ,m. Thus we can construct a system Ln,
n = 1, 2, . . . , of disjoint finite covers of Ω that consist of P -continuity sets,
Ln = {Ln

1 , . . . , L
n
mn

} with diam(Ln
j )→0 for n→∞, uniformly with respect to j.
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These can be arranged in such a manner that every set from Ln is a disjoint
union of sets from Ln+1.

Put Kn
j = Ln

j ∩M, j = 1, . . . ,mn, n = 1, 2, . . . Denote by F the set of all real

functions of the form f =
∑mn

j=1 βjXKn
j
, βj ∈ R. These functions are Riemann

integrable and
∫

f =
∑mn

j=1 βjP (Ln
j ). By applying Urysohn’s Lemma to the sets

of P -continuity Ln
j we deduce that in the definition of the upper and lower

Riemann integral the set C(Ω) can be replaced by F .

Thus a bounded function h is Riemann integrable if and only if for arbitrary
ε > 0 there exist f1, f2 ∈ F such that f1 ≤ h ≤ f2 and

∫

(f2 − f1) < ε.
Clearly, every uniformly continuous real valued function defined onM is Riemann
integrable.

There exists at least one sequence of elements of Ω that is uniformly dis-
tributed in Ω (see [H], [D-T], [K-N]). Since M is dense in Ω we can assume the
existence of at least one uniformly distributed sequence with elements from M.

Denote by C(M) the set of all uniformly continuous real functions defined
on this space. This set of functions coincides with the set of all restrictions of
continuous real functions defined on Ω to M. Thus a sequence {xn}, xn ∈ M, is
uniformly distributed if and only if

lim
N→∞

1

N

N
∑

n=1

g(xn) =

∫

g,

for each g ∈ C(M).

Remark 1. Let R(M) be the set of all Riemann integrable real functions defined
on M. Clearly, C(M) ⊂ R(M) and F ⊂ R(M). Moreover,

(i) R(M) is a vector space and
∫

is a non-negative linear functional on this
vector space, and

(ii) R(M) is bounded with respect to the supremum metric and
∫

is continuous
with respect to this metric.

The relationship between uniform distribution and Riemann integrability in
the unit interval is described in the paper by d e B r u i j n and P o s t [BP].
Later this result was proven in [Bi] by a different method and extended for
compact metric spaces. This method was the one exploited in [TW] for uniform
distribution. We apply this procedure in our case.

Theorem 2. Let f be a bounded real valued function defined on M. Then f is
Riemann integrable if and only if for every uniformly distributed sequence {xn},
xn ∈ M, there exists the proper limit

lim
N→∞

1

N

N
∑

n=1

f(xn);

in this case this limit is equal to
∫

f .
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P r o o f. One implication follows immediately from Weyl’s criterion.

Suppose that f is not Riemann integrable. For x ∈ M, define the functions
Hn, hn, for n = 1, 2, . . . , as follows:

Hn(x) = sup{f(y); y, x ∈ Kn
j },

hn(x) = inf{f(y); y, x ∈ Kn
j }.

Clearly, Hn, hn ∈ F and hn ≤ f ≤ Hn, which implies

∫

hn ≤

∫

∗

f <

∗
∫

f ≤

∫

Hn, for n = 1, 2, . . .

Let {an} be a fixed uniformly distributed sequence of elements of M. Then
for every positive integer s we have

lim
N→∞

1

N

N
∑

n=1

Hs(an) =

∫

Hs.

This yields that for every s there exists N(s) such that

1

N

N
∑

n=1

Hs(an) >

∫

Hs −
1

s
, for N ≥ N(s),

and we can assume that N(1) < N(2) < · · · < N(s) < . . . . For every positive
integer n there exists an uniquely determined s(n) such that N

(

s(n)
)

≤ n <

N
(

s(n) + 1
)

. For any positive integer n, let

H(an) = sup{Hi(an); i > s(n)}.

Then for every n there exists i(n) > s(n) such that Hi(n)(an) ≥ H(an) −
1
n
.

Suppose that an ∈ K
i(n)
j , then we choose yn ∈ K

i(n)
j in order that

f(yn) ≥ Hi(n)(an)−
1

n
.

From the definition of the sets K
i(n)
j we see that limn→∞ ρ(yn, an) = 0, thus the

sequence {yn} is uniformly distributed.

Now we can consider

1

N

N
∑

n=1

f(yn) ≥
1

N

N
∑

n=1

Hi(n)(an)−
1

N

N
∑

n=1

1

n
.

For N > N
(

s(n)
)

we have

1

N

N
∑

n=1

f(yn) ≥

∫

Hi(n) −
1

i(n)
−

1

N

N
∑

n=1

1

n
.
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Since the last two terms tend to 0, we get

lim inf
N→∞

1

N

N
∑

n=1

f(yn) ≥

∗
∫

f.

In an analogous way, only considering hn instead ofHn, we construct a uniformly
distributed sequence {zn} with

lim sup
N→∞

1

N

N
∑

n=1

f(zn) ≤

∫

∗

f.

Clearly, limn→∞ ρ(yn, zn) = 0, therefore every sequence {un}, where un = yn or
un = zn, is uniformly distributed.

Assume that {Mk} is a sequence of positive integers with

lim
k→∞

Mk
∑k

j=1 Mj

= 1.

Define the sequence {xn} as xn = yn for
∑2k

j=1 Mj ≤ n <
∑2k+1

j=1 Mj , and

xn = zn for
∑2k+1

j=1 Mj ≤ n <
∑2k+2

j=1 Mj . Then {xn} is uniformly distributed,
and

lim inf
N→∞

1

N

N
∑

n=1

f(xn) ≤

∫

∗

f,

lim sup
N→∞

1

N

N
∑

n=1

f(xn) ≥

∗
∫

f.

�

Since diam(Kn
j ) → 0 uniformly for n → ∞ we get

cl(S) =
∞
⋂

n=1

⋃

S∩Ln
j 6=∅

cl(Kn
j ).

Thus, the P -continuity of Kn
j implies π∗(S) =

∗
∫

XS . We get

Corollary 1. A set S ⊂ M belongs to Y if and only if for each uniformly
distributed sequence {xn} the set A({xn}, S) belongs to D and in this case
d
(

A({xn}, S)
)

= π(S).
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4. The set of non-negative integers

Assume that M = N is the set of non-negative integers. Since N ⊂ Ω, we
can consider sequences of positive integers uniformly distributed in the compact
space (Ω, ρ, P ).

A lot of examples of compact spaces containing the set N as a dense subset
are described in the papers [IPT], [N], [N1], [P-P]. In this case the mappings
x : N → [0, 1] are sequences.

The above corollary yields that a mapping x : N → [0, 1] is π-uniformly
measurable if and only if for each sequence of positive integers {kn} that is
uniformly distributed in Ω,

lim
N→∞

1

N

N
∑

n=1

XI

(

x(kn)
)

= |I|,

for any arbitrary subinterval I ⊂ [0, 1). Thus by the standard procedure we can
prove :

Theorem 3. A sequence {x(n)} of elements of the unit interval is π-uniformly
measurable if and only if for each sequence of positive integers {kn} that is
uniformly distributed in Ω we have

lim
N→∞

1

N

N
∑

n=1

f
(

x(kn)
)

=

1
∫

0

f(t)dt,

for every Riemann integrable, (continuous,) real function f defined on [0, 1].

By the standard procedure we can derive the following :

Proposition 2. Let ω : Ω → [0, 1] be a continuous function. Suppose that {n} is
uniformly distributed in Ω. Then the sequence {ω(n)} is π-uniformly measurable
if and only if it is uniformly distributed modulo 1.

If we apply the proof of the main result in [TW] we obtain the part 1 of
following assertion. The part 2 follows immediately from Theorem 4.

Proposition 3. Let ω : Ω → [0, 1] be a continuous function such that

∫

ω ◦ f =

1
∫

0

f(t)dt

(where ω◦f = f
(

ω(·)
)

is the composition of mappings) for every real continuous
function f defined on [0, 1]. Then
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(1) For every sequence of positive integers {kn} that is uniformly distributed
in Ω the sequence {ω(kn)} is uniformly distributed modulo 1.

(2) If {n} is uniformly distributed in Ω, then {ω(n)} is π-uniformly measur-
able.

Analogously to uniform distribution, the notion of π-uniform measurability
can be easily extended from the unit interval to an arbitrary compact metric
space. Let M be a compact metric space with Borel probability measure P̃ .
A mapping y : N → M is called π-uniformly measurable if for every set of
P̃ -continuity A ⊂ M we have y−1(A) ∈ Y and π

(

y−1(A)
)

= P̃ (A).

Theorem 2 yields by the standard procedure, using Urysohn’s Lemma, Weyl’s
criterion for this case :

Proposition 4. A mapping x :N→M is π-uniformly measurable if and only if

lim
N→∞

1

N

N
∑

n=1

f
(

x(kn)
)

=

∫

fdP̃

for every continuous real function defined on M and every sequence of positive
integers {kn} that is uniformly distributed in Ω.

Now we can show the existence property by applying the procedure from [H].
We start by proving the following proposition.

Proposition 5. Let π be a density on the set of positive integers defined by (1),
having the Darboux property. If y : N → [0, 1] is a π-uniformly measurable
mapping and x : N → [0, 1] is a mapping such that limn→∞ |y(n) − x(n)| = 0,
then also x is a π-uniformly measurable mapping.

P r o o f. The Darboux property of π implies that π(F ) = 0 for each finite set
F ⊂ N. Thus for every sequence of positive integers {kn} we have
limN→∞

∑

n≤N,kn∈F 1 = 0. If f is a continuous real function defined on [0, 1], it
is also uniformly continuous. Thus for arbitrary ε there exists n0 such that for
n > n0 we have |f

(

x(n)
)

− f
(

y(n)
)

| < ε. This yields that for each sequence of
positive integers {kn} that is uniformly distributed in Ω we have

lim sup
N→∞

1

N

N
∑

n=1

∣

∣

∣
f
(

x(kn)
)

− f
(

y(kn)
)

∣

∣

∣
≤ ε,

and the assertion follows. �

Theorem 4. Assume that π is a density on N defined by (1). If π has the Dar-
boux property on Y, then for every compact metric space M with Borel probability
measure P̃ there exists a π-uniformly measurable mapping x : N → M.
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P r o o f. The compactness of M provides that there exists a system Sm =
{Sj

m, j = 1, . . . , r(m)}, Sj
m 6= ∅, m = 1, 2, . . . , of finite closed covers of M,

having the following properties:

i) If n(Sm) = max{diam(Sj
m), j = 1, . . . , r(m)},m = 1, 2, . . . , then

lim
m→∞

n(Sm) = 0.

ii) For every m and i 6= j, P̃ (Si
m ∩ Sj

m) = 0.

iii) If m ≤ n, then for every i ≤ r(n) there exists a uniquely determined

j = j(i) ≤ r(m)

such that Si
n ⊂ Sj

m.

iv) The indices in iii) are ordered in such a way that

i1 < i2 ⇒ j(i1) ≤ j(i2).

The property i) provides that

v) every real valued continuous function defined on M can be uniformly ap-
proximated by the linear combination of the functions X

S
j
m
, j = 1, . . . , r(m),

for suitable m.

Moreover, for every x ∈ M and any open ball B containing x there exists a
suitable Sj

m such that x ∈ Sj
m ⊂ B. Thus

vi) every open set is a union of a countable system of sets Sj
m.

To each cover Sm we can associate the finite system of intervals Ijm, for

j = 1, . . . , r(m), Ijm =
[

∑j−1
l=1 P̃ (Sl

m),
∑j

l=1 P̃ (Sl
m)

]

, and thus |Ijm| = P̃ (Sl
m),

and the endpoints of the intervals Ijm, j = 1, . . . , r(m), form a division of the
interval [0, 1].

Let x : N → [0, 1] be a π-uniformly measurable mapping, its existence being
provided by Theorem 1. The complement of the set of endpoints of the considered
intervals is dense in the unit interval. Proposition 5 guarantees that for each
dense subset of the unit interval a π-uniformly measurable mapping can be
constructed such that values of this mapping belong to this set. Thus we can
assume that the endpoints of Ikm, k = 1, . . . , r(m), do not belong to the set x(M).

Each number α ∈ [0, 1] which does not coincide with the endpoints of the

intervals Ikm, k = 1, . . . , r(m), belongs to exactly one interval I
l(m)
m , for m =

1, 2, . . . , where l(m) := l(m,α) depends on α. Since for every m = 1, 2, . . .

we have S
l(m+1)
m+1 ⊂ S

l(m)
m , the compactness of M guarantees that the set

D(α) = ∩∞
m=1S

l(m)
m

is not empty. Consider now a mapping y : N → M such that y(n) ∈ D
(

x(n)
)

, n =
1, 2, . . .
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We prove that this is a π-uniformly measurable mapping. Let {kn} be an arbi-
trary sequence of positive integers that is uniformly distributed in Ω. Denote,
for H ⊂ M,

P ∗(H) = lim sup
N→∞

N
∑

n=1

XH

(

x(kn)
)

,

and

P∗(H) = lim inf
N→∞

N
∑

n=1

XH

(

x(kn)
)

.

Let Z denote the system of all sets of the form ∪T
t=1S

it
m. Clearly,

X
∪T

t=1
S

it
m

(

y(n)
)

≥ X
∪T

t=1
I
it
m

(

x(n)
)

.

Thus, using the fact that the sequence {x(kn)} is uniformly distributed in [0, 1],

we obtain that for every S ∈ Z we have P∗(S) ≥ P̃ (S).

On the other hand, vi) implies that for every open set G we have

P̃ (G) = sup{P̃ (S);S ⊂ G,S ∈ Z}.

Thus for every closed set F and every ε > 0 there exists a set S′ ∈ Z such that
S′ ⊂ M\ F and P (S′) > P̃ (M\ F )− ε. Herefrom we obtain

P ∗(F ) ≤ 1− P∗(S
′) ≤ 1− P̃ (S′) < 1− P̃ (M\ F ) + ε = P̃ (F ) + ε.

Since ε is arbitrary, we obtain P ∗(F ) ≤ P̃ (F ). Therefore, for every S ∈ Z,

P∗(S) = P ∗(S) = P̃ (S) holds and the assertion follows from v). �

In the following we give examples that illustrate the situation in Theorem 4.

Example 5. With the notations in Theorem 4, let M = [0, 1], and π be a
density on N that has the Darboux property. We consider [0, 1] to be endowed

with the measure P̃ = µr, where µr is the binary measure of parameter r on
the unit interval, defined below. Thus in this case the equation (2) that defines
π-uniform measurability becomes π

(

x−1(I)
)

= µr(I).

Consider an arbitrarily fixed real number r ∈ (0, 1), and let I0,0 = [0, 1],

In,j =
[

j
2n ,

j+1
2n

)

, for j = 1, 2, . . . 2n − 2, and In,2n−1 =
[

2n−1
2n , 1

]

. Then the
binomial measure of parameter r on [0, 1] is a probability measure that is defined
by the conditions

µr(In+1,2j) = rµr(In,j) and µr(In+1,2j+1) = (1− r)µr(In,j),

for

n = 0, 1, . . . , and j = 0, 1, . . . , 2n − 1.

For more details regarding the binomial distribution we refer, e.g., to [OSS1],
[C-P].
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It is easy to see that

µr(Ij,2n) = rn−k(1− r)k,

where k is the number of digits 1 in the binary digital expansion of the number j.
Moreover, µr ({y}) = 0, for all y ∈ [0, 1].

Now we follow the steps and ideas from the proof of Theorem 1. Under the
assumption that π has the Darboux property, we have that for each B ∈ Y there
exists a set

B1 ∈ Y, B1 ⊂ B such that π(B1) = r · π(B).

We proceed as in the mentioned proof and obtain, for n = 1, 2, . . . , the decompo-
sition consisting of the sets U(j, 2n), for j = 0, 1, . . . , 2n − 1, with π (U(j, 2n)) =
rn−k(1 − r)k, where k is the number of digits 1 in the binary digital expansion
of the number j.

Remark 2. The construction in Example 5 can also be extended analogously,
following the above ideas, to the case when P̃ = µq,r, where µq,r is the multino-

mial measure of parameter vector r = (r0, r1, . . . , rq−1), 0 < ri < 1,
∑q−1

i=1 ri = 1,
where the role the of the numeration base 2 from Example 5 is here played by
the positive integer q ≥ 2. For more details regarding this measure we refer,
e.g., to [OSS2], [C-P]. Moreover, passing from the n-th decomposition of N to
the (n+ 1)th decomposition is given by the relation

U(j, qn) = ∪q−1
k=0U(qj+k, qn+1), for j = 0, 1, . . . , qn−1, where n = 1, 2 . . .

Example 6. With the notations in Theorem 4, let M be the well-known “two
thirds” Cantor set C, and π be a density on N that has the Darboux property.
We consider C to be endowed with the measure P̃ = µC , where µC is a probability
measure on the Cantor set, defined inductively as follows. Let us start with
the set C0 = [0, 1] and let µC(C0) = 1. Let C1 = [0, 13 ] ∪ [ 23 , 1] and define

µC

(

[0, 13 ]
)

=µC

(

[ 23 , 0]
)

= 1
2 . We proceed inductively and obtain at step k ≥ 1 the

set Ck as the union of 2k closed intervals of length 3−k and each of them having
the measure µC equal to 2−k. Thus we obtain, in the limit, a measure whose
support is the Cantor set.

This measure coincides with the normalised Hausdorff measure on the Cantor
set. For details regarding this measure, see, e.g., [F], [C-T]. We consider the
compact metric space C endowed with the Euclidean metric and the topology
induced by the Euclidian topology of the real line. Then any set of the form
I ∩ C, where I ⊂ [0, 1] is an interval, is a set of µC-continuity.

In this case the definition of π-uniform measurability that we mentioned on
the page 10 becomes π

(

x−1(A)
)

= µC(A), for every set A of µC-continuity.
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