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ADDITIVE ENERGY AND IRREGULARITIES

OF DISTRIBUTION

Christoph Aistleitner — Gerhard Larcher

ABSTRACT. We consider strictly increasing sequences (an)n≥1 of integers and

sequences of fractional parts ({anα})n≥1 where α ∈ R. We show that a small

additive energy of (an)n≥1 implies that for almost all α the sequence ({anα})n≥1

has large discrepancy. We prove a general result, provide various examples, and
show that the converse assertion is not necessarily true.

Communicated by Michael Drmota

1. Introduction and statement of results

Let (an)n≥1 be a strictly increasing sequence of positive integers. We are

interested in distribution properties of the sequence ({anα})n≥1, where α is a

given real and {x} denotes the fractional part of x. In particular we are interested
in the behaviour of the star-discrepancy D∗

N of these sequences from a metrical
point of view. The star-discrepancy D∗

N of the first N elements of a sequence
(xn)n≥1 in [0, 1) is defined by

D∗
N (x1, . . . , xN ) := sup

0<β≤1

∣∣∣∣AN (β)

N
− β

∣∣∣∣ ,
where AN (β) := # {1 ≤ n ≤ N | xn ∈ [ 0, β )}. The sequence (xn)n≥1 is uni-

formly distributed in [0, 1) if and only if lim
N→∞

D∗
N = 0.

There exists a vast literature on the discrepancy of sequences of the form
({anα})n≥1. The most basic and classical example for such a class of sequences
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are the Kronecker sequences ({nα})n≥1. It is well known that for the discrepancy
of the Kronecker sequence for almost all α we have

ND∗
N = O

(
(logN)

1+ε
)

for all ε > 0,

which is close to optimality since by a classical result of W. M. S c hm i d t the
discrepancy of every infinite sequence satisfies

ND∗
N = Ω (logN) .

For sequences of the form ({anα})n≥1, R. C. B a k e r [4] has shown the following

general metric result. Let (an)n≥0 be a strictly increasing sequence of integers.

Then for almost all α for the discrepancy of ({anα})n≥1 we have

ND∗
N = O

(
N

1
2 (logN)

3
2+ε
)

for all ε > 0.

This result is best possible, up to logarithmic factors, since, for example, for
lacunary sequences (an)n≥1, that is for sequences satisfying an+1

an
≥ 1 + δ with

δ > 0, we have
ND∗

N = Ω
(
N

1
2

)
.

Indeed in this case much sharper results are known—see, for example, [9] or [13].
For general sequences (an)n≥1 which grow neither linearly nor exponentially
it is usually very hard to find the correct metric order of the discrepancy of
({anα})n≥1, and in particular only very few metric lower bounds are known.

There are some notable exceptions, such as, for example, [5] and [6], but they
usually are either very restrictive or depend on a strong arithmetic structure and
deep number-theoretic tools. In [2] the authors of the present paper developed
a new, fairly general method by which one can obtain metric lower bounds for
the discrepancy of sequences of the form ({anα})n≥1. Amongst other results,

for example, the following was shown there (Corollary 1 in [2]). Let P ∈ Z [x]
be a polynomial of degree d ≥ 2. Then for the discrepancy of the sequence
({P (n)α})n≥1 we have for almost all α

ND∗
N = Ω

(
N

1
2−ε
)

for all ε > 0.

Together with the general upper bounds of B a k e r this means that for these
sequences we have the essentially largest possible metric order of D∗

N , namely

ND∗
N ≈ N

1
2 . At this point one might assume that for any choice of (an)n≥1

the discrepancy of ({anα})n≥1 for almost all α either satisfies ND∗
N = O (N ε)

or ND∗
N = Ω(N

1
2−ε). This, however, is not true: in [3] it was shown that any

asymptotic order for ND∗
N between N ε and N

1
2 is possible for almost all α.

More precisely, Theorem 1 in [3] states the following. Let 0 < γ ≤ 1
2 be given.
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Then there exists a strictly increasing sequence (an)n≥1 of positive integers such
that for the discrepancy of ({anα})n≥1 for almost all α we have ND∗

N = O (Nγ)
and ND∗

N = Ω (Nγ−ε) for all ε > 0. An even more precise result has been
recently obtained by F u k u y am a and N i s h i m u r a [10], by using a random-
ization technique.

The purpose of the present paper is to point out that the so-called additive
energy of the sequence (an)n≥1 of integers can give some information on the

metric distribution behaviour of ({anα})n≥1. More precisely, we will show that

an upper bound for the additive energy of (an)n≥1 implies a lower bound for
the metric discrepancy of ({anα})n≥1, under an additional, relatively moderate,

growth assumption on (an)n≥1. The additive energy E(A) of finite sets A of
integers was studied very intensively in recent years, especially in connection with
additive combinatorics (see, for example, [15]). For many classes of sequences,
good upper bounds for the additive energy are known. Thus the link between
additive energy and metric discrepancy allows us to identify many interesting
classes of integer sequences (an)n≥1 for which we can give good lower bounds

for the metric discrepancy of ({anα})n≥1.

Let A = {b1, . . . , bN} a set of integers. Then the additive energy E(A) is
defined by

E(A) := #
{(

x1, x2, x3, x4) ∈ A4
∣∣ x1 − x2 = x3 − x4

}
,

i.e., E(A) is the number of solutions of the equation x1 − x2 = x3 − x4 with
x1, x2, x3, x4 ∈ A. If the elements b1, . . . , bN of A are pairwise distinct, then
obviously we always have N2 ≤ E(A) ≤ N3. In the present paper we will prove
the following theorem, which allows us to deduce lower bounds for the metric
discrepancy from upper bounds for the additive energy.

������� 1� Let (an)n≥1 be a strictly increasing sequence of positive integers

with an � eγ(logn)2 for some γ > 0. Assume furthermore that

E ({a1, . . . , aN}) � Nκ for some κ ∈ [2, 3].

Then for the discrepancy of the sequence ({anα})n≥1 for almost all α we have

ND∗
N = Ω

(
N

3−κ
2 −ε

)
for all ε > 0.

Our result shows in particular that for (an)n≥1 with smallest possible additive
energy, i.e., in the case κ = 2, the sequence (nα})n≥1 for almost all α has es-
sentially the largest possible discrepancy. More precisely, the following corollary
holds.
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����		
�� 1� Let (an)n≥1 be a strictly increasing sequence of positive integers

for which an � eγ(logN)2 for some γ > 0 and

E ({a1, . . . , aN}) = O (N2+ε
)

for all ε > 0.

Then for the discrepancy of ({anα})n≥1 for almost all α we have ND∗
N =

O(N
1
2+ε) and ND∗

N = Ω(N
1
2−ε) for all ε > 0.

Our proof of Theorem 1 is essentially just a slight extension of the proof of
Theorem 3 in [2]. However, as already noted, the fact that Theorem 1 in the
present paper is formulated in the language of additive combinatorics allows us
to use several pre-existing results on the additive energy of integer sequences
to obtain lower metric bounds for the discrepancy of ({anα})n≥1 for several
interesting specific examples of sequences an)n≥1. So, for example, we can deduce
the following results.

������� 2� Let (an)n≥1 be a sequence of integers with an � eγ(logn)2 for some
γ > 0 which is convex, i.e., which satisfies

an+1 − an > an − an−1 for n ≥ 2.

Then for almost all α for the discrepancy of the sequence ({anα})n≥1 we have

ND∗
N = Ω

(
N

7
26−ε

)
for all ε > 0.

P r o o f o f T h e o r e m 2. The result follows immediately from Theorem 1
above and from Theorem 1 in [14], which states that for every convex set A
of N elements we have

E(A) � N
32
13 (logN)

71
65 .

�

������� 3� Let an = �F (n)�, where the real-valued function F is three times
continuously differentiable on [ 1,∞) and satisfies

F ′(x) > 0, F ′′(x) > 0, and F ′′′(x) < 0

on [ 1,∞). Then for almost all α for the discrepancy of the sequence ({anα})n≥1

we have

ND∗
N = Ω

(
Nmin( 1

4 ,
1+ρF

2 )−ε
)

for all ε > 0, where ρF := lim inf
N→∞

logF ′′(N)

logN
.

P r o o f o f T h e o r e m 3. The result follows immediately from Theorem 1
above and from Corollary 2 in [11] which shows that

E ({a1, . . . , aN}) � N
5
2 +

N2 logN

F ′′(N)
for all N. �
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From Theorems 2 and 3 we immediately obtain the following examples:

����		
�� 2� Let an := �nc� for some c ∈ (1,∞). Then for almost all α for
the discrepancy of the sequence ({anα})n≥1 we have

ND∗
N = Ω

(
N τ−ε

)
for all ε > 0,

where

τ =

⎧⎪⎪⎨
⎪⎪⎩

c−1
2 if 1 < c < 3

2 ,

1
4 if 3

2 ≤ c < 2,

7
26

if c ≥ 2.

����		
�� 3� Let an :=
⌊
eγ(logN)β

⌋
for some γ > 0 and β with 1 < β ≤ 2.

Then for almost all α for the discrepancy of ({anα})n≥1 we have

ND∗
N = Ω

(
N

7
26−ε

)
for all ε > 0.

As already mentioned above, for the additive energy E(A) of a finite set A

of distinct integers we always have |A|2 ≤ E(A) ≤ |A|3, and for every strictly
increasing sequence (an)n≥1 of positive integers for almost all α the order of the

discrepancy of ({anα})n≥1 essentially is between N ε and N
1
2 . The quintessence

of Theorem 1 is that a small order of the additive energy of {a1, . . . , aN} for all
N implies a large metric order of ND∗

N for ({anα})n≥1. In particular, the lowest

possible order of the additive energy of {a1, . . . , aN} for all N implies the largest
possible metric order of ND∗

N of ({anα})n≥1.

It is tempting to ask whether the converse statement also is true, that is
whether a large order of the additive energy of {a1, . . . , aN} for all N necessarily
implies a small metric order of ND∗

N of ({anα})n≥1. This hypothesis seems to be

supported by the pure Kronecker sequence ({nα})n≥1, i.e., an = n. The additive

energy in this case satisfies E ({a1, . . . , aN}) 
 N3, so it is of the largest possible
order, and ND∗

N = O (N ε) for all ε > 0 for almost all α, which means that the
discrepancy is of the lowest possible order.

However, the hypothesis is not true, as the following example given
in Theorem 4 shows. There we present a sequence (an)n≥1 which has both the
largest possible order of the additive energy as well as the largest
possible metric order of the discrepancy for ({anα})n≥1. This sequence (an)n≥1

is characterized by the Rudin-Shapiro sequence.
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Rudin-Shapiro sequence (r0, r1, r2, . . .) = (1, 1, 1,−1, 1, 1,−1, 1, . . .) is defined by

rk=

{
1 if the number of 11-blocks in the base 2 representation of k is even,

−1 otherwise.

Let the sequence (an)n≥1 = (0, 1, 2, 4, 5, 7, . . .) be the sequence of those indices
k for which rk = 1 in the Rudin-Shapiro sequence, sorted in increasing order.
We will call this sequence the sequence of Rudin-Shapiro integers. By construc-
tion this sequence is strictly increasing.

������� 4� Let (an)n≥1 be the sequence of Rudin-Shapiro integers. Then the

additive energy of {a1, . . . , aN} is of maximal possible order, i.e.,

E ({a1, . . . , aN}) 
 N3,

and for almost all α the discrepancy of ({anα})n≥1 is also essentially of maximal
possible order, i.e.,

ND∗
N = Ω

(
N

1
2−ε
)

for all ε > 0.

This result should be compared to another example which was given in [1].
There the sequence (an)n≥1 of Thue–Morse integers (also called evil numbers)
was studied. This sequence also has additive energy of maximal possible order,
and in this case for almost all α for the discrepancy of ({anα})n≥1 we have

ND∗
N = O (N0.4035

)
and ND∗

N = Ω
(
N0.4033

)
.

It remains to prove Theorems 1 and Theorem 4. These proofs will be given
in the next section.

2. The proofs of Theorem 1 and of Theorem 4

P r o o f o f T h e o r e m 1. For a strictly increasing sequence (an)n≥1 of positive

integers we set I(N) :=
∫ 1

0
|∑N

n=1 e
2πianα|dα, and we write E (AN ) for the

additive energy of AN := {a1, . . . , aN}. Note that by orthogonality we have

E(AN ) =

∫ 1

0

∣∣∣∣∣
N∑

n=1

e2πianα

∣∣∣∣∣
4

dα.

By a classical trick, which is based on an application of Hölder’s inequality,

we have I(N) ≥ (
N3

E(AN )

)1
2 (see, for example, [12, Theorem 1]). Hence, if

E (AN ) � Nκ, then

I(N) 
 N
3−κ
2 . (1)
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In [2, Theorem 3] the following result (*) was shown:

Let (an)n≥1 be a sequence of integers such that for some t ∈ N we have

|an| ≤ nt for all n large enough. Assume there exist a number τ ∈ (0, 1) and a

strictly increasing sequence (BL)L≥1 of positive integers with (B′)L ≤ BL ≤ BL

for some reals B′, B with 1 < B′ < B, such that for all ε > 0 and all L > L(ε)
we have I (BL) > Bτ−ε

L . Then for almost all α ∈ [ 0, 1) for all ε > 0 for the
discrepancy D∗

N of the sequence ({anα})n≥1 we have ND∗
N = Ω (N τ−ε).

The proof of this result was based on a further result (**), which is stated as
Theorem 4 in [2]:

Let (RL)L≥0 be a sequence of measurable subsets of [0, 1), with the measure

P (RL) of RL satisfying P (RL) ≥ 1
BL for some constant B > 0, and such that

each RL is the disjoint union of at most AL intervals for some A > 0. Then for
almost all α ∈ [ 0, 1) for every η > 0 there are infinitely many integers hL with

hL ≤ (1 + η)
L 1

P(RL) and {hLα} ∈ RL.

It turns out that this last result (**) is also true in a stronger version, namely

under the weaker assumption that RL is the disjoint union of at most AL2

inter-
vals for some A > 0. This can easily be seen by the following proof of Theorem 4

in [2] line by line, replacing AL by AL2

and choosing the value GL which appears

in the proof as GL := A2L2

(B (1 + η))
2L

instead of GL = (AB (1 + η))
2L
.

From this a stronger version of (*) follows, namely the fact that the conclusion

of (*) also holds under the weaker assumption that an < eγ(logn)2 for some γ > 0.
This can also be easily seen by the following proof of Theorem 3 in [2] line by
line. We just have to change formula (18) in this proof in [2] to

|fL (α1)− fL (α2)| ≤ 2πBLe
γ(logBL)2

≤ 2πBLeγL
2(logB)2

� AL2

for some constant A > 1. As a consequence the function gL appearing in the

proof can be written as a sum of � AL2

indicator functions of disjoint intervals,

and hence the set M
(iL)
L appearing in the proof is always a union of � AL2

intervals. Then the stronger version of (**) which we have obtained above is
used to establish the stronger version of (*). Then the desired result follows
immediately from this stronger version of (*) together with (1). �
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P r o o f o f T h e o r e m 4. Let ρn(x) :=
∑2n−1

k=0 rkx
k be the Rudin-Shapiro

polynomials. From Theorem 2.1 in [8] it follows that∫ 1

0

∣∣ρn (e2πiα)∣∣ dα 
 2
n
2 for all n .

Let ∑
(n) :=

2n−1∑
k=0

e2πiakα,

then ∑
(n) =

1

2

(
ρn
(
e2πiα

)
+

2n−1∑
k=0

e2πikα

)
. (2)

We have ∫ 1

0

∣∣∣∣∣
2n−1∑
k=0

e2πikα

∣∣∣∣∣ dα ≤
∫ 1

0

min

(
2n,

1

‖α‖
)
dα

≤ 2 + 2

∫ 1
2

1
2n

1

α
dα

≤ 2 + 2n .

Hence∫ 1

0

∣∣∣∣∣
2n−1∑
k=0

e2πiakα

∣∣∣∣∣ dα 

∫ 1

0

∣∣ρn (e2πiα)∣∣ dα−
∫ 1

0

∣∣∣∣∣
2n−1∑
k=0

e2πikα

∣∣∣∣∣ dα 
 2
n
2 . (3)

It is also well known (see, for example, [7]) that we always have√
3l

5
<

l−1∑
k=0

rk <
√
6l

and therefore
ak ≤ 2k for all k . (4)

From (4) we immediately obtain E ({a1, . . . , aN}) 
 N3, and from (3) and (4)
and using Theorem 3 in [2] we obtain the desired Ω-estimate for ND∗

N .
�
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