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INTEGRAL POWERS OF NUMBERS

IN SMALL INTERVALS MODULO 1:

THE CARDINALITY GAP PHENOMENON

Johannes Schleischitz

ABSTRACT. This paper deals with the distribution of αζn mod 1, where α 6=
0, ζ > 1 are fixed real numbers and n runs through the positive integers. Denote
by ‖.‖ the distance to the nearest integer. We investigate the case of αζn all
lying in prescribed small intervals modulo 1 for all large n, with focus on the
case ‖αζn‖ ≤ ǫ for small ǫ > 0. We are particularly interested in what we call

cardinality gap phenomena. For example for fixed ζ > 1 and small ǫ > 0 there are
at most countably many values of α such that ‖αζn‖ ≤ ǫ for all large n, whereas
larger ǫ induces an uncountable set. We investigate the value of ǫ at which the
gap occurs. We will pay particular attention to the case of algebraic and, more
specific, rational ζ > 1. Results concerning Pisot and Salem numbers such as some
contribution to Mahler’s 3/2-problem are implicitly deduced. We study similar
questions for fixed α 6= 0 as well.

Communicated by Michael Drmota

1. Notation and known results

This paper aims to study the distribution of αζn mod 1 for real numbers
α 6= 0, ζ > 1. We start with some definitions concerning representations of
numbers modulo 1.

Definition 1.1. For x ∈ R denote by ⌊x⌋ ∈ Z the largest integer smaller
or equal to x, and ⌈x⌉ ∈ Z the smallest integer greater or equal to x. Let
further {x} ∈ [0, 1) be the fractional part of x, i.e. {x} = x− ⌊x⌋. Furthermore,
denote by 〈x〉 ∈ Z the integer closest to x, where, clearly, 〈x〉 ∈ {⌊x⌋, ⌈x⌉}.
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(In the special case {x} = 1/2 let 〈x〉 := ⌊x⌋, however it will not be of much
interest in the sequel.) Finally, denote by ‖x‖ := |x−〈x〉| ∈ [0, 1/2] the distance
from x to the nearest integer.

Definition 1.2. For set A denote by |A| the cardinality of A.

The following theorem comprises two important metric uniform distribution
results. One is due to W e y l [28] and the other due to K o k s m a [14].

Theorem 1.3 (W e y l, K o k s m a). For any fixed real α 6= 0, for almost all

ζ > 1 the sequence {αζn} is uniformly distributed modulo 1. For any fixed ζ > 1,
for almost all real α the sequence {αζn} is uniformly distributed modulo 1.

We want to investigate the set of α, ζ with the property that αζn is close to
integers for all n ≥ n0. Theorem 1.3 shows that this is a highly non-generic set
of (α, ζ) ⊆ R2. Examples of numbers in the exceptional set of Theorem 1.3 are
given for ζ a Pisot number or Salem numbers and a suitable α. Pisot numbers
are defined as real algebraic integers greater than 1 whose proper conjugates all
lie strictly inside the unit circle in C, whereas Salem numbers are real algebraic
integers greater than 1 having all proper conjugates in the closed unit circle with
at least one on the torus. Some basic facts on Pisot and Salem numbers that can
be found in [1, Chapter 5] are summarized in the following theorem.

Theorem 1.4 (P i s o t). Let ζ be a Pisot number. Then limn→∞ ‖ζn‖ = 0. This
property characterizes Pisot numbers among all real algebraic numbers greater

than one. Even the two following stronger assertions holds: if either ‖αζn‖ tends

to 0 for a real algebraic number ζ > 1 and some α 6= 0, or if
∑∞

n=1 ‖αζn‖2 < ∞
for arbitrary ζ > 1 and some α 6= 0, then ζ is a Pisot number and α belongs to

the number field Q(ζ).

Now let ζ be a Salem number. Then the sequence {ζn} is dense in (0, 1) but not
uniformly distributed. For any ν ∈ (0, 1/2), there exists α such that ‖αζn‖ < ν
for n ≥ n0 and the sequence (αζn)n≥1 is dense modulo 1 in the symmetric

interval of length 2ν and center 0.

The convergence results for Pisot numbers can be generalized and refined in
some ways. However for our purposes the above is sufficient, and we just refer
to [1]. It is an open question if any real transcendental number ζ has the property
that for some α 6= 0 the expression ‖αζn‖ tends to 0 as n → ∞. This motivates to
look at α, ζ with αζn close to integers, in particular ‖αζn‖ ≤ ǫ for some ǫ > 0 and
all large n. We quote some results connected to this question, which can be found
in [1, Chapter 5] unless quoted otherwise.

70
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Theorem 1.5. The set of pairs (α, ζ) ∈ R2 with α > 0, ζ > 1, such that

sup
n≥n0

‖αζn‖ ≤ 1

2(1 + ζ)2

holds for an integer n0, is countable.

Theorem 1.4 and Theorem 1.5 imply that the set of pairs (α, ζ) ∈ R× (1,∞)
with the property limn→∞ ‖αζn‖ = 0 is countable infinite.

Theorem 1.6. Let ζ > 1 be a real number. Suppose there exists α ≥ 1 such that

‖αζn‖ ≤ 1

2eζ(ζ + 1)(logα+ 1)
, n ≥ 1.

Then ζ is either a Pisot number or a Salem number and α ∈ Q(ζ).

Theorem 1.7. Let ζ > 1 be a real number. Suppose there exists α ≥ 1 such that

‖αζn‖ ≤ 1

e(ζ + 1)2(
√
logα+ 2)

, n ≥ 1.

Then ζ is either a Pisot number or a Salem number and α ∈ Q(ζ).

Reverse examples are due to B o y d [2].

Theorem 1.8 (B o y d). There are arbitrarily large transcendental ζ > 3 and α
(depending on ζ) arbitrarily close to 2, such that

‖αζn‖ ≤ 1

(ζ − 1)(ζ − 3)
, n ≥ 0.

There exists a real transcendental ζ>1 such that for some α≥1 (depending on ζ)

‖αζn‖ ≤ 5

eζ(ζ + 1)(logα+ 1)
, n ≥ 1.

Another result for the special case α = 1 we want to quote is [9, Corollary 5].

Theorem 1.9 (D u b i c k a s). Let (rn)n≥1 be a sequence of real numbers. Then,

for any ǫ > 0, there is ζ > 1 such that ‖ζn − rn‖ < ǫ for each n ≥ 1.

Restricting to a large n, we will refine Theorem 1.9 in Section 3. Finally we
state [3, Theorem 3], which also refines Theorem 1.9.

Theorem 1.10 (B u g e a u d, M o s h c h e v i t i n). Let α be a positive real num-

ber. Let ǫ < 1 be a positive real number. Let (an)n≥1 be a sequence of real num-

bers satisfying 0 ≤ an < 1− ǫ for all n ≥ 1. The set of real numbers ζ such that

an ≤ {αζn} ≤ an + ǫ for every n ≥ 1 has full Hausdorff dimension.
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Observe that Theorem 1.10 is somehow reverse to Theorem 1.3. The analogue
of Theorem 1.10 with the roles of α and ζ exchanged fails heavily. We will see in
Section 4.3 (resp. Section 4.4) that generic algebraic (resp. rational) ζ > 1 pro-
vide counterexamples. We will at some places consider a more general situation,
in which the following theorem due to P o l l i n g t o n [19] suits.

Theorem 1.11 (P o l l i n g t o n). Let (tn)n≥1 be a sequence of positive numbers

such that

qn :=
tn+1

tn
≥ δ > 1, n ≥ 1.

Further let s0 ∈ (0, 1). Then there exists a real number β = β(δ, s0) > 0 and a

set T of Hausdorff dimension at least s0 such that if α ∈ T then

{tnα} ∈ [β, 1− β], n ≥ 1.

Concretely β may be chosen (1/2)(r+1)−1δ−4r, where r is sufficiently large that

δr − (r + 2) > δrs0 . In particular, the set of α such that {tkα} is not dense in

[0, 1) has full dimension.

The explicit bounds in dependence of β are not explicitly stated in the for-
mulation of the central theorem of [19, page 511], but were in fact established
in the paper, see the formulas (3),(4) and (4a) in [19].

2. Outline of selected results

We outline the most important results which we will establish. However, we
point out that in the course their proofs, several other results will be derived
that are of some interest on their own and not covered in the current section.
In particular, the results concerning the case of fixed α in Section 3.1 and the
first part of Section 4.1 are self-contained and not part of this overview.

Our first selected result deals with the root distribution of polynomials with
integral coefficients. It arises as a corollary of our study of the sequences
(αζn)n≥1, combined with a result due to D u b i c k a s. As usual let L(P ) :=
∑m

i=0 |ai| for a polynomial P (X) = a0 + a1X + · · ·+ amXm, and L(ζ) = L(P )
for an algebraic number ζ where P ∈ Z[X ] is the minimal polynomial of ζ in
lowest terms.

Theorem 2.1. Assume real algebraic ζ satisfies 2(ζ − 1) > L(ζ). Then ζ is a

Pisot number. In other words, if P ∈ Z[X ] has a real root larger than L(P )/2+1,
all the other roots of P lie inside the unit circle.
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We compare Theorem 2.1 with the well-known bounds

max
1≤j≤m

|ζj | ≤ 1 +
maxi6=m |ai|

|am| ≤ 1 +
H(P )

|am| ≤ 1 +
L(P )

|am| , (1)

M(P ) := |am|
m
∏

j=1

max{1, |ζj|} ≤ ‖P‖2 :=

√

√

√

√

m
∑

i=0

|ai|2 ≤ L(P ) (2)

for arbitrary P (X) = amXm + a1X + · · ·+ a0 ∈ C[X ], see [16]. Here ζj are the
roots of P and H(P ) = max0≤j≤m |ai|. In view of (1), the existence of a root
as in the last claim of Theorem 2.1 requires that P is monic. In this case the
combination of (2) and the assumption of Theorem 2.1 yield that the remaining
roots have modulus less than L(P )/(L(P )/2+ 1) < 2, a weaker conclusion than
Theorem 2.1. It is easy to construct non-trivial P ∈ Z[X ] with the inferred bound
arbitrarily close to 2. Relations between l(P ), L(P ),M(P ) have been studied by
D u b i c k a s [7] and S c h i n z e l [20], [21], [22].

For Pisot numbers the inequality 2(ζ − 1) > L(ζ) can be satisfied. Take, for
instance, ζ = ζm,b the Pisot root of Pm,b(X) = Xm − bXm−1 − 1 for integers
m ≥ 2, b ≥ 4. Indeed, Pm,b has a root in (b, b+1) by intermediate value theorem
and L(Pm,b) = b+2, so b ≥ 4 is certainly sufficient for 2(ζm,b−1) > L(ζm,b) and
Rouchee’s Theorem implies that these polynomials are indeed Pisot polynomials
(Theorem 2.1 also implies Pm,b is a Pisot polynomial). In fact the expression
L(ζm,b)/(ζm,b − 1) tends to 1 as b → ∞. On the other hand, a Pisot number
need not satisfy ζ > L(ζ)/2 + 1, for instance, take ζ = ζm,b with m = 2 and
b ∈ {1, 2, 3}. Thus Theorem 2.1 only yields a sufficient condition for an algebraic
number to be a Pisot number.

For the other results we need to introduce some notation.

Definition 2.2. For real numbers ζ > 1, ǫ > 0, let ̟ǫ,ζ be the set of all real
α 6= 0 such that ‖αζn‖ ≤ ǫ for all n ≥ n0(α, ζ, ǫ).

Obviously ̟ǫ0,ζ ⊆ ̟ǫ1,ζ for ǫ0 < ǫ1 and any ζ. Note also that ̟ǫ,ζ 6= ∅ for all
ǫ > 0 is a necessary condition for limn→∞ ‖αζn‖ = 0. In fact,

⋂

ǫ>0̟ǫ,ζ is the set
of values α such that limn→∞ ‖αζn‖ = 0 for a fixed ζ. The sets̟ǫ,ζ are obviously
closed under any map τk,ζ : α 7→ αζk for k a positive integer. We investigate
the cardinality of these sets. More precisely, our focus is on understanding the
derived quantities

ǫ̃1 = ǫ̃1(ζ) := sup {ǫ > 0 : ̟ǫ,ζ = ∅} = inf {ǫ > 0 : |̟ǫ,ζ| ≥ |Z|} ,
ǫ̃2 = ǫ̃2(ζ) := sup {ǫ > 0 : |̟ǫ,ζ| ≤ |Z|} = inf {ǫ > 0 : |̟ǫ,ζ| > |Z|} .
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An equivalent definition of ǫ̃1 is given by

ǫ̃1(ζ) = inf
α6=0

lim sup
n→∞

‖αζn‖.

Obviously, 0 ≤ ǫ̃1(ζ) ≤ ǫ̃2(ζ) ≤ 1/2 for all real ζ. We will establish the better
bounds given in the following theorem.

Theorem 2.3. For any ζ > 1 we have

0 ≤ ǫ̃1(ζ) ≤ min

{

1

2
,

1

2(ζ − 1)

}

,
1

2(ζ + 1)
≤ ǫ̃2(ζ) ≤ min

{

1

2
,

1

ζ − 1

}

.

Remark 2.4. For rather small values of ζ the upper bound 1/2 in Theorem 2.3
can be slightly reduced, provided a slight modification of Pollington’s result
holds. Assume Theorem 1.11 with the same effective bound for β is valid if the
fractional parts {tkα} avoid the interval (1/2− β, 1/2 + β) instead of the open
intervals of the same length 2β around integers as in the theorem. Looking at
the proof of Theorem 1.11 in [19] this shift invariance seems very reasonable.
Put tn = ζn and observe we may let s0 > 0 be arbitrarily small and still obtain
uncountably many elements α with the desired property. Thus with r = r(ζ)
the smallest positive integer with ζr > r + 3, we infer

ǫ̃2(ζ) ≤ ϑ(ζ) :=
1

2
− ζ−4r

2(r + 1)
.

Numerical computations show ϑ(ζ) improves the bound in Theorem 2.3 for ζ ∈
I := (1, 2 + η) with a certain η ∈ (6 · 10−5, 7 · 10−5). On the other hand, it is
easy to check ϑ(ζ) ∈ (1/2− 1/1024, 1/2) on the entire interval ζ ∈ (1,∞), and
for ζ ∈ I even ϑ(ζ) ∈ (1/2− 1/10368, 1/2), so the improvement is small. Also
the lower bound 1/2− 1/10368 for ϑ(ζ) can be attained up to arbitrarily small

µ > 0 by taking ζ slightly larger than 3
√
6 ≈ 1.8171. Moreover, ϑ(ζ) obviously

tends to 1/2 as ζ tends to either 1 or infinity.

In fact we will prove a slight extension of Theorem 2.3 in Section 4. For al-
gebraic numbers ζ > 1 we will further establish the following result concerning
ǫ̃1(ζ), ǫ̃2(ζ). The proof of the first claim is based on the properties of the Pisot
numbers ζm,b carried out above, the second claim follows from similar construc-
tions we will present in Section 4.

Theorem 2.5. Let m ≥ 1 be an integer and δ ∈ (0, 1). There exists a Pisot

number (one may choose a unit) ζ of degree m such that

δ

ζ − 1
≤ ǫ̃2(ζ) ≤

1

ζ − 1
.
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Moreover, there exists algebraic ζ > 1 of degree m such that

δ

2(ζ − 1)
≤ ǫ̃1(ζ) ≤

1

2(ζ − 1)
.

The first claim of Theorem 2.5 is of particular interest because we will carry
out that we strongly expect (by a heuristic argument) that for Lebesgue almost
all ζ > 1 in fact 1

2(ζ−1) is an upper bound for ǫ̃2(ζ) as well. We will discuss this

in Section 4.

For rational ζ we can further improve the bounds from Theorem 2.3. As in [8],
for z ∈ R and p/q rational in the lowest terms let

E(z) :=
1− (1− z)

∏

m≥0(1− z2
m

)

2z
, τ(p/q) :=

E(q/p)

p
.

With this notation we have the following.

Theorem 2.6. Let ζ = p/q with integers p > q ≥ 2 and (p, q) = 1. Then

ǫ̃i = ǫ̃i(p/q) for i ∈ {1, 2} satisfy

τ(p/q) ≤ ǫ̃1 ≤ min

{

1

2
,

q

2(p− q)

}

, max

{

τ(p/q),
q

2(p+ q)

}

≤ ǫ̃2

≤ min

{

1

2
,
q − 1

p− q

}

.

In case of odd q, refined bounds are given by

ǫ̃1 ≤ min

{

1

2
,

q − 1

2(p− q)

}

, max

{

τ(p/q),
q + 1

2(p+ q)

}

≤ ǫ̃2. (3)

In case of q = 2, a refined bound for ǫ̃1 is

ǫ̃1 ≤ 1

p
.

The lower bound τ(p/q) at several places is due to D u b i c k a s, the remaining
bounds will be settled in Section 4. We point out another result for rational ζ,
which again we will compare to other results and interpret in Section 4.

Theorem 2.7. Let ζ = p/q > 1 be a rational number but no integer. If for

α 6= 0 and some large integer n, all numbers α(p/q)n, α(p/q)n+1, . . . , α(p/q)n+l

lie in the interval [−1/(p + q), 1/(p + q)] mod 1, then we have the asymptotic

estimate

l ≤ n ·
(

log p

log q
− 1

)

+ log |α|+ o(1), n → ∞.

In particular, ̟ǫ,ζ = ∅ for all ǫ ≤ 1/(p+ q) and thus ǫ̃1(p/q) ≥ 1/(p+ q).
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Finally, we will derive the following results in the case that ζ is an integer.

Theorem 2.8. For an integer ζ = p/1 > 1 we have

ǫ̃1(ζ) = ǫ̃1(p/1) = 0, τ(p/1) ≤ ǫ̃2(ζ) ≤
1

p
− 1

p3 + p2
.

For example, for p = 10 Theorem 2.8 yields

0.099090099 · · · ≤ ǫ̃2(10) ≤ 0.09909.

3. Preparatory cardinality results

We will consider the situation of one fixed variable throughout the following.

3.1. The case of fixed α

We start with an easy proposition to simplify the proof of Theorem 3.3 later.

Proposition 3.1. Let n be a positive integer, x > 3/2 and 0 < ǫ < 1/2 be real

numbers. Then (x+ ǫ)
n+1
n − (x− ǫ)

n+1
n ≥ 2ǫx

1
n .

P r o o f. Define ϕn : x 7→ x
n+1
n . We have to prove that

ϕn(x+ ǫ)− ϕn(x − ǫ) ≥ 2ǫx
1
n .

By the Taylor expansion

ϕn(x− ǫ) = ϕn(x)− ǫϕ′
n(x) +

ǫ2

2
ϕ′′
n(θ1) with some θ1 ∈ (x− ǫ, x).

Similarly,

ϕn(x+ ǫ) = ϕn(x) + ǫϕ′
n(x) +

ǫ2

2
ϕ′′
n(θ2) with some θ2 ∈ (x, x + ǫ).

Thus

ϕn(x+ ǫ)− ϕn(x− ǫ) = 2
n+ 1

n
ǫx

1
n +

ǫ2

2

(

ϕ′′
n(θ2)− ϕ′′

n(θ1)
)

= 2ǫx
1
n +

1

n
2ǫx

1
n +

ǫ2

2

(

ϕ′′
n(θ2)− ϕ′′

n(θ1)
)

.

We would certainly be done if the equivalent assertions

1

n
2ǫx

1
n >

ǫ2

2

(

ϕ′′
n(θ1)− ϕ′′

n(θ2)
)

⇐⇒ 1

n
x

1
n >

ǫ

4

(

ϕ′′
n(θ1)− ϕ′′

n(θ2)
)

(4)

hold.
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We look at the right side of the equivalence. The left hand side is obviously
bounded below by 1/n. Applying the Taylor theorem again to the right hand
side gives that right hand side is bounded above by

∣

∣

∣

ǫ

4
2ǫϕ′′′

n (θ3)
∣

∣

∣
=

∣

∣

∣

∣

ǫ2

2
ϕ′′′
n (θ3)

∣

∣

∣

∣

≤ 1

8
|ϕ′′′

n (θ3)| with some θ3∈(θ1, θ2)⊆(x− ǫ, x+ ǫ).

However,

|ϕ′′′
n (θ3)|=

(

n2 − 1

n3

)

θ
−2+ 1

n

3 <
1

n
θ
−2+ 1

n

3 <
1

n

since θ3 > x− ǫ > 3
2 − 1

2 = 1, proving (4). �

Definition 3.2. For arbitrary real numbers α, ǫ > 0, let χǫ,α be the set of all
real ζ > 1 such that ‖αζn‖ ≤ ǫ for all n ≥ n0(α, ζ, ǫ).

Obviously,
χǫ0,α ⊆ χǫ1,α for ǫ0 < ǫ1 and any α.

Note also that for limn→∞ ‖αζn‖ = 0, the condition χǫ,α 6= ∅ for all ǫ > 0 is
necessary. In fact, for α fixed, the set

⋂

ǫ>0 χǫ,α coincides with the set of values
ζ such that limn→∞ ‖αζn‖ = 0. It is not hard to check that the sets χǫ,α are
closed under the maps ιk : ζ 7→ ζk for k ≥ 1 an integer.

The next Theorem 3.3 is connected to Theorem 1.10. Given ǫ > 0, we explic-
itly construct intervals in which the investigated set χǫ,α of values ζ is dense or
uncountable. We point out in advance that it will turn out in Theorem 3.6 that
indeed we do not obtain uncountably many suitable values ζ in intervals of the
form (1, C) for sufficiently small C. We restrict to the case of symmetric intervals
with respect to 0, however the proof of this and most other results of Section 3
easily extends to the more general case of arbitrary intervals of length 2ǫ, see
Remark 3.5 and Remark 3.13. We remark that throughout the paper some re-
sults stating that particular sets are uncountable use a method related to the
one used by Pollington [19] in Theorem 1.11. A perspective for further research
could be to provide more concise information on Hausdorff dimensions of the
involved sets.

Theorem 3.3. Let α, ǫ > 0 be real numbers. The set χǫ,α ∩ (1+ 1
2ǫ ,∞) is dense

in (1 + 1
2ǫ ,∞). For any a, b with b > max{a, 1 + 1

ǫ} the set χǫ,α ∩ (a, b) has

cardinality of R.

P r o o f. Fix 0 < ǫ < 1/2, which, clearly, is no restriction as the claim is trivial
otherwise. Moreover, we may assume α > 0.
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Let N0, n be any positive integers to be specified later such that

(N0 − ǫ)
1
n > α

1
n

(

1 +
1

2ǫ

)

. (5)

Consider the interval I0 :=
(

α− 1
n (N0 − ǫ)

1
n , α− 1

n (N0 + ǫ)
1
n

)

. By construction

any ζ0 ∈ I0 satisfies αζn0 ∈ J0 := (N0 − ǫ,N0 + ǫ). Now by (5) and Proposi-

tion 3.1 with x := N0, the interval K0 :=
(

α− 1
n (N0 − ǫ)

n+1
n , α− 1

n (N0 + ǫ)
n+1
n

)

has length at least 1 + 2ǫ.

Thus there exists an integer N1 such that it contains J1 := (N1 − ǫ,N1 + ǫ),

so J1 ⊆ K0. Putting I1 :=
(

α− 1
n+1 (N1 − ǫ)

1
n+1 , α− 1

n+1 (N1 + ǫ)
1

n+1

)

we see that

I1 ⊆ I0 because by construction N1 ≥ α− 1
n (N0 − ǫ)

n+1
n + ǫ and hence

α− 1
n+1 (N1 − ǫ)

1
n+1 ≥ α− 1

n+1α− 1
n(n+1) (N0 − ǫ)

1
n = α− 1

n (N0 − ǫ)
1
n , (6)

and similarly with inequality in reverse directions for the upper bounds of I0, I1.
Combining (5) and (6) yields in particular

(N1 − ǫ)
1

n+1 > α
1

n+1

(

1 +
1

2ǫ

)

. (7)

Furthermore, for any ζ1 ∈ I1 by construction αζn+1
1 ∈ (N1 − ǫ,N1 + ǫ). So again

by Proposition 3.1 with x := N1 and (7), if we similarly define

K1 :=
(

α− 1
n+1 (N1 − ǫ)

n+2
n+1 , α− 1

n+1 (N1 + ǫ)
n+2
n+1

)

,

the interval K1 again has length at least 1 + 2ǫ. Having now defined I1, J1,K1

we can repeat the procedure to obtain J2, I2,K2 in this succession with very
similar properties.

Proceeding in this manner gives a sequence of nested intervals I1 ⊇ I2 ⊇ I3 · · ·
Defining ζ := ∩j≥0Ij , which clearly is a unique real number, it is easy to see ζ
has the desired property |αζn+j −Nj | ≤ ǫ for all j ≥ 0.

To see χǫ,α is dense in (1 + 1
2ǫ ,∞), we need to show for fixed 0 < ǫ < 1/2

and any given d > c > 1 + 1
2ǫ , for some pair (N0, n) satisfying (5) the ζ arising

by the above construction has property ζ ∈ (c, d). Indeed, it suffices to take any

integer N0 ∈
(

cn

α + 1, dn

α − 1
)

for n sufficiently large that the interval is non-
empty, to guarantee ζ = ∩j≥0Ij ⊆ I0 ⊆ (c, d) for the resulting ζ as well as the
condition (5).

To see χǫ,α has cardinality of R in any non-empty interval (a, b) with b >

1 + 1
ǫ , repeat the above construction with (N0 − ǫ)

1
n > α

1
n (1 + 1

ǫ ) instead of

α
1
n (1+ 1

2ǫ), and observe that the resulting intervalsKj have length at least 2+2ǫ.
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So we have the choice of at least two different values Nj in each step. Different
choices of Nj by construction induce disjoint intervals Ij+1 in the next step, so
the intersections ∩j≥0Ij do not coincide for any two different choices as well.
Hence the set has cardinality of the power set of N which equals cardinality of
R, and by a similar argument as above we may choose I0 to lie in any given
interval (a, b) with b > a > 1 + 1

ǫ . Thus χǫ,α ∩ (a, b) has cardinality of R. �

Remark 3.4. Note that the interval bounds in Theorem 3.3 do not depend
on α. Moreover, reviewing the proof, in fact the minimal n = n0(α, ζ, ǫ) in
the construction for ζ in a given interval ζ ∈ (c, d) only depends on c, d, and
the condition becomes weaker with growing c and d − c. Thus we may write
n ≥ n0(α, ǫ, d− c) for all ζ ∈ χǫ,α ∩ (c, d).

Remark 3.5. The proof can be readily extended to the case, where {αζn}
lie in arbitrary closed intervals In mod 1 of length 2ǫ. The same will apply to
Theorem 3.6.

The proof of Theorem 3.3 suggests that for all α 6= 0, or at least almost all α in
the sense of Lebesgue measure, in fact χǫ,α∩ (1+ 1

2ǫ ,∞) should be uncountable.

Assume otherwise for some α 6= 0 the set χǫ,α∩ (1+ 1
2ǫ ,∞) is at most countable.

Then starting with a pair N0, n satisfying (5), the recursive process would yield
only one integer in the intervalsKj for all large j (else we have 2 choices infinitely
often, contradicting the assumption). The intervals Kj have length greater than
1+2ǫ, so this means their midpoints avoid a neighborhood of 1/2. It is reasonable
to believe that this biased distribution leads to a set of values α of measure 0
for the fixed pair N0, n, see also Theorem 1.3. Note that this must hold for any
pair N0, n satisfying (5). A rigorous proof seems hard, however. We will carry
out a similar phenomenon in a preciser way in Section 3.2, see in particular
Proposition 3.11.

As indicated previous to Theorem 3.3, the set χǫ,α is reasonably smaller for
ζ in a neighborhood of 1.

Theorem 3.6. For any fixed α 6= 0, ǫ > 0, the set χǫ,α ∩ (1, 1
2ǫ − 1) is at most

countable.

P r o o f. By definition, if ζ lies in χǫ,α, there exists an integer sequence (Nn)n≥1

such that

αζn ∈ [Nn − ǫ,Nn + ǫ] for n ≥ n0 = n0(ζ, ǫ, α).

By αζn+1 = (αζn)
n+1
n α− 1

n we infer

α− 1
n (Nn − ǫ)

n+1
n ≤ αζn+1 ≤ α− 1

n (Nn + ǫ)
n+1
n . (8)
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Suppose we have already shown

α− 1
n

(

(Nn + ǫ)
n+1
n − (Nn − ǫ)

n+1
n

)

< 1− 2ǫ, n ≥ n0. (9)

Then, clearly, there is at most one integer Nn+1 such that

[Nn+1 − ǫ,Nn+1 + ǫ]
⋂

(

α− 1
n (Nn − ǫ)

n+1
n , α− 1

n (Nn + ǫ)
n+1
n

)

6= ∅.

By (8) the property αζn+1 ∈ [Nn+1 − ǫ,Nn+1 + ǫ] is valid for n ≥ n0. As this
is true for n+ 2, n+ 3, . . . with the same argument, the sequence (Nn)n≥n0 and
hence ζ is determined by some n0 = n0(ǫ, α, ζ), Nn0 . However, the sequence
(Nn)n≥n0 clearly determines a unique ζ because obviously

ζ = lim
n→∞

n
√

Nn/α = lim
n→∞

n
√

Nn.

Thus ζ 7→ (n0, Nn0) induces a one-to-one map from χǫ,α to Z2 and hence the set
is at most countable. Hence it only remains to prove (9).

Recall the functions ϕn from the proof of Proposition 3.1. We have

ϕn(x+ ǫ)− ϕn(x− ǫ) = 2ǫϕ′
n(θ) for some θ ∈ (x− ǫ, x+ ǫ).

Hence the left hand side of (9) is bounded above by α− 1
n

n+1
n 2ǫ(Nn+ǫ)

1
n . Clearly,

limn→∞ α− 1
n

n+1
n = 1, and as n

√
Nn tends to ζ so does n

√
Nn + ǫ for fixed ǫ.

Claim (9) follows from our assumption ζ < 1
2ǫ − 1. �

We compare our result with [15, Theorem 3.5] concerning the distribution of
‖αζn − θn‖ for an arbitrary given sequence (θn)n≥1.

Theorem 3.7 (L e r m a [15], part 1). For any α 6= 0 and A > 1 and any given

sequence (rn)n≥1, there exists ζ such that

A ≤ ζ ≤ A+
A

(A− 1)|α|
and for every n ≥ 1,

‖αζn − rn‖ ≤ 1

2(A− 1)
.

Putting rn = 0 for all n ≥ 1 and restricting to α > 0 and identifying ǫ with
1

2(A−1) in Theorem 3.7 implies the existence of ζ with 1
2ǫ +1 ≤ ζ ≤ 1

2ǫ +1+ 1+2ǫ
α

such that ‖αζn‖ ≤ ǫ. Thus, the generalized result of Theorem 3.3 pointed out
in Remark 3.5, contains more information than Theorem 3.7.

80



INTEGRAL POWERS OF NUMBERS IN SMALL INTERVALS MODULO 1

3.2. The case of fixed ζ

Now we want to study the reverse situation, i.e. for ζ > 1 and 0 < ǫ < 1/2
fixed we ask which α satisfy ‖αζn‖ ≤ ǫ for all large n. This is the setup for all
the results from Section 2. Recall Definition 2.2 for the present section.

Theorem 3.8. For any ǫ > 0 and ζ ≥ 1 + 1
2ǫ , the set ̟ǫ,ζ is dense in R.

If ζ ≥ 1 + 1
ǫ , the set ̟ǫ,ζ ∩ (a, b) has cardinality of R for any b > a. Numbers

in ̟ǫ,ζ can be recursively constructed.

P r o o f. We may assume α > 0. For any fixed ζ, ǫ, c, d with ζ ≥ 1 + 1
2ǫ and

d > c > 0, we must prove there is α ∈ (c, d) ∩̟ǫ,ζ. Take n0 = n0(ǫ, ζ) sufficiently
large that (d− c)ζn0 > 1 + 2ǫ. Then there exists an integer N0 such that

[N0 − ǫ,N0 + ǫ] ⊆ (cζn0 , dζn0).

Let I0 := [N0−ǫ
ζn0

, N0+ǫ
ζn0

], then any α ∈ I0 satisfies αζn0 ∈ [N0 − ǫ,N0 + ǫ]. By as-

sumption 2ǫ · ζ ≥ 1+ 2ǫ, so there exists some integer N1 with [N1 − ǫ,N1 + ǫ] ⊆
ζn0+1I0. Defining I1 := [N1−ǫ

ζn0
, N1+ǫ

ζn0
], any α in I1 satisfies

αζn+1 ⊆ [N1 − ǫ,N1 + ǫ].

Moreover, I1 ⊆ I0. Proceeding in this manner gives a nested sequence (c, d) ⊇
I0 ⊇ I1 ⊇ I2 ⊇ · · · of intervals, which intersect in a single point α0 :=

⋂

j≥0 Ij
because the length of Ij is

2ǫ
ζn0+j which tends to zero. For this α0 indeed we have

both α0 ∈ (c, d) and ‖α0ζ
n‖ ≤ ǫ for any n ≥ n0.

The cardinality argument is very similar to that in the proof of Theorem 3.3,
using that by the assumption 2ǫ · ζ ≥ 2+ 2ǫ we have at least two choices for Nj

in any step. �

We point out that the proof of Theorem 3.8 suggests that for almost all fixed
ζ > 1, the property ζ > 1 + 1

2ǫ or equivalently ǫ > 1
2(ζ−1) should suffice for ̟ǫ,ζ

to be uncountable. Roughly speaking, assuming a not too biased distribution of
{ζNj} in (0, 1) for Nj as in the proof of Theorem 3.8, will be sufficient for ̟ǫ,ζ

to be uncountable. Proposition 3.11 will state this observation in a more pre-
cise way. We introduce some identifications used in its proof and in fact carry
out the essential parts of the proof beforehand.

Start with any integer N0. Proceed as in the proof of Theorem 3.8 with the re-
cursive construction ofNj . Concretely, consider the interval I1 = ζ ·[N0−ǫ,N0+ǫ]
and consider the integers N1 for which [N1 − ǫ,N1 + ǫ] ⊆ I1. For any such N1

repeat this process and so on. As used in the proof, the assumption ζ > 1 + 1
2ǫ

is equivalent to 2ǫ · ζ > 1 + 2ǫ. Thus there is at least one Nj+1 in any step, and
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the strict inequality means that one would expect that with fixed positive prob-
ability there should be (at least), two. This is the case if the midpoint of the
interval ζ · [Nj − ǫ,Nj + ǫ], that is Njζ, has fractional part in the fixed neighbor-
hood [1− ǫζ+ ǫ, ǫζ− ǫ] 6= ∅ of 1/2. The process can be viewed as an infinite tree
T = T (ζ, ǫ,N0) with (multiply defined) vertices Nj and root N0 in which any
vertex apart from N0 has precisely one ancestor vertex and any vertex has at
least one successor vertex. Any infinite path N0, N1, . . . corresponds to an ele-
ment of ̟ǫ,ζ and this assignment is injective, as established in the proof of Theo-
rem 3.8. We will identify any path in T with the induced element in ̟ǫ,ζ. Call a
path in T deterministic if it contains some vertex Nj for which there is no other
path in T starting with the same initial vertex sequence N0, N1, . . . , Nj. If Nj is
such a vertex say the path is deterministic for Nj . Clearly, if a path is determin-
istic for Nj , then it is also deterministic for all successor vertices Nj+1, Nj+2, . . .
Observe that if T contains no deterministic path, the set of paths and thus ̟ǫ,ζ

is uncountable. Indeed, if there is no deterministic path, deleting the vertices
of the tree where we have only one choice and reducing the number of paths
in the remaining tree if necessary by cutting off, leads to the classical infinite
binary tree, say T2. This procedure clearly induces a surjective map from the
paths of T to those of T2. Since there are uncountably many paths in T2, as the
binary expansion of any element of (0, 1) can be obtained by going to the left is
reading the digit 0 and to the right 1, the claim follows. Obviously, the above ar-
gument can be extended to show that if ̟ǫ,ζ is only countable, then for any path
in T and arbitrary large j0, there exists a path in T deterministic for some Nj

with j ≥ j0 with coinciding initial vertex sequence N0, N1, . . . , Nj0 . Moreover, if
a path is deterministic for Nj0 , then Nj+1 = 〈ζNj〉 for j ≥ j0 by construction.
However, note that ̟ǫ,ζ being at most countable does not necessarily mean any
path in any corresponding tree T (ζ, ǫ,N0) with an integer parameter N0 must
be deterministic. Define a binary tree T ′ with root N ′

0 by the rule that going
to the right induces a deterministic path by having to go to the right in every
further step, but going to the left allows both directions in the following step.
The set of paths of T ′, corresponding to elements of ̟ǫ,ζ, is countable but the
path defined by going to the left in every step is not deterministic for any N ′

j.

Definition 3.9. Call ζ > 1 exceptional if and only if for some ǫ > 1
2(ζ−1) the

set ̟ǫ,ζ is at most countable. Let Θ ⊆ (1,∞) be the set of exceptional numbers.

In fact Θ ⊆ (2,∞) since ζ ≤ 2 implies the trivial bound ǫ > 1/2. Let

N = {1, 2, . . .}.
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Definition 3.10. For real ζ and every N0 ∈ N, define the sequence (Nj)j≥0

recursively by Nj+1 = 〈ζNj〉 for j ≥ 0. Let W (ζ) ⊆ N be the set of integers N0

for which the corresponding sequence ({Njζ})j≥0 of fractional parts is not dense
at 1/2. Let Γ ⊆ (3/2,∞) consist of the numbers ζ > 3/2 for which W (ζ) 6= ∅.

The lower bound 3/2 instead of 1 is only necessary to ensure Nj+1 > Nj

in order to avoid constant sequences (Nj)j≥0 which would lead to unintended
elements ζ ∈ Γ. Alternatively one could ask for W (ζ) to be infinite instead of
non-empty. It will turn out not to be of importance anyway since by the above
remark Θ ⊆ (2,∞) we may restrict to the interval (2,∞) for our purposes.

Proposition 3.11. We have Θ ⊆ Γ. In particular, if Γ has Lebesgue measure

0, then so has Θ.

P r o o f. Assume ζ > 1 is exceptional, that is for some ǫ > 0 with ζ > 1 + 1
2ǫ ,

the set ̟ǫ,ζ is only countable. For any positive integer N0 consider the arising
tree T as carried out above. In view of the preceding remarks T contains a
deterministic path, i.e. a path (Nj)j≥0 of T with the property that for some
integer j0 there is no other path in T whose initial vertex sequence coincides with
N0, N1, . . . , Nj0 . Fixing this path, we can treat j0, Nj0 as fixed too. As carried
out above, for j ≥ j0 all fractional parts of {Njζ} of the induced sequence
(Nj)j≥j0 must avoid the fixed symmetric neighborhood [1 − ǫζ + ǫ, ǫζ − ǫ] 6= ∅
of 1/2. Hence we have found a path with ({Njζ})j≥0 not dense at 1/2. Since
Nj+1 = 〈ζNj〉 for j ≥ j0, we deduce Nj0 ∈ W (ζ) and ζ belongs to Γ. Since
ζ ∈ Θ was arbitrary the claim follows. �

If we write ǫ = δ · 1
ζ−1 for the largest ǫ in Definition 3.9, then δ ∈ (1/2, 1] by

Theorem 3.8. Larger δ implies a larger symmetric interval I = [1− ǫζ+ ǫ, ǫζ− ǫ]
around 1/2 without any number {Njζ} in I for large j where Nj = 〈αζj〉, with
I = [0, 1] if δ = 1. By sigma additivity of the Lebesgue measure, for the proof of
the hypothesis of Proposition 3.11, it suffices to show that for any fixed N0 ≥ 1
the set of ζ > 1 with ({Njζ})j≥1 not dense at 1/2 has measure 0. Hence, if we
dropped the rounding to the next integer in any step, that is Nj+1 = ζNj , then
it would follow from Theorem 1.3 that almost all ζ > 1 are not in Γ and thus not
exceptional. Having ruled out the case of constant sequences by the assumption
ζ > 3/2, there is no reason why the rounding should affect this result, however a
rigorous proof seems hard. On the other hand, Theorem 1.10 and Theorem 1.11
strongly suggest that Γ has full dimension.

In the fact, we have shown in Proposition 3.11 that for ζ ∈ Θ, for any start
value N0 the recursive process starting at N0 becomes determined for most
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choices of paths. However, observe that for ζ ∈ N≥2 the worst case in the con-
struction, that is all ζNj are integers, applies. Hence N≥2 ⊆ Γ. A result due
to D u b i c k a s implies that N≥3 ⊆ Θ, see Section 4.4 and also Theorem 2.8.
Moreover, any ζ > 1 for which there exists α 6= 0 such that limn→∞ ‖αζn‖ = 0,
in particular any Pisot number, belongs to Γ. Indeed it is easily checked that in
this case 〈αζn〉 ∈ W (ζ) for any sufficiently large n. In fact for sufficiently large j
the corresponding fractional parts {Njζ} lie in arbitrarily short intervals with
midpoint 0 modulo 1. We will see in Section 4.3 that at least some Pisot numbers
of any given degree are exceptional, which is a little surprising considering that
we can start the above process at any N0 ≥ 1. Another interesting special case
is ζ = p/q rational but not an integer. We will treat it in Section 4.4.

A result somehow reverse to Theorem 3.8 is the following.

Theorem 3.12. Let ζ > 1, ǫ > 0 be real numbers with (ζ +1)ǫ < 1/2. Then the

set ̟ǫ,ζ is at most countable. Unless ζ is rational with even denominator in the

lowest terms, it suffices to assume (ζ + 1)ǫ ≤ 1/2.

P r o o f. Let n0 = n0(α, ζ, ǫ) be an integer with the above property for fixed
ζ, ǫ, α as in the theorem. For α to satisfy the assertions it is obvious that

α ∈
⋂

n≥n0

In, In :=

[

Mn − ǫ

ζn
,
Mn + ǫ

ζn

]

for some integer sequence (Mn)n≥n0 . Obviously, in this case

α =
⋂

n≥n0

In = lim
n→∞

Mn

ζn
. (10)

For α ∈ In ∩ In+1 it is necessary that In, In+1 are not disjoint which requires
∣

∣

∣

∣

Mn

ζn
− Mn+1

ζn+1

∣

∣

∣

∣

≤ ǫ

ζn
+

ǫ

ζn+1
.

This is equivalent to |ζMn−Mn+1| ≤ (ζ+1)ǫ. By the assumption (ζ+1)ǫ < 1/2
this means Mn+1 = 〈ζMn〉 is uniquely determined by Mn. The same holds if
ζ is irrational (or rational with odd denominator) and (ζ + 1)ǫ ≤ 1/2, since
then clearly {Mnζ} 6= 1/2. This holds for any n ≥ n0, so Mn0 determines the
sequence (Mn)n≥n0 and hence α by (10). However, for any fixed α ∈ ̟ǫ,ζ there
is a n0 = n0(α, ζ, ǫ) such that the above holds with some Mn0 . So α 7→ (n0,Mn0)
induces a one-to-one map from ̟ǫ,ζ to Z2, which means that ̟ǫ,ζ is at most
countable. �
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Remark 3.13. The analogue of Remark 3.5 holds for Theorem 3.8 and, apart
from the equality case, for Theorem 3.12 for the same reasons. Moreover, Propo-
sition 3.11 essentially holds for an arbitrary fixed interval modulo 1 of length 2ǫ
instead of the 0-symmetric one in ̟ǫ,ζ, where 1/2 in the definition of Γ must be
replaced by some other value.

Comparing Theorem 3.12 to Theorem 1.5, we see for fixed ζ our bound is
better in view of the square, however it is not uniform in ζ as Theorem 1.5.
In comparison to our results we quote the second assertion of [15, Theorem 3.5].

Theorem 3.14 (Lerma, part 2). For any ζ > 1, L 6= 0 and any given sequence

(rn)n≥1, there exists α such that

|L| ≤ |α| ≤ |L|+ 1

ζ − 1

and for every n ≥ 1,

‖αζn − rn‖ ≤ 1

2(ζ − 1)
.

This implies |̟ǫ,ζ| ≥ |Z| for ǫ ≥ 1
2(ζ−1) , which is nontrivial provided ζ > 2.

This bound coincides with our bound from Theorem 3.8, which can again be
generalized to arbitrary sequences (rn)n≥1 as in Theorem 3.14, as indicated in
Remark 3.13. Thus (the generalized) Theorem 3.8 implies Theorem 3.14.

4. The cardinality gap phenomenon

Now we turn to the main focus of the paper, that is to investigate what
we will call the cardinality gap phenomenon. Roughly speaking it means to
investigate for which parameters the sets defined in Section 3 are countable
versus uncountable. The following Corollary 4.1 should portray the spirit of
cardinality gap phenomena more accurately.

4.1. Fixed ǫ

In the present section we agree on sup{∅} = 1 in order to formulate some
results in widest generality (taking care of rather large ǫ). We point out the ob-
served cardinality gap arising from Theorem 3.3 and Theorem 3.6 as a corollary.
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Corollary 4.1. Let α 6= 0 be fixed. For any ǫ > 0 define ζ1 = ζ1(ǫ) by

ζ1 := sup {C > 1 : |χǫ,α ∩ (C,∞)| ≤ |Z|} = inf {C > 1 : |χǫ,α ∩ (C,∞)| > |Z|} .
(11)

Similarly, define ζ2 = ζ2(ǫ) by

ζ2 := sup {C > 1 : |χǫ,α ∩ ( a, b )| ≤ |Z|} = inf {C > 1 : |χǫ,α ∩ ( a, b )| > |Z|}
(12)

where we understand the above to hold simultaneously for all intervals (a, b) ⊆
(C,∞). Then

ζ1 ∈
[

max{1, 1

2ǫ
− 1}, 1 + 1

ǫ

]

and

ζ2 ∈ [ζ1, 1 +
1

ǫ
] ⊆

[

max{1, 1

2ǫ
− 1}, 1 + 1

ǫ

]

.

Remark 4.2. It would be nice to have cardinality equal to |R| instead of
greater |Z| on the right hand sides in (11), (12). If we assume the continuum
hypothesis to be true (which is known to be undecidable due to P. Cohen), then
indeed we may make this replacement. However, if we do not assume that it is
true, the convenient values ζ1, ζ2 might not be well-defined any more with the
replacement. Related issues will apply frequently in similar situations the sequel.

Note that no set χǫ,α ∩ (C,∞) and thus χǫ,α cannot be finite unless it is
empty, since χǫ,α is closed under any map ιk defined in Section 3.1. However, it
is not clear if χǫ,α can have isolated points. By Theorem 3.3 and Theorem 3.6
isolated points can only occur in the interval (1, 1

2ǫ + 1). One may further ask
whether there can be finitely many equivalence classes under the equivalence
relation ζ1 ∼ ζ2 ⇔ ζp1 = ζq2 for positive integers p, q.

Similarly, we infer a cardinality gap corollary from Theorem 3.8 and Theo-
rem 3.12.

Corollary 4.3. For any ǫ > 0, define ζ̃1 = ζ̃1(ǫ) by

ζ̃1 = sup {ζ > 1 : |̟ǫ,ζ| ≤ |Z|} = inf {ζ > 1 : |̟ǫ,ζ| > |Z|} .

Similarly, for fixed real numbers b > a define ζ̃2 = ζ̃2(ǫ, a, b) by

ζ̃2 = sup {ζ > 1 : |̟ǫ,ζ ∩ (a, b)| ≤ |Z|} = inf {ζ > 1 : |̟ǫ,ζ ∩ (a, b)| > |Z|} .
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Then

ζ̃1 ∈
[

max{1, 1

2ǫ
− 1}, 1 + 1

ǫ

]

and

ζ̃2 ∈ [ζ̃1, 1 +
1

ǫ
] ⊆

[

max{1, 1

2ǫ
− 1}, 1 + 1

ǫ

]

.

Note that again for given ζ > 1, ǫ > 0, the assumption ̟ǫ,ζ 6= ∅ is equivalent
to |̟ǫ,ζ| ≥ |Z|, since ̟ǫ,ζ is closed under the maps τk,ζ defined in Section 3.2.
One may ask whether this is true for ̟ǫ,ζ ∩ (a, b) as well. Moreover, one may ask
whether the number of residue classes of ̟ǫ,ζ under certain equivalence relations
is finite. For example

α1 ∼1 α2 ⇔ α2

α1
= ζl, α1 ∼2 α2 ⇔ α2 = α

m/n
1 , α1 ∼3 α2 ⇔ α2

α1
=

M

N
ζl

for integers M,N, l,m, n. It probably makes most sense to observe ∼3 because
if α ∈ ̟ǫ/M,ζ then Nαζk ∈ ̟ǫ,ζ for any integers k, |N | ≤ M . It follows
that we have no finiteness with respect to ∼1 for any ǫ > 0 and ζ for which
limn→∞ ‖αζn‖ = 0 for some α 6= 0, such as Pisot numbers ζ.

4.2. Fixed ζ

We consider ζ > 1 fixed and interpret the results of Section 3.2 in terms of
the variable ǫ > 0. Subsequent to Corollary 4.3 we noticed that ̟ǫ,ζ 6= ∅ implies
̟ǫ,ζ ≥ |Z|. We now agree on sup {∅} = 0. Recall the quantities ǫ̃i(ζ) from
Section 2. The property limn→∞ ‖αζn‖ = 0 for some α 6= 0 implies ǫ̃1(ζ) = 0,
but not necessarily vice versa. In particular, Theorem 1.4 implies ǫ̃1(ζ) = 0 for
any Pisot number ζ. Theorem 3.8 further implies ǫ̃1(ζ) ≤ 1

2(ζ−1) . Concerning ǫ̃2,

Theorem 3.8 implies that for any ζ > 1 we have ǫ̃2(ζ) ≤ 1
ζ−1 . Proposition 3.11

suggests that we should expect ǫ̃2(ζ) ≤ 1
2(ζ−1) for almost all ζ > 1 in the sense

of Lebesgue measure. On the other hand, Theorem 3.12 implies ǫ̃2(ζ) ≥ 1
2(ζ+1)

for all ζ > 1. We sum up some of these observations in a theorem which slightly
extends Theorem 2.3.

Theorem 4.4. For any ζ > 1 we have

0 ≤ ǫ̃1(ζ) ≤ min

{

1

2
,

1

2(ζ − 1)

}

,
1

2(ζ + 1)
≤ ǫ̃2(ζ) ≤ min

{

1

2
,

1

ζ − 1

}

.

For any ζ ∈ (1,∞) \ Γ we have ǫ̃2(ζ) ≤ min{ 1
2 ,

1
2(ζ−1)}.
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Since limζ→∞
1

2(ζ−1)/
1

2(ζ+1) = 1, assuming the existence of arbitrarily large

ζ /∈ Γ, we infer the lower bound for ǫ̃2 is optimal up to any factor greater 1.
We will proof similar unconditioned results for the other bounds in Section 4.3.
By virtue of Remark 3.13, the 0-symmetry of the intervals connected to ̟ǫ,ζ is
only needed in the last claim, which can also be extended by replacing 1/2 by
some other constant in the definition of Γ. Thus for any ζ > 1 and given interval
I modulo 1 of length greater than 1/(ζ − 1), there exists α 6= 0 such that {αζn}
lies in I for all large n. The results concerning ǫ̃2 allow a similar interpretation
with interval length 2/(ζ − 1).

4.3. The special case of algebraic ζ > 1

In the case of algebraic numbers ζ > 1, some bounds in Theorem 4.4 can be
refined with a result due to D u b i c k a s. Combination with Theorem 4.4 will
lead to the proof of Theorem 2.1.

For ζ a Pisot number, we know due to Theorem 1.4 that ∩ǫ>0̟ǫ,ζ 6= ∅ and
hence in particular ǫ̃1(ζ) = 0. Otherwise, if ζ > 1 is algebraic but not a Pisot
number or a Salem number and α 6= 0, D u b i c k a s [8, Theorem 1] showed that

lim sup
n→∞

‖αζn‖ ≥ 1

min{L(ζ), 2l(ζ)} . (13)

The same holds for Pisot and Salem numbers and all α /∈ Q(ζ). More generally,
the expression 1/min{L(ζ), 2l(ζ)} is a lower bound for the minimum distance
from the smallest to the largest limit point of {αζn}. Here L(ζ) is defined as in
Section 4 and l(ζ) = l(P ) is the infimum among all L(PG), where G ∈ R[X ]
runs over all polynomials with either leading or constant coefficient 1, where
P ∈ Z[X ] is the minimal polynomial of ζ in lowest terms. Combination of (13)
and Theorem 4.4 yields for ζ > 1 algebraic not a Pisot or a Salem number

1

min{L(ζ), 2l(ζ)} ≤ ǫ̃1(ζ) ≤ min

{

1

2
,

1

2(ζ − 1)

}

. (14)

In particular ǫ̃1(ζ) 6= 0. Furthermore, the estimate (14) yields the criterion
stated in Theorem 2.1 for an algebraic number to be a Pisot or Salem number.
To exclude the case that such ζ is a Salem number and thus prove Theorem 2.1,
it suffices to notice that D o b r o w o l s k i [5] showed that any complex polyno-
mial P ∈ C[X ] with a root on the unit circle satisfies L(P ) ≥ 2M(P ). Hence
ζ ≤ M(P ) ≤ L(P )/2 < L(P )/2 + 1 for any Salem number ζ with minimal
polynomial P. We add a remark concerning (14) and Theorem 2.1.

Remark 4.5. The estimate ζ − 1 > l(ζ) in view of (14) would allow the con-
clusion that ζ must be a Pisot or a Salem number, but it cannot be satisfied.
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The estimate M(ζ) ≤ l(ζ) for all algebraic ζ and M(ζ) = M(P ) the Mahler
measure of the minimal polynomial P of ζ defined in (2), is known [7]. This
would lead to ζ − 1 > l(ζ) ≥ M(ζ) ≥ ζ > ζ − 1, contradiction.

We now allow ζ to be a Pisot or a Salem number. Since Q(ζ) is countable,
the estimate (13) for α /∈ Q(ζ) and Theorem 4.4 further imply

1

min{L(ζ), 2l(ζ)} ≤ ǫ̃2(ζ) ≤ min

{

1

2
,

1

ζ − 1

}

(15)

for any algebraic ζ > 1. The consequences ζ − 1 ≤ L(ζ) and ζ − 1 ≤ 2l(ζ) are
already implied by (1) and Remark 4.5, respectively. Moreover, we deduce that
the condition 2(ζ − 1) > L(ζ) implies 1

2(ζ−1) < 1
L(ζ) ≤ ǫ̃2(ζ) and hence that ζ

is exceptional in the sense of Definition 3.9. Recall this condition is satisfied for
the Pisot numbers ζm,b from Section 2 for large b defined above and the quotient
L(ζm,b)/(ζm,b − 1) tends to 1 as b → ∞. The same applies to any integer ζ > 2.
Similarly to the polynomials Pm,b defined in Section 2, consider polynomials of
the form Qm,b(X) = 2Xm − bXm−1 − 1. The largest real root ηm,b of Qm,b(X)
is larger b/2 and L(Qm,b) = b+3, such that L(ηm,b)/(ηm,b−1) > 2 is arbitrarily
close to 2 if b is large. Since Qm,b(X) is no Pisot or Salem polynomial we may
apply (14). Summing up, we infer Theorem 2.5. Its claim can be interpreted in
the way that the upper bounds for ǫ̃1, ǫ̃2 in Theorem 4.4 (or equivalently those
in (13)) are not far from being optimal. Moreover Theorem 2.5 implies that there
exist exceptional Pisot numbers of any given degree.

Even though any Pisot number belongs to Γ, see Section 3.2, the claim con-
cerning ǫ̃2 reinterpreted in terms of paths of the tree from Section 3.2 seems
not too intuitive. Given an exceptional Pisot number, for any given start value
N0 ≥ 1, most paths in the corresponding tree T = T (ζ, 1/L(ζ), N0) from
Section 3.2 with root N0 must be deterministic, i.e., in the path N0, N1, . . .
the values {Njζ} avoid the symmetric neighborhood I(ζ) := [1− ζ−1

L(ζ) ,
ζ−1
L(ζ) ] 6= ∅

of 1/2 for all large j. Clearly, I(ζ) is an arbitrarily large subinterval of the en-
tire interval [0, 1] if L(ζ)/(ζ − 1) is sufficiently close to 1. Moreover, each path
leads to an element of Q(ζ) via the correspondence from Section 3.2, more pre-
cisely α = limj→∞ Nj/ζ

j ∈ Q(ζ). It is not obvious how to prove all of this
in an elementary way without Dubickas’ result. Numerical computations for
ζ = ζ2,4 = 2 +

√
5 the root of X2 − 4X − 1 and various values of N0 affirm

however that the fractional parts {Njζ} are near integers, in particular avoid
the corresponding interval

I(ζ2,4) :=

[

1− ζ2,4 − 1

L(ζ2,4)
,
ζ2,4 − 1

L(ζ2,4)

]

=

[

5−
√
5

6
,
1 +

√
5

6

]

≈ [0.4607, 0.5393],
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for most paths and rather small j. The continued fraction expansion of many
of the resulting elements in Q(ζ2,4) end in period 4. Observe ζ2,4 = [4; 4]. For
N0 ∈ {1, 3} there is only one path given by Nj+2 = 4Nj+1 +Nj for j ≥ −1 and
suitable N−1. For N0 = 2 there are only two paths with N1 = 8 and N1 = 9
respectively, and Nj+2 = 4Nj+1 + Nj for j ≥ 0. For N0 = 3, if we increase the
avoided interval I(ζ2,4) to say [0.15, 0.85], which corresponds to a rise of from

ǫ = 1/L(ζ) = 1/6 to ǫ = 0.85/(1 +
√
5) ≈ 0.2627, it seems there is a non-

deterministic path given by N−1 = 1 and the recurrence Nj+2 = 4Nj+1+Nj −1
for j ≥ −1, and the resulting tree T (ζ2,4, 0.2627, 3) is isomorphic to T ′ described
in Section 3.2. In particular the set of paths is no longer finite. For any larger
avoided interval or value of ǫ there should be uncountably many. Recall also that
α ∈ ̟ǫ,ζ does not necessarily induce a path in T (ζ, ǫ,N0) for some N0, only the
reverse claim is proved.

On the other hand, the result concerning ǫ̃1 is intuitive. For ǫ = δ
2(ζ−1) with

δ ∈ (0, 1), consider the recursive process defined by Nj+1 = 〈Njζ〉 as long as
ζ · [Nj − ǫ,Nj + ǫ] contains the neighborhood [Nj+1 − ǫ,Nj+1 + ǫ] of Nj+1,
following the proof of Theorem 3.8. If for some start value N0 the process does
not stop, which means ({Njζ})j≥0 avoids some interval modulo 1 centered at
1/2, it leads to α ∈ ̟ǫ,ζ. The interval length tends to 0 as δ → 1. If otherwise
for any start value N0 the process stops at some index j = j(N0), although the
process only yields a sufficient criterion, we should expect that there is no arising
α ∈ ̟ǫ,ζ. We should also expect that {Njζ} is dense in [0, 1] for any start value
N0 and any algebraic ζ > 1 which is no Pisot number. This argument suggests
to conjecture that almost all real ζ > 2 satisfy ǫ̃1 = 1

2(ζ−1) too. Further we add

that there is no reason why any Salem number ζ should belong to Γ. Thus it is
reasonable to expect that no Salem number is exceptional and hence only Pisot
numbers can satisfy 2(ζ − 1) > L(ζ).

4.4. The case of rational ζ > 1

For the remainder of the paper we restrict to the case of rational ζ > 1. We
start with general comments on the distribution of powers of rationals modulo 1.
It has been intensely studied, but is still poorly understood. For instance, it is
unknown if the sequence {(3/2)n} is dense modulo 1. We quote some known
results. From Theorem 1.4 we infer that ‖αζn‖ does not converge to 0 as n → ∞
for rational ζ > 1 which is no integer and any α 6= 0. This is equivalent to
⋂

ǫ>0 ̟ǫ,ζ = ∅ for ζ ∈ Q \ Z. More generally, V i j a y a v a g h a r a n [26] (see

also [27]) proved that the set of accumulation points of (p/q)n mod 1 is always
infinite unless p/q is an integer. Pisot [18] generalized this by showing that in fact
αζn mod 1 has infinitely many limit points if α 6= 0 is real and ζ > 1 algebraic,
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unless in the case where ζ is a Pisot number and α ∈ Q(ζ) where it must fail by
Theorem 1.4. D u b i c k a s [6] gave another proof of this fact.

Now we put our focus predominately on the values ǫ̃1, ǫ̃2. We point out that
in contrast to prior results, in the present section the symmetry of the intervals
with respect to 0 modulo 1 is mostly important. It turns out that it is useful to
distinguish the cases of ζ an integer or not. First let ζ > 1 be an integer. Then
any rational number of the form α = Mζb for M, b integers leads to integers
αζn for any n ≥ |b|. Hence ǫ̃1(ζ) = 0 for ζ > 1 an integer. Conversely, writing α
in base ζ, it is not hard to see that limn→∞ ‖αζn‖ = 0 implies αζn ∈ Z for all
large n, and to deduce that α must be of the given form.

For rational ζ = p/q > 1, the lower bound in (14) can be shown to be
1/L(ζ) = 1/(p + q). Recall the notion of τ(p/q) from Section 2. D u b i c k a s
improved his result (13) from Section 4.3 for ζ ∈ Q by showing that for every
rational ζ = p/q > 1 and α 6= 0, with α irrational if ζ is an integer, the estimate

lim sup
n→∞

‖α(p/q)n‖ ≥ τ(p/q) =
1

2q



1−
(

1− q

p

)

∏

m≥0

(

1−
(

q

p

)2m
)



 >
1

p+ q

(16)
holds [8, Theorem 3]. We combine the facts from the integer and the non-integer
case.

Proposition 4.6. For rational ζ > 1 we have ̟ǫ,ζ 6= ∅ for every ǫ > 0 if

and only if ζ is an integer and in this case
⋂

ǫ>0 ̟ǫ,ζ = R(ζ) := {Mζb : M ∈
Z \ {0}, b ∈ Z}.

In view of (16), for rational ζ = p/q > 1 which is not an integer we have

ǫ̃2(p/q) ≥ ǫ̃1(p/q) ≥ τ(p/q).

Similarly, for ζ = p/1 > 1 an integer, since the numbers that violate (16),
including R(ζ), are rational and thus their set is countable, we have

ǫ̃2(p/1) ≥ τ(p/1). (17)

As mentioned in [12], it can be shown that τ(p/q) > 1
p − q2

p3 for any rational

p/q > 1. Since 1
2(p−1) <

1
p − 1

p3 < τ(p/1) for p ≥ 3, this confirms the claim from

Section 3.2 that the set N≥3 is contained in the exceptional set defined there.
For ζ = p/1 > 1 an integer, [8, Corollary 2] shows that for the choice α = τ(p/1)
there is actually equality in (16). As mentioned subsequent to Corollary 4.3, this
means ̟ǫ,ζ is at least countable for ǫ = τ(p/1), since it contains the number
τ(p/1)pm for any integer m ≥ 0. It is however not clear from the construction
in [8] if there are uncountably many α ∈ ̟ǫ,ζ for given ǫ > τ(p/1), which
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together with (17) would imply ǫ̃2(p/1) = τ(p/1). Theorem 3.8 gives the weaker
upper bound 1/(ζ − 1) = 1/(p − 1) for ǫ̃2(p/1). We can improve this bound
with an explicit construction. Consider the set Z ⊆ R that consists of α ∈ (0, 1)
whose base p expansion has the following properties: only the digits 0, p − 1
appear, there are at most two consecutive p− 1 digits and the distance between
blocks with two consecutive digits p − 1 tends to infinity, and the digits 0 are
isolated. In other words, it is derived from the periodic digit sequence 0, p− 1
by plugging in single additional p − 1 digits at large distances. The set Z is
obviously uncountable. Furthermore, distinguishing the cases of n such that the
first digit after the comma is 0 and p− 1 respectively, leads to

{αζn} ≤ p− 1

p2
+

p− 1

p3
+

p− 1

p5
+

p− 1

p7
+ · · ·+ p− 1

p2l+1
+

p− 1

p2l+2
+

p− 1

p2l+4
+ . . . ,

p− 1

p
≤ {αζn} ≤ p− 1

p
+

p− 1

p3
+

p− 1

p5
+ · · · ,

respectively for α ∈ Z. By construction we may let l → ∞ as n → ∞, so evaluat-
ing the geometric series leads to the bounds (p2 + p− 1)/(p3+ p2) and 1/(p+1)
for ‖αpn‖, respectively. The first bound is larger, thus lim supn→∞ ‖αpn‖ ≤
1/p − 1/(p3 + p2) for all α ∈ Z. Summarizing the facts on the case ζ = p/1
proves Theorem 2.8.

Now we treat the case ζ ∈ Q \ Z. In this case we can refine the recursive
methods from Theorem 3.8 and Theorem 3.12. First recall the definitions and
remarks subsequent to Theorem 3.8. For ζ ∈ Q \ Z the numbers {Njζ} in any
path are contained in the finite set {0, 1/q, . . . , (q− 1)/q}. Thus if q is odd then
certainly no path will be dense at 1/2 and so ζ ∈ Γ. For even q, in the generic
case we should expect {Njζ} = 1/2 infinitely often in any path, so ζ /∈ Γ and
thus ζ is not exceptional. It is hard to predict if this heuristic argument applies
to all such rationals. However, we can slightly improve the bound 1/(ζ−1) = q

p−q

from Theorem 3.8 for all rational ζ > 1. This will in particular imply that all
rationals p/2 for p odd are not exceptional.

Proposition 4.7. Let ζ = p/q with p > q ≥ 2 and (p, q) = 1. Then for any

ǫ ≥ q−1
p−q the set ̟ǫ,ζ is uncountable.

P r o o f. First observe that for everyN0, the sequence (Nj)j≥1 defined byNj+1 =
〈ζNj〉 cannot have the property {ζNj} = 0 for all j ≥ j0. Without loss of gener-
ality assume j0 = 0. Indeed, if νq(N0) denotes the largest power of q dividing N0,
then ζ ·Nνq(N0) is not an integer. Hence ‖ζNj‖ ≥ 1/q for some j ≥ 0. It suffices
to require ǫζ ≥ 1 + ǫ − 1/q to ensure that for any such index j the correspond-
ing interval ζ · [Nj − ǫ,Nj + ǫ] of length 2ǫζ and midpoint ζNj contains two
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consecutive integers. The condition is equivalent to ǫ ≥ q−1
p−q , and repeating this

argument shows that the set of paths and thus ̟ǫ,ζ is uncountable, as carried
out preceding Proposition 3.11. �

For odd q, we can also slightly improve the upper bound for ǫ̃1(p/q) from
Theorem 4.4.

Proposition 4.8. Let ζ = p/q with p > q ≥ 2 and (p, q) = 1 and q odd. Then

for any ǫ ≥ q−1
2q · 1

ζ−1 = q−1
2(p−q) the set ̟ǫ,ζ is dense in R.

P r o o f. Again we follow the proof of Theorem 3.8. We have to show that for ǫ
as in the proposition, in any step the interval ζ · [Nj − ǫ,Nj + ǫ] of length ζǫ
contains the symmetric neighborhood of 0 of length 2ǫ of some integer. Since q
is odd, the fractional part {Njζ} has distance at least 1/(2q) from 1/2. Thus
it suffices to have ζǫ ≥ 1/2 + ǫ − 1/(2q), which leads to the given bound, to
guarantee the claim. �

For q = 2, D u b i c k a s [12] showed that
∥

∥

∥α
(p

2

)n∥
∥

∥ ≤ 1

p
, n ≥ 0, (18)

has a solution α 6= 0 for any fixed odd p ≥ 3. As remarked in [11], it follows
from (16) that the bound in (18) cannot be improved to p−1 − 4p−3 < τ(p/1).
Finally, the bound from Theorem 3.12 can be slightly improved for q odd with
a similar method.

Proposition 4.9. Let with p > q ≥ 2 and (p, q) = 1 and q odd. Then for any

ǫ < q+1
2q · 1

ζ+1 = q+1
2(p+q) the set ̟ǫ,ζ is at most countable.

P r o o f. Proceed as in the proof of Theorem 3.12. Note that since q is odd we
have |{ζM} − 1/2| ≥ 1/2q for any integer M . Hence, given Mn, for |Mnζ −
Mn+1| ≤ ǫ to determine a unique Mn+1, it suffices to assume (ζ + 1)ǫ < 1/2 +
1/(2q). Rearrangement leads to the given bound. �

Now we have all ingredients to prove Theorem 2.6.

P r o o f o f T h e o r e m 2.6. Combination of (16), (18), Theorem 4.4, Proposi-
tion 4.7, Proposition 4.8 and Proposition 4.9 in terms of the quantities ǫ̃1, ǫ̃2. �
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We enclose several remarks concerning Theorem 2.6. The lower bounds are
always non-trivial, whereas the upper bounds are only in case of ζ not too small.
Moreover, for q ≥ 2, indeed τ(p/q) < q

2(p−q) which enables the first inequality.

Recall that for q = 1, we have 1
p+1 < τ(p/1) such that τ(p/1) ≤ q

2(p−q) cannot

hold for any p ≥ 3. However, q = 1 is excluded in Theorem 2.6. It further follows
from 1/(p+q) < τ(p/q) that for q = 2 the refined upper bound q−1

2(p−q) for ǫ̃1(p/q)

is not valid at least for p ≥ 7. This corresponds to the fact that the fractional
parts {Nj(p/2)} must equal 1/2 infinitely often in any path in Proposition 4.8
by a very similar argument as in the proof of Proposition 4.7. It is easily checked
that the maximum in the lower bound for ǫ̃2 coincides with q

2(p+q) (resp. q+1
2(p+q) )

unless q = 2. In particular one may drop the expression τ(p/q) in the maximum
in (3) without any loss. Notice also that the remarks preceding Proposition 4.7
suggest that actually q

2(p−q) should be an upper bound for ǫ̃2(p/q) for even q ≥ 4,

too (this is true for q = 2 since the bound coincides with q−1
p−q ).

Next we prove Theorem 2.7, which confirms the bound 1/(p + q) from (14)
for rational ζ = p/q > 1 with an easier proof and contains some additional new
information. The proof is related to the proof of Proposition 4.7.

P r o o f o f T h e o r e m 2.7. First we show it is true for any ǫ with strict inequal-
ity ǫ < 1/(p+q). Assume the claim is false. Then in particular ‖αζn‖ < 1/(p+q)
for all n ≥ n0(α, ζ). Write αζn = An + δn with integers An = 〈αζn〉 and
−1/(p+q) < δn < 1/(p+q). Then αζn+1 = p

qAn+
p
q δn. If

p
qAn is no integer, then

it has distance at least 1/q to the nearest integer. But |pq δn| <
p
q · 1

p+q = p
q(p+q) .

So we have
‖αζn+1‖ >

1

q
− p

q(p+ q)
=

1

p+ q
> δn+1

by triangular inequality, a contradiction. Hence p
qAn must be an integer and

clearly 〈αζn+1〉 = p
qAn = An+1 again by |pq δn| <

p
q(p+q) . However, this applies

to n + 1, n + 2, . . . as well by the same argument. Hence An+j = (p/q)jAn for
all 0 ≤ j ≤ l. Since α 6= 0 by definition, and we may assume that n is large
enough such that An 6= 0, the integer An 6= 0 can only be divisible by at most
logAn/ log q powers of q.

Note that An = |〈α(p/q)n〉| ≤ |α|(p/q)n + 1/2. Thus

l ≤ logAn

log q
≤ n ·

(

log p

log q
− 1

)

+ log |α|+ o(1), n → ∞.

It remains to extend the result to ǫ = 1/(p+ q). If there are at most finitely
many integers m such that ‖α(p/q)m‖ = 1/(p+ q), then the assertion is implied
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by our proof of the case ǫ < 1/(p + q). We show this is always true. For any
m with equality, we have the equation α(pq )

m = Mm ± 1
p+q for an integer Mm.

It follows α must be rational too, say α = a/b with integers a, b, and the equation
becomes (p + q)(apm − Mmbqm) = ±bqm. For a prime r denote by νr(.) the
multiplicity of r. By (p, q) = 1, any prime divisor r of q is not contained in p+ q,
and for m > νr(a) we have νr(ap

m − Mmbqm) = νr(a). On the other hand,
νr(bq

m) ≥ νr(q
m) ≥ m. Hence for any m > νr(a) we cannot have equality. �

Remark 4.10. It suffices to take

n ≥ n0 = n0(α, ζ) := max{0,− log |α|/ log(p/q)}
to ensure An 6= 0. Theorem 2.7 in particular yields l ≪α,ζ n.

Remark 4.11. The last part of the proof could have been inferred from the
more general [12, Lemma 2.1]. It asserts that for p/q ∈ Q \ Z the equation
{α(p/q)n} = t can have only finitely many solutions n for any t ∈ [0, 1) and
fixed α 6= 0. In this context, we want to add that if {αζn} = t for real ζ 6= 0, α 6=
0, t ∈ [0, 1) and at least three values n, then α, ζ, t have to be all algebraic.
Indeed, if there exist integers ni, Ni such that αζni = Ni + t for 1 ≤ i ≤ 3, then
(ζn3 − ζn2)/(ζn2 − ζn1) ∈ Q. This can be transformed in a polynomial equation
with rational coefficients, so ζ must be algebraic. Thus α = (N2−N1)/(ζ

n2−ζn1)
implies α must be algebraic as well, hence t as well. On the other hand, for ζ a
root of an integer, α ∈ Z and t = 0, there are infinitely many integers n such that
{αζn} = t. It can be shown that at least for t = 0, the restrictions ζ = m

√
N and

α = A
B ζg for integers N,A,B, g are necessary, too, see [23, Proposition 2.27].

4.5. The asymmetric case

For the sake of completeness we quote some more facts concerning the dis-
tribution of αζn for rational ζ > 1 concerning intervals mod 1 whose center is
not 0. Many of these can be found (without proofs) on the first page of [24], too.
T i j d e m a n [25] showed that

0 ≤
{

α

(

p

q

)n}

≤ q − 1

p− q
, n ≥ 0 (19)

has a solution α ∈ [m,m+ 1) for any rational number p/q and m ≥ 1. We recog-
nize the upper bound as the bound for ǫ̃2 in Theorem 2.6, where the interval has
twice the length. The length for the 0-symmetric interval concerning ǫ̃1 in The-
orem 2.6 has the same length for odd q and is slightly larger for even q. Clearly,
(19) never admits an improvement of the upper bound for ǫ̃1 in Theorem 2.6.
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In particular for q = 2 and odd p ≥ 3, we obtain from (19) that

0 ≤
{

α
(p

2

)n}

≤ 1

p− 2
, n ≥ 0 (20)

has a solution α ∈ [m,m+ 1) for integer m ≥ 1. Compare (20) to (18).

Dubickas’ bound (14), or equivalently Theorem 2.7, show that the upper
bounds in (19) cannot be improved to 1/(p + q). In particular, the bounds in
(18), (20) cannot be replaced by 1/(p+2) for any pair (p, α) with odd p ≥ 5 and
real α 6= 0. Conversely, the uniform bounds in (14) and Theorem 2.7 are not far
from being optimal, in particular if ζ = p/q is large.

In the famous special case ζ = 3/2, it was shown in [13] that

lim sup
n→∞

{

α

(

3

2

)n}

− lim inf
n→∞

{

α

(

3

2

)n}

≥ 1

3

for any α > 0. More generally, Theorem 1 in [10] due to D u b i c k a s’ asserts

lim sup
n→∞

{

α

(

p

q

)n}

− lim inf
n→∞

{

α

(

p

q

)n}

≥ 1

p

for p/q /∈ Z greater than 1 and all α 6= 0, such as all irrational α if p/q = p is
an integer. As pointed out in [10], in the integer case ζ = p/1 the bound 1/p
is sharp, and α with equality can be readily constructed. For further results
on (unions of) subintervals of [0, 1] containing the numbers {α(p/q)n} for all
n ≥ 1 and a given rational p/q, or for which such α does not exist, see [12].
C h o q u e t [4] proved there exists α such that 1/19 ≤ {α(3/2)n} ≤ 1− 1/19 for
all n ≥ 1. On the other hand, we have

inf
α6=0

lim sup
n→∞

∥

∥

∥

∥

α(p/q)n − 1

2

∥

∥

∥

∥

≥ 1− e(q/p)T (q/p)

2q

due to D u b i c k a s [8], where e(q/p) = 1 − q/p if p+ q is even and e(q/p) = 1
if p + q is odd and T (z) :=

∏

m≥0(1 − z2
m

). Hence 1/19 ≈ 0.0526 cannot be

replaced by 1/2− (1− T (2/3))/4 ≈ 0.2856.
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