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THE b-ADIC SYMMETRIZATION OF DIGITAL NETS

FOR QUASI-MONTE CARLO INTEGRATION

Takashi Goda

ABSTRACT. The notion of symmetrization, also known as Davenport’s reflec-
tion principle, is well known in the area of the discrepancy theory and quasi-
Monte Carlo (QMC) integration. In this paper we consider applying a sym-
metrization technique to a certain class of QMC point sets called digital nets
over Zb. Although symmetrization has been recognized as a geometric technique
in the multi-dimensional unit cube, we give another look at symmetrization as a
geometric technique in a compact totally disconnected abelian group with dyadic
arithmetic operations. Based on this observation we generalize the notion of sym-
metrization from base 2 to an arbitrary base b ∈ N, b ≥ 2. Subsequently, we study
the QMC integration error of symmetrized digital nets over Zb in a reproducing
kernel Hilbert space. The result can be applied to component-by-component con-
struction or Korobov construction for finding good symmetrized (higher order)
polynomial lattice rules which achieve high order convergence of the integration
error for smooth integrands at the expense of an exponential growth of the num-
ber of points with the dimension. Moreover, we consider two-dimensional sym-
metrized Hammersley point sets in prime base b, and prove that the minimum
Dick weight is large enough to achieve the best possible order of Lp discrepancy
for all 1 ≤ p < ∞.

Communicated by Werner Georg Nowak

1. Introduction

In this paper we study multivariate integration of functions defined over the
s-dimensional unit cube. For an integrable function f : [0, 1]s → R, we denote
the true integral of f by

I(f) =

∫

[0,1]s
f(x) dx.
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We consider an approximation of I(f) given in the form

I(f ;P ) =
1

|P |
∑

x∈P

f(x),

where P ⊂ [0, 1]s denotes a finite point set in which we count points according to
their multiplicity. I(f ;P ) is called a quasi-Monte Carlo (QMC) integration rule
of f over P. Obviously the absolute error |I(f ;P ) − I(f)| depends only on the
point set P for a given f . There are two prominent classes of point sets: digital
nets [6, 17] and integration lattices [17, 24]. We are concerned with digital nets
in this paper.

The quality of a point set has been often measured by the so-called discrep-
ancy [16, 17]. For t = (t1, . . . , ts) ∈ [0, 1]s, we denote by [0, t) the anchored
axis-parallel rectangle [0, t1)× [0, t2)× · · · × [0, ts). The local discrepancy func-
tion ∆(·;P ) : [0, 1]s → R is defined by

∆(t;P ) =
1

|P |
∑

x∈P

1[0,t)(x)−
s
∏

j=1

tj,

where 1[0,t) denotes the characteristic function of [0, t). Now for 1 ≤ p ≤ ∞
the Lp discrepancy of P is defined as the Lp-norm of ∆(·;P ), i.e.,

Lp(P ) :=

(

∫

[0,1]s

∣

∣∆(t;P )
∣

∣

p
dt

)1/p

with the obvious modification for p = ∞. When f has bounded variation V (f)
on [0, 1]s in the sense of H a r d y and K r a u s e, the absolute error is bounded by

∣

∣I(f ;P )− I(f)
∣

∣ ≤ V (f)L∞(P ).

This inequality is called the Koksma-Hlawka inequality [17, Chapter 2]. An in-
equality of similar type also holds for 1 ≤ p < ∞, see for instance [25]. This is
why we consider the Lp discrepancy as a quality measure of a point set.

It is, however, not an easy task to construct point sets with low Lp discrepancy.
As an example, let us consider the two-dimensional Hammersley point sets in
base b defined as follows.

Definition 1. Let b ≥ 2 be a positive integer. For m ∈ N, the two-dimensional
Hammersley point set in base b consisting of bm points is defined as

PH :=
{(a1

b
+ · · ·+ am

bm
,
am
b

+ · · ·+ a1
bm

)

: ai ∈ {0, 1, . . . , b− 1}
}

.

It is known that PH has optimal order of the L∞ discrepancy, while it does not
have optimal order of the Lp discrepancy for all p ∈ [1,∞), see, for instance [18].
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Here the general lower bounds on the Lp discrepancy for all s ∈ N have been
shown by K. F. R o t h [21] for p ≥ 2, W.M. S c h m i d t [22, 23] for p > 1 and
G. H a l á s z [10] for p = 1. Note that the optimal orders of the L1 and L∞

discrepancy are still unknown for s ≥ 3.

There are several ways to modify PH such that the modified point set has opti-
mal order of Lp discrepancy for p ∈ [1,∞), see, for instance [1, 7, 11]. The notion
of symmetrization (also known as Davenport’s reflection principle) [2] is one of
the best-known remedies in order to achieve optimal order of Lp discrepancy and
has been thoroughly studied in the literature, see, for instance [11, 12, 13, 14, 20].
We also refer to [5] in which symmetrized point sets are studied in the context
of QMC rules using integration lattices.

Although the original symmetrization due to H. D a v e n p o r t has been rec-
ognized as a geometric technique in the s-dimensional unit cube, in this paper,
we give another look at symmetrization as that in a compact totally disconnected
abelian group with dyadic arithmetic operations. This implies that symmetriza-
tion fits quite well with dyadic structure of point sets and also with the tools
used for analyzing the point sets. Therefore, it is quite reasonable to consider
symmetrized two-dimensional Hammersley point sets in base 2 [11, 13], or more
generally, symmetrized digital nets in base 2 [14]. Although there are some ex-
ceptions as in [12, 20] where symmetrization is shown to be helpful even if point
sets do not have dyadic structure, it must be interesting to find a geometric
symmetrization technique which acts on a compact totally disconnected abelian
group with b-adic arithmetic operations for b ≥ 2.

The aim of this paper is two-fold: to generalize the notion of symmetrization
from base 2 to an arbitrary base b ∈ N, b ≥ 2 and to obtain some basic results on
the QMC integration error of symmetrized digital nets in base b. In particular, we
study the worst-case error of symmetrized digital nets in base b in a reproducing
kernel Hilbert space (RKHS) in Section 4. This result for digital nets can be
regarded as an analog of the result for lattice rules obtained in [5, Section 4.2]
where only the sum of the half-period cosine space and the Korobov space is
considered as a RKHS. In Section 4, we also study the mean square worst-case
error with respect to a random digital shift in a RKHS. Furthermore, in Section 5,
we prove that symmetrized Hammersley point sets in base b achieve the best
possible order of Lp discrepancy for all 1 ≤ p < ∞.

Notation. Let N be the set of positive integers and N0 := N∪{0}. Let C be the
set of all complex numbers. For a positive integer b ≥ 2, Zb denotes the residue
class ring modulo b, which is identified with the set {0, 1, . . . , b − 1} equipped
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with addition and multiplication modulo b. For x ∈ [0, 1], its b-adic expansion

x =

∞
∑

i=1

ξib
−i with ξi ∈ Zb

is unique in the sense that infinitely many of the ξi are different from b − 1
except for the endpoint x = 1 for which all ξi’s are equal to b − 1. Note that
for 1 ∈ N we use the b-adic expansion 1 · b0, whereas for 1 ∈ [0, 1] we use the
b-adic expansion (b− 1)(b−1+ b−2+ · · · ). It will be clear from the context which
expansion we use.

2. Preliminaries

Here we recall necessary background and notation, including infinite direct
products of Zb, Walsh functions and digital nets (with infinite digit expansions)
over Zb. We essentially follow the exposition of [9, Section 2].

2.1. Infinite direct products of Zb

For a positive integer b ≥ 2, let us defineG = (Zb)
N, which is a compact totally

disconnected abelian group with the product topology where Zb is considered
to be a discrete group. We denote by ⊕ and ⊖ addition and subtraction in G,
respectively. Let ν be the product measure on G inherited from Zb, that is, for
every cylinder set E =

∏n
i=1 Zi×

∏

i≥n+1 Zb with Zi ⊆ Zb for 1 ≤ i ≤ n, we have

ν(E) = (
∏n

i=1 |Zi|)/bn.
A character on G is a continuous group homomorphism from G to {z ∈ C :

|z| = 1}, which is a multiplicative group of complex numbers whose absolute
value is 1. We define the kth character as follows.

Definition 2. For a positive integer b ≥ 2, let ω := exp(2π
√
−1/b) be the

primitive bth root of unity. Let z = (ζ1, ζ2, . . . ) ∈ G and k ∈ N0 whose b-adic
expansion is given by k = κ0 + κ1b + · · · + κa−1b

a−1 with κ0, . . . , κa−1 ∈ Zb.
Then the kth character Wk : G → {1, ω, . . . , ωb−1} is defined as

Wk(z) := ωκ0ζ1+···+κa−1ζa . (1)

We note that every character on G is equal to some Wk, see [19].

Let us now consider the higher-dimensional case. Let Gs denote the s-ary
Cartesian product of G. Note that Gs is also a compact totally disconnected
abelian group with the product topology. The operators ⊕ and ⊖ now denote
addition and subtraction in Gs, respectively. We denote by ν the product mea-
sure on Gs inherited from ν. The kth character on Gs can be defined as follows.
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Definition 3. For a positive integer b ≥ 2 and a dimension s ∈ N, let
z = (z1, . . . , zs) ∈ Gs and k = (k1, . . . , ks) ∈ Ns

0. Then the kth character

Wk : Gs → {1, ωb, . . . , ω
b−1
b } is defined as

Wk(z) :=
s
∏

j=1

Wkj
(zj).

We note again that every character on Gs is equal to some Wk as with the
one-dimensional case.

The group G is related to the unit interval [0, 1] through the following maps
π : G → [0, 1] and σ : [0, 1] → G. Let z = (ζ1, ζ2, . . . ) ∈ G, and let x ∈ [0, 1]
with its unique b-adic expansion x =

∑∞
i=1 ξib

−i with ξi ∈ Zb. Then the pro-
jection map π is defined as π(z) :=

∑∞
i=1 ζib

−i and the section map σ is de-
fined as σ(x) := (ξ1, ξ2, . . . ). By definition, π is surjective and σ is injective.
For the s-dimensional case, both the projection and section maps are applied
componentwise, through which the group Gs is related to the unit cube [0, 1]s.
We note that π is a continuous map and that π ◦ σ = id[0,1]s . We summarize
some important facts below [9, Lemma 4, Propositions 3 and 5].

Proposition 1. The following holds true :

(1) For k ∈ N0, we have
∫

G

Wk(z) dν(z) =

{

1 if k = 0,

0, otherwise.

(2) For k, l ∈ Ns
0, we have
∫

Gs

Wk(z)Wl(z) dν(z) =

{

1 if k = l,

0, otherwise.

(3) For f ∈ L1(Gs), we have
∫

Gs

f(z) dν(z) =

∫

[0,1]s
f(σ(x)) dx.

(4) For f ∈ L1([0, 1]s), we have
∫

[0,1]s
f(x) dx =

∫

Gs

f(π(z)) dν(z).

(5) Let Hn := {z = (ζ1, ζ2, . . . ) ∈ G : ζ1 = ζ2 = · · · = ζn = 0}. Then we have

∑

k∈N
s
0

kj<bn,∀j

Wk(z) =

{

bsn if z ∈ Hs
n,

0, otherwise.
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2.2. Walsh functions

Walsh functions play a central role in the analysis of digital nets. We refer
to [6, Appendix A] for general information on Walsh functions in the context of
numerical integration. We first give the definition for the one-dimensional case.

Definition 4. For a positive integer b ≥ 2, let ωb = exp(2π
√
−1/b).

We denote the b-adic expansion of k ∈ N0 by k = κ0+κ1b+ · · ·+κa−1b
a−1 with

κ0, . . . , κa−1 ∈ Zb. Then the kth b-adic Walsh function

bwalk : [0, 1] → {1, ωb, . . . , ω
b−1
b }

is defined as

bwalk(x) := ω
κ0ξ1+···+κa−1ξa
b

for x ∈ [0, 1] with its unique b-adic expansion x = ξ1b
−1 + ξ2b

−2 + · · ·

This definition can be generalized to the higher-dimensional case.

Definition 5. For a positive integer b ≥ 2 and a dimension s ∈ N, let x =
(x1, . . . , xs) ∈ [0, 1]s and k = (k1, . . . , ks) ∈ Ns

0. Then the kth b-adic Walsh

function bwalk : [0, 1]s → {1, ωb, . . . , ω
b−1
b } is defined as

bwalk(x) :=

s
∏

j=1

bwalkj
(xj).

Since we shall always use Walsh functions in a fixed base b, we omit the
subscript and simply write walk or walk in this paper. From the definitions of
characters on Gs and Walsh functions, we see that for any x ∈ [0, 1]s

walk(x) = Wk

(

σ(x)
)

. (2)

Since the system {walk : k ∈ Ns
0} is a complete orthonormal system in

L2([0, 1]
s) [6, Theorem A.11], we have aWalsh series expansion for f ∈ L2([0, 1]

s)
∑

k∈Ns
0

f̂(k)walk ,

where the kth Walsh coefficient is given by

f̂(k) =

∫

[0,1]s
f(x)walk(x) dx.

We refer to [6, Appendix A.3] and [8, Lemma 18] for a discussion about the
pointwise absolute convergence of the Walsh series to f.
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2.3. Digital nets

Here we define digital nets in Gs by using infinite-column generating matrices,
i.e., generating matrices whose columns can contain infinitely many non-zero
entries. This definition has been recently given in [9].

Definition 6. For m, s ∈ N, let C1, . . . , Cs ∈ Z
N×m
b . For 0 ≤ n < bm, denote

the b-adic expansion of n by n =
∑m−1

i=0 νib
i with νi ∈ Zb. Put

zn = (zn,1, . . . , zn,s) ∈ Gs with zn,j = (ν0, ν1, . . . , νm−1) · C⊤
j , for 1 ≤ j ≤ s.

Then the set
P = {z0, . . . , zbm−1} ⊂ Gs

is called a digital net over Zb in Gs with generating matrices C1, . . . , Cs.

Moreover, the set
P := {π(z) : z ∈ P} ⊂ [0, 1]s

is called a digital net over Zb in [0, 1]s with generating matrices C1, . . . , Cs.

We note that every digital net in Gs is a Zb-module of Gs as well as a subgroup
of Gs. If each column of generating matrices consists of only finitely many non-
zero entries, the above definition of a digital net over Zb in [0, 1]s reduces to that
given by H. N i e d e r r e i t e r [17].

The dual net of a digital net plays an important role in the subsequent anal-
ysis. For a digital net P in Gs, we denote its dual net by P⊥ ⊂ Ns

0 which is
defined as follows.

Definition 7. Let P be a digital net in Gs. The dual net of P is defined as

P⊥ :=
{

k = (k1, . . . , ks) ∈ N
s
0 : ~k1C1 ⊕ · · · ⊕ ~ksCs = (0, . . . , 0) ∈ Z

m
b

}

,

where we write ~kj = (κj,0, κj,1, . . .) for kj with its b-adic expansion kj = κj,0 +
κj,1b+ · · · , which is indeed a finite expansion.

Since Wk’s are characters on Gs, the following lemma can be established from
Definition 7, which connects a digital net in Gs with characters.

Lemma 1. Let P be a digital net in Gs and P⊥ be its dual net. For k ∈ Ns
0,

we have
∑

z∈P

Wk(z) =

{

|P| if k ∈ P⊥,

0, otherwise.
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3. The b-adic symmetrization

In this section we generalize the notion of symmetrization from base 2 to an
arbitrary base b ∈ N, b ≥ 2. Before that, we recall the original symmetrization
introduced by H. D a v e n p o r t [2] and give another look at it as a geometric
technique in Gs with b = 2. Let P ⊂ [0, 1]2 be a finite point set. Then the
symmetrized point set in the sense of Davenport is defined as

P sym,D :=
{

(x, y) ∪ (x, 1 − y) : (x, y) ∈ P
}

.

It is often the case that the symmetrized point set is defined as

P sym :=
{

(x, y) ∪ (x, 1− y) ∪ (1− x, y) ∪ (1 − x, 1− y) : (x, y) ∈ P
}

.

In the remainder of this paper we only consider the symmetrized point set defined
in the latter sense. For the higher-dimensional case, the symmetrized point set
of P ⊂ [0, 1]s is defined as

P sym :=
{

symu(x) : x ∈ P, u ⊆ {1, . . . , s}
}

,

where symu(x) denotes the s-dimensional vector whose jth coordinate is 1− xj

if j ∈ u and xj , otherwise, that is, symu(x) = (y1, . . . , ys) with

yj =

{

1− xj if j ∈ u,

xj , otherwise.

By the definition, we have |P sym| = 2s|P |.
Here we give another look at the original symmetrization. Let b = 2 and

z = (ζ1, ζ2, . . .) ∈ G with ζi ∈ Z2. By denoting e = (1, 1, . . .) ∈ G, we have
z ⊕ e = (1− ζ1, 1− ζ2, . . .) ∈ G and thus

π(z ⊕ e) =
1− ζ1

2
+

1− ζ2
22

+ · · ·

=

(

1

2
+

1

22
+ · · ·

)

−
(

ζ1
2

+
ζ2
22

+ · · ·
)

= 1− π(z).

For z ∈ Gs, we denote by symG
u (z) the s-dimensional vector whose jth coordinate

is zj ⊕ e if j ∈ u and zj , otherwise. Then the symmetrized point set of P ⊂ Gs

can be given by

Psym :=
{

symG
u (z) : z ∈ P , u ⊆ {1, . . . , s}

}

.

As a natural extension from b = 2 to an arbitrary positive integer b ≥ 2, we
now introduce the notion of the b-adic symmetrization. For l ∈ Zb, we write el =
(l, l, . . .) ∈ G. For a vector l = (l1, . . . , ls) ∈ Zs

b, we write el = (el1 , . . . , els) ∈ Gs.

8
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Definition 8. For a point set P ⊂ Gs, its symmetrized point set is defined as

Psym := {z ⊕ el : z ∈ P , l ∈ Z
s
b} .

For a point set P ⊂ [0, 1]s, its symmetrized point set is defined as

P sym = π
[(

σ(P )
)sym]

.

By the definition, we have |Psym| = bs|P| and |P sym| = bs|P |.

3.1. Symmetrized digital nets

In the following let P be a digital net in Gs. We write Q = {el : l ∈ Zs
b},

which is also a digital net in Gs. From Definition 8, the symmetrized point set
Psym can be regarded as the direct sum of two digital nets P and Q. Thus, it is
obvious that the following holds true.

Lemma 2. For a digital net P in Gs, let Psym be the symmetrized point set of P.
Then Psym is also a digital net in Gs.

Remark 1. Consider a digital net P in Gs constructed with infinite-row gen-
erating matrices C1, . . . , Cs ∈ Z

N×m
b . Then Psym is a digital net in Gs whose

generating matrices D1, . . . , Ds ∈ Z
N×(m+s)
b are given as

Dj = (Cj , Ej) with Ej =













1 · · · j − 1 j j + 1 · · · s

0 · · · 0 1 0 · · · 0

0 · · · 0 1 0 · · · 0

0 · · · 0 1 0 · · · 0
. . .

...
. . .













∈ Z
N×s
b .

For a point set Psym, we have the following orthogonal property.

Lemma 3. Let P be a digital net in Gs and Psym be its symmetrized point set.

For k ∈ Ns
0, we have

∑

z∈Psym

Wk(z) =

{

|Psym| if k ∈ P⊥ ∩ Es,

0, otherwise.

In the above, E := {k ∈ N0 : δ(k) ≡ 0 (mod b)}, where δ(k) denotes the b-adic
sum-of-digits of k and is given as δ(k) := κ0 + κ1 + · · · for k = κ0 + κ1b+ · · ·

9
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P r o o f. From the definition of the b-adic symmetrization, we have
∑

z∈Psym

Wk(z) =
∑

z∈P

∑

l∈Zs
b

Wk(z ⊕ el)

=
∑

z∈P

Wk(z)
∑

l∈Z
s
b

Wk(el).

Since P is a digital net in Gs, the first sum in the last expression equals |P| if
k ∈ P⊥ and 0, otherwise. On the second sum in the last expression, we have

∑

l∈Zs
b

Wk(el) =
∑

l∈Zs
b

s
∏

j=1

ω
ljδ(kj)
b =

s
∏

j=1

∑

lj∈Zb

ω
ljδ(kj)
b .

As ωb denotes the primitive bth root of unity, the inner sum on the rightmost-side
above equals b if δ(kj) ≡ 0 (mod b) and 0, otherwise. Thus,

∑

l∈Zs
b

Wk(el) =

{

bs if k ∈ Es,

0, otherwise.

All together, we obtain

∑

z∈Psym

Wk(z) =

{

bs|P| if k ∈ P⊥ ∩ Es,

0, otherwise.

Since |Psym| = bs|P|, the result follows. �

Combining Lemmas 1, 2 and 3 implies that

(Psym)⊥ = P⊥ ∩ Es.

Remark 2. In fact, the argument in this subsection can be generalized in the
following way. Let P and P ′ be digital nets in Gs. Consider the direct sum

R = {z ⊕ z′ : z ∈ P , z′ ∈ P ′}.

Then R is also a digital net in Gs and satisfies the orthogonal property

∑

z∈R

Wk(z) =

{

|R| if k ∈ P⊥ ∩ (P ′)⊥,

0, otherwise.

In the remainder of this paper, however, we only consider the case P ′ = Q ,
which gives us R = Psym.

10
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4. QMC integration over symmetrized digital nets

Let us consider a reproducing kernel Hilbert space (RKHS) H with repro-
ducing kernel K : [0, 1]s × [0, 1]s → R. The inner product in H is denoted by

〈f, g〉H for f, g ∈ H and the associated norm is denoted by ‖f‖H :=
√

〈f, f〉H.

It is known that if
∫

[0,1]s

√

K(x,x) dx < ∞ the squared worst-case error in the

space H of a QMC integration over a point set P ⊂ [0, 1]s is given by

e2(P,K) :=






sup
f∈H

‖f‖H≤1

|I(f)− I(f ;P )|







2

=

∫

[0,1]2s
K(x,y) dx dy

− 2

|P |
∑

x∈P

∫

[0,1]s
K(x,y) dy +

1

|P |2
∑

x,y∈P

K(x,y), (3)

see, for instance [25]. For k, l ∈ Ns
0, the (k, l)th Walsh coefficient of K is de-

fined by

K̂(k, l) :=

∫

[0,1]2s
K(x,y)walk(x)wall(y) dxdy.

In the following we always assume
∫

[0,1]s

√

K(x,x) dx < ∞. We study the worst-

case error of symmetrized point sets in a RKHS first and then move on to the
mean square worst-case error with respect to a random digital shift.

4.1. The worst-case error

From the proof of [9, Proposition 21], we have the following pointwise absolute
convergence of the Walsh series of K.

Lemma 4. Let K be a continuous reproducing kernel. We assume
∑

k,l∈Ns
0

∣

∣K̂(k, l)
∣

∣ < ∞.

For any z,w ∈ Gs, we have

K
(

π(z), π(w)
)

=
∑

k,l∈Ns
0

K̂(k, l)Wk(z)Wl(w). (4)

Under some assumptions on K, the worst-case error is given as follows.

11
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Theorem 1. Let P ,P⊥ be a digital net in Gs and its dual net, respectively,

and Psym be the symmetrized point set of P. Let K be a continuous reproducing

kernel which satisfies
∫

[0,1]s

√

K(x,x) dx < ∞ and
∑

k,l∈Ns
0

∣

∣K̂(k, l)
∣

∣ < ∞.

The squared worst-case error of a QMC integration over π(Psym) is given by

e2
(

π(Psym),K
)

=
∑

k,l∈P⊥∩Es\{0}

K̂(k, l).

Although the proof is almost the same with that of [9, Proposition 21], we provide
it below for the sake of completeness.

P r o o f. We evaluate the three terms of (3) separately in which π(Psym) is
substituted into P . The first term of (3) is simply

∫

[0,1]2s
K(x,y) dx dy = K̂(0,0),

by the definition of the Walsh coefficients. For the second term of (3), we have

2

|Psym|
∑

z∈Psym

∫

[0,1]s
K
(

π(z),y
)

dy

=
1

|Psym|
∑

z∈Psym

∫

[0,1]s
K
(

π(z),y
)

dy +
1

|Psym|
∑

z∈Psym

∫

[0,1]s
K
(

y, π(z)
)

dy

=
1

|Psym|
∑

z∈Psym

∫

Gs

K
(

π(z), π(w)
)

dν(w)

+
1

|Psym|
∑

z∈Psym

∫

Gs

K
(

π(w), π(z)
)

dν(w)

=
1

|Psym|
∑

z∈Psym

∑

k,l∈Ns
0

K̂(k, l)Wk(z)

∫

Gs

Wl(w) dν(w)

+
1

|Psym|
∑

z∈Psym

∑

k,l∈Ns
0

K̂(k, l)Wl(z)

∫

Gs

Wk(w) dν(w)

=
∑

k∈Ns
0

K̂(k,0)
1

|Psym|
∑

z∈Psym

Wk(z) +
∑

l∈Ns
0

K̂(0, l)
1

|Psym|
∑

z∈Psym

Wl(z)

=
∑

k∈P⊥∩Es

K̂(k,0) +
∑

l∈P⊥∩Es

K̂(0, l),

12
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where we use the symmetry of K, Item 4 of Proposition 1, Equation (4), Item 1
of Proposition 1 and Lemma 3 in this order for each of the five equalities. Finally,
for the last term of (3), we have

1

|Psym|2
∑

z,w∈Psym

K
(

π(z), π(w)
)

=
1

|Psym|2
∑

z,w∈Psym

∑

k,l∈Ns
0

K̂(k, l)Wk(z)Wl(w)

=
∑

k,l∈Ns
0

K̂(k, l)
1

|Psym|
∑

z∈Psym

Wk(z)
1

|Psym|
∑

w∈Psym

Wl(w)

=
∑

k,l∈P⊥∩Es

K̂(k, l),

where we use Equation (4) and Lemma 3 in the first and third equalities, re-
spectively. Substituting these results into the right-hand side of (3), the result
follows. �

Remark 3. The result of Theorem 1 has some similarity to that of [9, Propo-
sition 22]. When a QMC integration over a folded digital net by means of the
b-adic tent transformation is considered, the squared worst-case error in a RKHS

is given by
∑

k,l∈P⊥∩Es\{0}

K̂
(

⌊k/b⌋, ⌊l/b⌋
)

,

where we write ⌊x⌋ = (⌊x1⌋, . . . , ⌊xs⌋) for x = (x1, . . . , xs) ∈ Rs. Since the
number of points of a folded digital net is the same as that of an original digital
net, a folded digital net has a cost advantage over a symmetrized digital net.

4.2. The mean square worst-case error

Here we study the mean square worst-case error of symmetrized point sets
with respect to a random digital shift. Now the error criterion is given by

ẽ2
(

π(Psym),K
)

=

∫

[0,1]s
e2
(

π(Psym)⊕ σ,K
)

dσ,

where the operator ⊕ is defined for x,y ∈ [0, 1]s as

x⊕ y := π
[

σ(x)⊕ σ(y)
]

.

From [6, Theorem 12.4], we have the following.

13
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Lemma 5. For a point set P ⊂ Gs and a reproducing kernel K ∈ L2([0, 1]
2s),

the mean square worst-case error of a set π(P) with respect to a random digital

shift is given by
ẽ2
(

π(P),K
)

= e2
(

π(P),Kds

)

,

where Kds is called a digital shift invariant kernel defined as

Kds(x,y) :=

∫

[0,1]s
K
(

x⊕ σ,y ⊕ σ
)

dσ, for any x,y ∈ [0, 1]s.

Similarly to Lemma 4, we have the following pointwise absolute convergence
of the Walsh series of Kds.

Lemma 6. Let K be a continuous reproducing kernel. We assume
∑

k∈Ns
0

∣

∣K̂(k,k)
∣

∣ < ∞.

For any z,w ∈ Gs, we have

Kds

(

π(z), π(w)
)

=
∑

k∈Ns
0

K̂(k,k)Wk(z)Wk(w). (5)

P r o o f. By the assumption
∑

k∈Ns
0
|K̂(k,k)| < ∞, the right-hand side on (5)

converges absolutely. Thus it suffices to show that

lim
n→∞

∑

k∈N
s
0

kj<bn,∀j

K̂(k,k)Wk(z)Wk(w) = Kds

(

π(z), π(w)
)

.

In fact we have
∑

k∈N
s
0

kj<bn,∀j

K̂(k,k)Wk(z)Wk(w)

=
∑

k∈N
s
0

kj<bn,∀j

Wk(z)Wk(w)

∫

[0,1]2s
K(x,y)walk(x)walk(y) dxdy

=
∑

k∈N
s
0

kj<bn,∀j

Wk(z)Wk(w)

∫

G2s

K
(

π(z′), π(w′)
)

Wk(z′)Wk(w
′) dν(z′) dν(w′)

=

∫

G2s

K
(

π(z′), π(w′)
)

∑

k∈N
s
0

kj<bn,∀j

Wk

(

(z ⊖ z′)⊖ (w ⊖w′)
)

dν(z′) dν(w′)

=

∫

G2s

K
(

π(z ⊕ z′), π(w ⊕w′)
)

∑

k∈N
s
0

kj<bn,∀j

Wk(w
′ ⊖ z′) dν(z′) dν(w′),

14
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where we use Item 4 of Proposition 1 twice in the second equality. Similarly to
the proof of [9, Proposition 21], let us define two sets

Hn := {z = (ζ1, ζ2, . . . ) ∈ G : ζ1 = ζ2 = · · · = ζn = 0}
and

Jn,2s := {(z,w) ∈ G2s : w ⊖ z ∈ Hs
n}.

Then from Item 5 of Proposition 1, we have

∑

k∈N
s
0

kj<bn,∀j

Wk(w
′ ⊖ z′) =

{

bsn if (z′,w′) ∈ Jn,2s,

0, otherwise.

Thus we have
∑

k∈N
s
0

kj<bn,∀j

K̂(k,k)Wk(z)Wk(w)

= bsn
∫

Jn,2s

K
(

π(z ⊕ z′), π(w ⊕w′)
)

dν(z′) dν(w′)

=

∫

Gs

bsn
∫

w′⊖Hs
n

K
(

π(z ⊕ z′), π(w ⊕w′)
)

dν(z′) dν(w′)

→
∫

Gs

K
(

π(z ⊕w′), π(w ⊕w′)
)

dν(w′) as n → ∞,

where the last convergence stems from the facts that K ◦ π is continuous since
both K and π are continuous and that the product measure of the set w′ ⊖Hs

n

equals bsn for any w′ ∈ Gs. Finally we have

lim
n→∞

∑

k∈N
s
0

kj<bn,∀j

K̂(k,k)Wk(z)Wk(w)

=

∫

Gs

K
(

π(z ⊕w′), π(w ⊕w′)
)

dν(w′)

=

∫

Gs

K
(

π(z)⊕ π(w′), π(w)⊕ π(w′)
)

dν(w′)

=

∫

[0,1]s
K
(

π(z)⊕ σ, π(w)⊕ σ
)

dσ = Kds

(

π(z), π(w)
)

,

where we use Item 3 of Proposition 1 in the third equality. Thus the result
follows. �
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Under some assumptions on K, the mean square worst-case error with respect
to a random digital shift is given as follows.

Theorem 2. Let P ,P⊥ be a digital net in Gs and its dual net, respectively,

and Psym be the symmetrized point set of P. Let K be a continuous reproducing

kernel which satisfies

∫

[0,1]s

√

K(x,x) dx < ∞ and
∑

k∈Ns
0

∣

∣K̂(k,k)
∣

∣ < ∞.

The mean square worst-case error of a QMC integration over π(Psym) with re-

spect to a random digital shift is given by

ẽ2
(

π(Psym),K
)

=
∑

k∈P⊥∩Es\{0}

K̂(k,k).

P r o o f. We evaluate the three terms of (3) separately in which π(Psym) and
Kds are substituted into P and K, respectively. The first term of (3) is given by

∫

[0,1]2s
Kds(x,y) dx dy =

∫

G2s

Kds

(

π(z), π(w)
)

dν(z) dν(w)

=
∑

k∈Ns
0

K̂(k,k)

∫

G2s

Wk(z)Wk(w) dν(z) dν(w)

= K̂(0,0),

where we use Item 1 of Proposition 1 in the third equality. For the second term
of (3), we have

2

|Psym|
∑

z∈Psym

∫

[0,1]s
Kds

(

π(z),y
)

dy

=
2

|Psym|
∑

z∈Psym

∫

Gs

Kds

(

π(z), π(w)
)

dν(w)

=
2

|Psym|
∑

z∈Psym

∑

k∈Ns
0

K̂(k,k)Wk(z)

∫

Gs

Wk(w) dν(w) = 2K̂(0,0),

where we use Item 4 of Proposition 1, Equation (5) and Item 1 of Proposition 1
in this order for each of three equalities.
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Finally, for the last term of (3), we have

1

|Psym|2
∑

z,w∈Psym

Kds

(

π(z), π(w)
)

=
1

|Psym|2
∑

z,w∈Psym

∑

k∈Ns
0

K̂(k,k)Wk(z)Wk(w)

=
∑

k∈Ns
0

K̂(k,k)
1

|Psym|
∑

z∈Psym

Wk(z)
1

|Psym|
∑

w∈Psym

Wk(w)

=
∑

k∈P⊥∩Es

K̂(k,k),

where we use Equation (5) and Lemma 3 in the first and third equalities, re-
spectively. Substituting these results into the right-hand side of (3), the result
follows. �

Remark 4. The result of Theorem 2 has some similarity to that of [8, The-
orem 16]. When a QMC integration over a “digitally shifted and then folded”
digital net is considered, the mean square worst-case error with respect to a
random digital shift in a RKHS is given by

∑

k∈P⊥∩Es\{0}

K̂
(

⌊k/b⌋, ⌊k/b⌋
)

,

where again we write

⌊x⌋ = (⌊x1⌋, . . . , ⌊xs⌋) for x = (x1, . . . , xs) ∈ R
s.

As already mentioned in Remark 3, this approach has a cost advantage over a
symmetrized digital net.

Remark 5. Following the same arguments as in [9, Sections 4–6], Theorems 1
and 2 can be applied to component-by-component (CBC) construction or Ko-
robov construction of good symmetrized (higher order) polynomial lattice rules
which achieve high order convergence of the worst-case error in an unanchored
Sobolev space of smoothness α ∈ N, α ≥ 2. For instance, for m ∈ N and a
prime b, the CBC construction can find symmetrized higher order polynomial
lattice rules with bm+s points which achieve the worst-case error convergence of
O(b−αm+ǫ) with an arbitrary small ǫ > 0. Moreover, this construction can be
done in O(sαmbαm/2) arithmetic operations using O(bαm/2) memory.
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5. Discrepancy bounds

for symmetrized Hammersley point sets

Finally in this paper we prove that symmetrized Hammersley point sets in
prime base b achieve the best possible order of Lp discrepancy for all 1 ≤ p < ∞.
According to Definitions 1 and 8, the two-dimensional symmetrized Hammersley
point set in base b is given as follows.

Definition 9. Let b ≥ 2 be a positive integer. For m ∈ N, the two-dimensional
symmetrized Hammersley point set in base b is a point set consisting of bm+2

defined as

P sym
H :=

{

(xa, ya) : a = (a1, . . . , am+2) ∈ {0, 1, . . . , b− 1}m+2
}

,

where






xa = a1⊕am+1

b + · · ·+ am⊕am+1

bm + am+1

bm+1 + am+1

bm+2 + · · · ,

ya = am⊕am+2

b + · · ·+ a1⊕am+2

bm + am+2

bm+1 + am+2

bm+2 + · · · .

We also consider a truncated version of P sym
H . For a positive integer n ≥ m+2,

the two-dimensional truncated symmetrized Hammersley point set in base b,
denoted by P sym,n

H , is given as

P sym,n
H :=

{

(xn
a, y

n
a) : a = (a1, . . . , am+2) ∈ {0, 1, . . . , b− 1}m+2

}

,

where






xn
a = a1⊕am+1

b + · · ·+ am⊕am+1

bm + am+1

bm+1 + · · ·+ am+1

bn ,

yna = am⊕am+2

b + · · ·+ a1⊕am+2

bm + am+2

bm+1 + · · ·+ am+2

bn .

Here note that P sym,n
H is a digital net over Zb with generating matrices of size

n× (m+ 2)

C1 =

























1 0 · · · 0 1 0
0 1 · · · 0 1 0
...

...
. . .

...
...

...
0 0 · · · 1 1 0
0 0 · · · 0 1 0
...

...
. . .

...
...

...
0 0 · · · 0 1 0

























, C2 =

























0 · · · 0 1 0 1
0 · · · 1 0 0 1
...

...
...

...
...

...
1 · · · 0 0 0 1
0 · · · 0 0 0 1
...

...
...

...
...

...
0 · · · 0 0 0 1

























. (6)

The following theorem is the main result of this section.
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Theorem 3. For a prime b and m ∈ N, let P sym
H be the symmetrized Hammer-

sley point set in base b consisting of N = bm+2 points. Then, for all 1 ≤ p < ∞,

the Lp discrepancy of P sym
H is of the best possible order. Namely, for any 1 ≤

p < ∞ there exists a constant Cp > 0 such that

Lp(P
sym
H ) ≤ Cp

√
m+ 2

bm+2
= Cp

√

logb N

N
.

Our proof consists of two parts. We first prove that the Lp discrepancy of
P sym,n
H is of the best possible order for any 1 ≤ p < ∞ when n > 2m. Then

we show that the difference between the Lp discrepancies of P sym
H and P sym,n

H is
small enough that the Lp discrepancy of P sym

H is still of the best possible order
for any 1 ≤ p < ∞.

5.1. The minimum Dick weight of point sets

To prove the first part, we introduce the Dick weight function µ2 given in
[3, 4] and the minimum Dick weight ρ2(P ) for a two-dimensional digital net P .

Definition 10. For k ∈ N, we denote its b-adic expansion by k = κ1b
a1−1 +

κ2b
a2−1+ · · ·+κvb

av−1 such that κ1, . . . , κv ∈ {1, . . . , b−1} and a1 > a2 > · · · >
av > 0. Then the Dick weight function µ2 : N0 → R is defined as

µ2(k) =











a1 + a2 if v ≥ 2,

a1 if v = 1,

0 if k = 0.

For vectors k = (k1, k2) ∈ N
2
0, we define µ2(k) := µ2(k1) + µ2(k2). Moreover,

let P be a two-dimensional digital net over Zb. Then the minimum Dick weight
ρ2(P ) defined as

ρ2(P ) := min
k∈P⊥\{(0,0)}

µ2(k).

The following lemma shows how the minimum Dick weight of a digital net
connects with a structure of its generating matrices, see [6, Chapter 15].

Lemma 7. For m,n ∈ N with n ≥ m, let P be a digital net over Zb with

generating matrices C1, C2 of size n × m. For j = 1, 2 and 1 ≤ l ≤ n, let cj,l
denote the lth row vector of Cj. When l > n, cj,l denotes the vector consisting of

m zeros. Let ρ be a positive integer such that for all 1 ≤ i1,v1 < · · · < i1,1 ≤ 2m
and 1 ≤ i2,v2 < · · · < i2,1 ≤ 2m with vj ∈ N0 and

min(v1,2)
∑

l=1

i1,l +

min(v2,2)
∑

l=1

i2,l ≤ ρ,
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the vectors c1,i1,v1 , . . . , c1,i1,1 , c2,i2,v2 , . . . , c2,i2,1 are linearly independent over Zb.

Then we have ρ2(P ) > ρ.

Although both Definition 10 and Lemma 7 are considered only for the two-
-dimensional case, they can be generalized to the s-dimensional case with any
s ∈ N. Recently, D i c k [4] proved that digital nets over Z2 with large minimum
Dick weight achieve the best possible order of the Lp discrepancy for 1 < p < ∞
and for any number of dimensions. For the two-dimensional case, his result also
implies the best possible order of the L1 discrepancy with respect to the gen-
eral lower bound by H a l á s z [10]. Dick’s result was generalized more recently
in [15] to digital nets over Zb for a prime b. We specialize their results ([4, Corol-
lary 2.2] and [15, Corollary 1.8]) on the Lp discrepancy of digital nets for the
two-dimensional case, where the dependence on t is inferred from [15, Proof of
Theorem 1.3].

Proposition 2. Let P be a digital net over Zb consisting of bm points which

satisfies ρ2(P ) > 2m− t for some integer 0 ≤ t ≤ 2m. Then for all 1 ≤ p < ∞
there exists a constant Cp which depends only on p such that we have

Lp(P ) ≤ Cp

√
t+ 2bt/2

√
m

bm
.

From Lemma 7 and Proposition 2, as the first part of the proof of Theo-
rem 3, it suffices to show the linear independence properties of the generating
matrices (6) such that the minimum Dick weight of P sym,n

H is large.

Lemma 8. For m,n ∈ N with n > 2m, let C1 and C2 the generating matrices (6).
For j = 1, 2 and 1 ≤ l ≤ n, cj,l denotes the lth row vector of Cj. The following

sets of the vectors are linearly independent over Zb :

(1) {c1,1, . . . , c1,r, c2,1, . . . , c2,m+1−r} for 0 ≤ r ≤ m+ 1,

(2) {c1,1, . . . , c1,m+1, c2,r} and {c2,1, . . . , c2,m+1, c1,r} for 1 ≤ r ≤ m,

(3) {c1,1, . . . , c1,r, c2,1, . . . , c2,m−r, cj,s} for j = 1, 2; 0 ≤ r ≤ m, and
m+ 1 ≤ s ≤ n,

(4) {c1,1, . . . , c1,r1,2 , c1,r1,1 , c2,1, . . . , c2,r2,2 , c2,r2,1} for 0 < r1,2 < r1,1 ≤ m and

0 < r2,2 < r2,1 ≤ m such that r1,1 + r1,2 + r2,1 + r2,2 ≤ 2m+ 1.

Since the proof is quite similar to that of [7, Lemma 3.1], we omit it. Using the
linear independence properties of (6) shown in the above lemma together with
Lemma 7 and Proposition 2, we have the following.
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Proposition 3. For m,n ∈ N with n > 2m, let P sym,n
H be the truncated

symmetrized Hammersley point set in base b consisting of N = bm+2 points.

The minimum Dick weight of P sym,n
H is larger than 2m+ 1, that is,

ρ2(P
sym,n
H ) > 2m+ 1.

This implies that the Lp discrepancy of P sym,n
H is bounded by

Lp(P
sym,n
H ) ≤ Cp

√
m+ 2

bm+2
= Cp

√

logb N

N
,

for any p ∈ [1,∞) with a positive constant Cp depending only on p.

Since the proof on the minimum Dick weight of P sym,n
H is quite similar to that

of [7, Lemma 3.3], we omit it and just give some comments on the Lp discrep-
ancy bound instead. As P sym,n

H consists of bm+2 points and the minimum Dick
weight of P sym,n

H is larger than 2m + 1 = 2(m + 2) − 3, the t-value in Propo-
sition 2 of P sym,n

H always equals 3 for any m ∈ N. This t-value is same as that
for two-dimensional folded Hammersley point sets as given in [7, Lemma 3.3].
Moreover, if one wants to get an explicit value of Cp, it might be better to use
the Littlewood-Paley inequality in conjunction with the Haar coefficients of the
local discrepancy function for P sym,n

H as done in [11], instead of our proof based
on the linear independence properties. However, this is beyond the scope of this
paper.

5.2. Effect of the truncation on the Lp discrepancy

As the second part of the proof of Theorem 3, we show that the difference
between the Lp discrepancies of P sym

H and P sym,n
H is small enough that the Lp

discrepancy of P sym
H is still of the best possible order for any 1 ≤ p < ∞. Namely

we show the following.

Proposition 4. For m,n ∈ N with n ≥ m + 2, let P sym
H be the symmetrized

Hammersley point set in base b consisting of N = bm+2 points and P sym,n
H be its

truncated point set. Then we have

Lp(P
sym
H ) ≤ Lp(P

sym,n
H ) +

1

bm+2(n−m−1)/p
, for any p ∈ [1,∞). (7)

Before providing the proof of Proposition 4, it should be mentioned that we
arrive at the result of Theorem 3 by combining Propositions 3 and 4 since the
second term on the right-hand side of (7) is small enough for any p ∈ [1,∞) that
it does not affect the order of the Lp discrepancy when n > 2m.
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P r o o f. From the definition of the Lp discrepancy we have

Lp(P
sym
H ) =

(

∫

[0,1]2

∣

∣∆(t;P sym
H )

∣

∣

p
dt

)1/p

=

(

∫

[0,1]2

∣

∣∆(t;P sym
H )−∆(t;P sym,n

H ) + ∆(t;P sym,n
H )

∣

∣

p
dt

)1/p

≤ Lp(P
sym,n
H ) +

(

∫

[0,1]2

∣

∣∆(t;P sym
H )−∆(t;P sym,n

H )
∣

∣

p
dt

)1/p

,

where we use the Minkowski inequality. Thus, we shall focus on the second term
on the rightmost-hand side in the following.

Now for any t ∈ [0, 1]2 we have

∆(t;P sym
H )−∆(t;P sym,n

H )

=
1

bm+2

∑

a∈{0,1,...,b−1}m+2

(

1[0,t)(xa, ya)− 1[0,t)(x
n
a, y

n
a)
)

.

For the summand on the right-hand side, we have

1[0,t)(xa, ya)− 1[0,t)(x
n
a, y

n
a) =















1 if (xa, ya) ∈ [0, t) and (xn
a, y

n
a) /∈ [0, t),

−1 if (xa, ya) /∈ [0, t) and (xn
a, y

n
a) ∈ [0, t),

0, otherwise.

For a given set a = {a1, . . . , am+2}, we have

xn
a ≤ xa =

a1 ⊕ am+1

b
+ · · ·+ am ⊕ am+1

bm
+

am+1

bm+1
+ · · ·+ am+1

bn
+

am+1

bn+1
+ · · ·

= xn
a +

am+1

bn(b− 1)
≤ xn

a +
1

bn
.

Similarly, we have

yna ≤ ya = yna +
am+2

bn(b− 1)
≤ yna +

1

bn
.

This implies that we never have the case, where

(xa, ya) ∈ [0, t) and (xn
a, y

n
a) /∈ [0, t).
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Thus, for any t ∈ [0, 1]2 we have

∣

∣∆(t;P sym
H )−∆(t;P sym,n

H )
∣

∣

=

∣

∣

{

a ∈ {0, . . . , b− 1}m+2 : (xa, ya) /∈ [0, t) and (xn
a, y

n
a) ∈ [0, t)

}∣

∣

bm+2

=

∣

∣

{

a ∈ {0, . . . , b− 1}m+2 : xn
a < t1 ≤ xa and yna < t2 ≤ ya

}∣

∣

bm+2

≤
∣

∣

{

a ∈ {0, . . . , b− 1}m+2 : xn
a < t1 ≤ xn

a + 1/bn and yna < t2 ≤ yna + 1/bn
}∣

∣

bm+2
.

From the definition of P sym,n
H , the first coordinate xn

a takes the value of the form

c1
bm

+
c2

b− 1

(

1

bm
− 1

bn

)

for c1, c2 ∈ N0 with 0 ≤ c1 < bm and 0 ≤ c2 < b. Since xn
a does not depend on

am+2, each value repeats b times. The length of the interval between two distinct
consecutive elements of xn

a equals either

1

b− 1

(

1

bm
− 1

bn

)

or
1

bn
.

Note that the former length is greater than 1/bn when n ≥ m+2. This also holds
true for the second coordinate yna. Therefore, when there exist c1, c2, d1, d2 ∈ N0

with 0 ≤ c1, d1 < bm and 0 ≤ c2, d2 < b such that

c1
bm

+
c2

b− 1

(

1

bm
− 1

bn

)

< t1 ≤ c1
bm

+
c2

b− 1

(

1

bm
− 1

bn

)

+
1

bn

and

d1
bm

+
d2

b− 1

(

1

bm
− 1

bn

)

< t2 ≤ d1
bm

+
d2

b − 1

(

1

bm
− 1

bn

)

+
1

bn
,

there are at most b2 points of P sym,n
H which satisfy

xn
a < t1 ≤ xn

a + 1/bn and yna < t2 ≤ yna + 1/bn.

Note that the Lebesgue measure of the set consisting of such t is given by
1/b2(n−m−1). On the other hand, when there do not exist c1, c2, d1, d2 ∈ N0

with 0 ≤ c1, d1 < bm and 0 ≤ c2, d2 < b which satisfy the above condition,
there is no point of P sym,n

H which satisfies

xn
a < t1 ≤ xn

a + 1/bn and yna < t2 ≤ yna + 1/bn.
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Therefore, we have

(

∫

[0,1]2

∣

∣∆(t;P sym
H )−∆(t;P sym,n

H )
∣

∣

p
dt

)1/p

≤ b2

bm+2
·
(

1

b2(n−m−1)

)1/p

=
1

bm+2(n−m−1)/p
.

Hence the result follows. �
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