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ON A GOLAY-SHAPIRO-LIKE SEQUENCE

Jean-Paul Allouche

Dedicated to the memory of Pierre Liardet

ABSTRACT. A recent paper by P. Lafrance, N. Rampersad, and R. Yee stud-

ies the sequence of occurrences of 10 as a scattered subsequence in the binary
expansion of integers. They prove in particular that the summatory function of

this sequence has the “root N” property, analogously to the summatory function

of the Golay-Shapiro sequence. We prove here that the root N property does not
hold if we twist the sequence by powers of a complex number of modulus one,

hence showing a fundamental difference with the Golay-Shapiro sequence.

Communicated by Reinhard Winkler

1. Introduction

In the paper [7] the authors study a sequence (in)n≥0 involving the number
inv2(n) of inversions in the binary expansion of the integer n, i.e., the number
of occurrences of 10 as a scattered subsequence of the binary representation of
the integer n. More precisely, defining in := (−1)inv2(n) they prove in particular
the following result.

Theorem 1 (Theorem 2 in [7]). There exists a bounded, continuous, nowhere
differentiable, 1-periodic function G such that

S(N) :=
∑

0≤n≤N

in =
√
NG(log4N).

This shows that the behavior of the summatory function of sequence (in)n≥0
is quite similar to the behavior of the summatory function of the Golay-Shapiro
sequence (see [4, 3]). Recall that the ±1 Golay-Shapiro sequence (an)n≥0 is
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defined by an = (−1)wn , where wn counts the number of possibly overlap-
ping 11’s in the binary expansion of the integer n. This sequence can also be
defined by a0 = 1, and for all n ≥ 0, the recurrence relations a2n = an and
a2n+1 = (−1)nan (see [2]). It is then natural to ask, as the authors of [7] do,
whether the sequence (in)n≥0 satisfies the fundamental “root N” property of
the Golay-Shapiro sequence, namely

sup
θ∈R

∣∣∣∣∣∣
∑

0≤n≤N

ane
2iπnθ

∣∣∣∣∣∣ = O(
√
N).

This question is furthermore justified not only by the fact that (an)n≥0 admits
a “digital” representation as (in)n≥0 does (namely an = (−1)un , where un is the
number of possibly overlapping 11’s in the binary expansion of n), but also by
the fact that many other “digital” sequences have the root N property (see [1]).
The purpose of this paper is to prove that the sequence (in)n≥0 does not satisfy
the root N property.

Remark 1. The Golay-Shapiro sequence is also called the Rudin-Shapiro or the
Shapiro-Rudin sequence. Since Rudin [8, p. 855] acknowledges Shapiro’s priority
of [9], and since [9] and [6] appeared the same year, the sequence should indeed
be called the “Golay-Shapiro sequence”. Note that the fact that this sequence
appears in a somewhat disguised form in the paper of Golay [6] can be found in
the article of Brillhart and Morton [5] where they write that Odlyzko pointed
out to them [6, bottom of p. 469].

2. Preliminary results

First we recall a property of sequence (in)n≥0 given in [7].

Proposition 1 (Proposition 1 of [7]). The sequence (in)n≥0 satisfies i0 = 1
and the following recurrence relations: for all n ≥ 0,

i2n+1 = in, i4n = in, i4n+2 = −i2n.

This proposition implies the following result on the summatory function of
(inz

n)n≥0.

Proposition 2. Let z be a complex number. Define the sum T (N, z) by

T (N, z) :=
∑

0≤n≤2N−1

zn
(
in
i2n

)
.
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Then we have
T (N + 1, z) =

(
z 1
1 −z

)
T
(
N, z2

)
.

P r o o f. Separating even and odd indices in T (N+1, z) and using Proposition 1
yields

T (N + 1, z) =
∑

0≤2n≤2N+1−1

z2n
(
i2n
i4n

)
+

∑
0≤2n+1≤2N+1−1

z2n+1

(
i2n+1

i4n+2

)

=
∑

0≤n≤2N−1

z2n
(

0 1
1 0

)(
in
i2n

)
+

∑
0≤n≤2N−1

z2n+1

(
1 0
0 −1

)(
in
i2n

)

=

(
z 1
1 −z

)
T (N, z2).

�

It happens that a single common transformation gives a simpler form for all
matrices (

z 1
1 −z

)
.

Proposition 3. Let i be a square root of −1 and P be the matrix defined by

P :=

(
1 1
i −i

)
.

Then

P−1 =
1

2

(
1 −i
1 i

)
and P−1

(
z 1
1 −z

)
P =

(
0 z − i

z + i 0

)
.

P r o o f. Straightforward. �

Proposition 4. Let M(z) =

(
z 1
1 −z

)
. Then we have

∑
0≤n≤22N−1

inz
n =

1

2

(
cN (1− i) + dN (1 + i)

)
,

where

cN =
∏

0≤k≤N−1

(
z4

k

− i
)(
z2.4

k

+ i
)

and dN =
∏

0≤k≤N−1

(
z4

k

+ i
)(
z2.4

k

− i
)
.

P r o o f. Using Proposition 2 we have

T (N + 1, z) = M(z)T
(
N, z2

)
= M(z)M

(
z2
)
T
(
N − 1, z4

)
= · · ·
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hence, starting from T (N, z) yields

T (N, z) = M(z)M
(
z2
)
· · ·M

(
z2

N−1
)
T
(

0, z2
N
)
.

Replacing N by 2N , defining M̃(z) :=

(
0 z − i

z + i 0

)
, and using Proposition 3

gives

T (2N, z) =
(
PM̃(z)P−1

)
· · ·
(
PM̃

(
z2

2N−1
)
P−1

)
T
(

0, z2
2N
)

= PM̃(z) · · · M̃
(
z2

2N−1
)
P−1T

(
0, z2

2N
)

= P

(
0 z − i

z + i 0

)
· · ·

(
0 z2

2N−1 − i
z2

2N−1

+ i 0

)
P−1T

(
0, z2

2N
)
.

Grouping the matrices in the last equality pairwise and noting that(
0 z − i

z + i 0

)(
0 z2 − i

z2 + i 0

)
=

(
(z − i)(z2 + i) 0

0 (z + i)(z2 − i)

)
we obtain

T (2N, z) = P

(
cN 0
0 dN

)
P−1T

(
0, z2

2N
)

(1)

with

cN =
∏

0≤k≤N−1

(
z4

k

− i
)(
z2.4

k

+ i
)

and

dN =
∏

0≤k≤N−1

(
z4

k

+ i
)(
z2.4

k

− i
)

(2)

.

Since for any complex number Z we have

T (0, Z) = Z0

(
i0
i0

)
=

(
1
1

)
,

Equality (1) can be rewritten as

T (2N, z) =
1

2

(
cN (1− i) + dN (1 + i)

cN (1 + i) + dN (1− i)

)
. (3)

So that we have ∑
0≤n≤22N−1

inz
n =

1

2

(
cN (1− i) + dN (1 + i)

)
. �
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3. The main result

Now we state and prove our main theorem.

Theorem 2. Define j := e2iπ/3. Let z be a complex number such that there
exists an integer r > 0 with z4

r

= j. Then there exists a positive constant C
(depending on z) such that, for all N large enough, the following inequality holds:∣∣∣∣∣∣

∑
0≤n≤22N−1

inz
n

∣∣∣∣∣∣ ≥ C(2 +
√

3)N .

In particular, for such a complex number z,
∣∣∣∑ 0≤k≤n−1 ikz

k
∣∣∣ is not O(

√
n).

P r o o f. If z4
r

= j, then, for all d ≥ r, we clearly have

z4
d

=
(
z4

r
)4r−d

= j

(note that j3 = 1 hence j4 = j). Thus, since

(j − i)
(
j2 + i

)
= 2−

√
3 and (j + i)

(
j2 − i

)
= 2 +

√
3,

we have
cN =

∏
0≤k≤N−1

(
z4

k

− i
)(

z2.4
k

+ i
)

=
∏

0≤k≤r−1

(
z4

k

− i
)(

z2.4
k

+ i
) ∏
r≤k≤N−1

(j − i)
(
j2 + i

)
= Az(2−

√
3)N

for some constant

Az =
∏

0≤k≤r−1

(
z4

k

− i
)(

z2.4
k

+ i
) [

(j − i)(j2 + i)
]−1 6= 0.

Similarly dn = Bz(2 +
√

3)N for some nonzero constant Bz.

Finally, this gives∣∣∣∣∣∣
∑

0≤n≤22N−1

inz
n

∣∣∣∣∣∣ =
|dN (1 + i) + (1− i)cN |

2

≥ |(2 +
√

3)N |Bz| − |Az|(2−
√

3)N |√
2

≥ Cz(2 +
√

3)N

for some positive constant Cz and N large enough. �
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Remark 2. Actually Theorem 2 above shows that there exists a dense set of
real numbers θ such that∣∣∣∣∣∣

∑
0≤n≤N−1

ine
2iπnθ

∣∣∣∣∣∣ is not O(
√
N).
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