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ABSTRACT. Let I' C R® be a lattice obtained from a module in a totally real
algebraic number field. Let R(0,IN) be the error term in the lattice point prob-
lem for the parallelepiped [—01N1,01N1] X -+ X [—05Ng,05Ng]. In this paper,
we prove that R(0,N)/o(R,N) has a Gaussian limiting distribution as N — oo,
where 8 = (01,...,0) is a uniformly distributed random variable in [0, 1],
N = Ni---Ns and o(R,N) < (log N)(*=1/2 We obtain also a similar result
for the low discrepancy sequence corresponding to I'. The main tool is the S-unit
theorem.

Communicated by Werner Georg Nowak

1. Introduction

1.1. Preliminaries

In 1992, J. Beck (see [Bell-[Be3] M discovered a very surprising phenomenon
of randomness of the sequence {nv/2},>1 and the lattice

{(n,n\/§+m)\(n,m) ez}
i n 1) —
vol{ (z,y,2) € [0,1)3 . =2=0 (ﬂ[oz;j%—k D —v)

as N — oo, where ®(t) = \/% fioo e‘“2/2du, 1o(z) is the indicator function
of O, ¢c; > 0 and {v} is the fractional part of v.

<tp— ®(t)
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!The results of this paper were announced in [Lel], [Le2].

45



MORDECHAY B. LEVIN

According to [Be2l, p.41], the generalizations of this result to the multidi-
mensional case for a Kronecker’s lattice is very difficult because of problems
connected to Littlewood’s conjecture:

lim n<na><K<nB>=0

n—o0

for all reals a, 8, where < x >»>= min({z},1 — {z}).

In this paper, in order to avoid these problems, we consider a lattice I' ob-
tained from a module in a totally real algebraic number field. We prove the
Central Limit Theorem (abbreviated CLT) for the number of points in a paral-
lelepiped. We obtain also a similar result for low discrepancy sequences corre-
sponding to I' (see [Le2]). For related questions and generalizations, see [Led].
In a forthcoming paper, we will generalize results from to the cases
of s-dimensional Halton’s sequences (for 1-dimensional case see [LeMe]),
(t, s)-sequences, and admissible lattices (see the definition below).

1.2. Lattice points

Let O C R® be a compact region, vol O its volume, tO its dilatation of O
by a factor ¢ > 0, and let tO + x be the translation of tO by a vector x € R®
Let I' C R? be a lattice, i.e., a discrete subgroup of R® with a compact funda-
mental set R*/T", and denote det T'=vol(R*/T"). Let

N(O,T) = card(ONT) = Y Lo(7) (1.1)

~€r
be the number of points of T' lying inside O. We define the error R(O +x,T') by
N(O +x,T) =volO - (detT)™" + R(O +x,T). (1.2)

We define the norm of x = (z1,...,25) by Nm(x) = x129---2,. The lattice
I' C R* is admissible if
NmI'= inf |Nm > 0.
it [Nm()|

Let IC be a totally real algebraic number field of degree s > 2, and let o
be the canonical embedding of K in the Euclidean space R®, o : £ 3 & —
o(&) = (01(),...,04(§)) € R, where {0;}5_, are the embeddings of K in R.
Let Ni/g(&) be the norm of £ € K. By [BS] p. 404]

Nijo(€) = 01(§) -+ 05(§), and [Nigla)| >1 (1.3)

for all algebraic integers a € K\ {0}. Thus [Nm(o(§))| = |Nx/o(&)|- Let M be
a full Z—module in IC, and let I'j; be the lattice corresponding to M under the
embedding . It is known that the set M+ of all 3 € K, for which Tric/g(aB) € Z
for all &« € M, is also a full Z— module (the dual of the module M) of the
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field KC (see [BS| p. 94]). Recall that the dual lattice I'y; consists of all vectors
~1 € R® such that the inner product (v+, ) belongs to Z for each ~ € T'. Hence
Lyo = I3y Let (Cay)~! > 0 be an integer such that (Cps)~ 1y are algebraic
integers for all v € M U M. Hence

min(Nm 'y, Nm T'y;) > O3 (1.4)

Therefore I'p; and 'y, are admissible lattices. In the following we will use the
notation I' = I'y;.

We note that the problem considered in this paper is closely connected with
quantum chaos theory. By [BI] and [Ma], the problem about the number
of eigenvalues of an operator in a quantum system in a large interval [0,¢]
leads to the problem of counting the number of lattice points in a domain tO.
For example, the particular case of the famous Berry-Tabor conjecture
(see, e.g., [Mal) consists of the assertion that the number of lattice points in the
thin domain (¢t + 1/t)O \ tO tends to the Poisson distribution (for the case
of ‘generic’ lattice), where ¢ is a uniformly distributed random variable in [0, L]

and L — oo (see, e.g., [Bl], [Mal, and [Si]).

1.3. Low discrepancy sequences
Let ((Bn N)rz:r:—01) be an N-point set in the s-dimensional unit cube [0, 1)%,
0= [Ovyl) X X [Ovys) - [071)87

A0, (Ban)n=0) = > 1o(Ban)—y1y2---ysN. (1.5)

0<n<N-1

We define the L™ and L? discrepancy of an N-point set (B, N)r];[:_()l by

1
D(Ban)iS) = s |40, (Bun)NT)],
0<y1,..,ys <1
2 1/2
_ 1 _
DQ((BTMN)r]Y:Ol) = / NA(Ov (ﬁn,N)r]Y:Ol) dyq - dys )
(0,1]*

respectively. In 1954, Roth proved that there exists a constant C' > 0, such that
NDs((B¥)nZy) > C(nN)F (L6)

for all N-point sets (8n.n )05 -

DEFINITION. A sequence (f3,,)n>0 is of low discrepancy (abbreviated l.d.s.) if

D((Bn)ﬁl_ol) =O(N"'(InN)*) as N — cc.
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A sequence of point sets ((ﬂn,N)YZY;Ol)”

n—; is of low discrepancy (abbreviated
lLd.p.s.) if

D((Ban)¥) =O(N"HInN)*™ 1) as N — oo.

For examples of 1.d.s. and l.d.p.s. see [BC] and [DrTi]. In [EY], Frolov con-
structed a low discrepancy point set from a module in a totally real algebraic
number field (see also [By],[Skx]). Using this approach, we proposed in [Le2] the
following construction of 1.d.s. :

According to (I), |[Nm(y) —~2)| > O3, for different points vV, (2 € T.

Hence, there are no two different points v(1), v(2) e T' with yél) = wgz). It follows

that the set Wy = ((x,0) +T') N [0,1)*~! x (=00, 00) with x € [0,1)*! can be
enumerated by a sequence (zx k, zs(X, k)){>° __ in the following way:
20 =X, 25(%,0) =0, zxx €[0,1)°! and z4(x, k) < zs(x,k+1) €R, (1.7)
for k € Z. We see that there exists a unique (w,ys) € Wx with
ys = min{v > 0| Jw € [0,1)*", such that (w,v) € Wy}.

Let 7(x) = w. In [Le2], we proved that 7 (x) is an ergodic transformation with
respect to the Lebesgue measure on [0,1)*7!, T*(x) = zx(x) for k € Z, and
(T*(x)), -, is of low discrepancy, i.e., Dy ((T%(x)), .,) = O(In® N). In [Led],
we proved that this estimate cannot be improved.

In Theorem [2] we will prove that there exists a sequence (fx)r>0 such that

the triangular array of random variables (]l[owl)x...x[o,ys_l)(ﬁk))gcy;év]_l satisfies

the CLT with an extremely small (by order of magnitude) standard deviation
(see Roth’s lower bound (L8)). We will take 8, = T*(x), k=0,1,...

1.4. Statement of the results

We consider the probability space ([0, 1]%, A, B([0,1]*)) with Lebesgue’s mea-
sure A. Hence, we have the following formula for the expectation:

El7(6) = [ (6)d6. (18)
[0,1]
We define the variation of f by Var(f) = E[f?]— (E[f])?. Let K; = [-1/2,1/2)*,
N=(Np,....,N,), N;>0, (i=1,....s), N=N;Ny--- Ny,
(1, sms) - (Y1, -, Ys) = (T1Y1, - - -, TsYs),
(1,...,2s) - O={(z1,...,2s) - (W1,---,ys) : (W1,.-.,ys) € O}

and n = [logy N] + 1.
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THEOREM 1. With the notations as above, there exist wo > wy > 0 such that
RO -N-K;+x,I
sup
t,x w(N, x)n(s—1)/2

as N — oo, with w(N,x) = Var'/?(R(6 - N - K, +x,T))n~"1/2 & [wy, w,)],
I1=10,1) for all x € [0,1)5~ 1.

vol {0 S < t} - <I>(t)‘ = O(n~1/1%)

THEOREM 2. Let O = [0,y1) X -+ X [0,ys—1). Then there exist wg > wy; > 0
such that
[ SN]_l
A(Q (Tk(X))ky:O )
v(N,x)n(s-1)/2

sup [vol{ y € I*, x e I* "1 <ty — ()| =0mn"1H)
t

as N — oo, with v(N, x) = Var'/? <A (C’), (Tk(x))gcy_sg]_lD n~==D/2 € [wy, wy.

Throughout the paper, O-constants do not depend on x,0 and N.

REMARK. Let K(r1,72) be an algebraic number field with signature (r1,72), r1 +
2rg = 5, ' =T(M,r1,r2) C R® a lattice obtained from a module M in K(r1,72),
N = (Ny,...,Ny Ny, Npy) € 2007y = (s Yy Vs ,Yry) € R
(’y; ER, v €eR%i=1,...,r,5=1,...,m),y = (y/l, ...... ,y;l,yl,...,yr2),
V=R/T, (y,x) a unifg};mly distributedmrandom variable in [0,1]™77"2 x V|

G(N) = [[[=Nigi, Nigil [[{z € B? 2] < Ny},

i=1 j=1
and let
§&(N) = Z 1o (),
~yel'+x
T2
EN) = Y leay@) [[ VN2 -2
yel+x Jj=1

In a forthcoming paper, we will prove CLT for the multisequence &;(IN), where
i =1if ro > 2and i = 2 if ro = 1,1 > 1. The case o = 1,r; = 0 was
investigated earlier by Hughes and Rudnick [HuRul].

Let us describe the main steps of the proof of Theorem [I:

In Subsection 2.1, we use the Poisson summation formula and the standard
trick of ‘smoothing’. This allows us to express the error R in terms on absolutely
convergent Fourier series. Let n1,...,7ms_1 be a set of fundamental units of the
field K, and let Ay,...,As_1 be a set of the appropriate toral automorphisms.
Let F; C R be a fundamental domain for the field .
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According to [BS, p.112] for all v € I'*t there exist v, € Fy N I'* such
that v = ~,7™ ...nfi‘ll for some ki,...ks_1 € Z. By 2I12) and [2I0),
we get that the main part of the error R can be expressed as a sum of the
form Ezlz_n e Ezs_lz_n fN7T7x(A’f1- . A’js_;lo). The function fn,-x does not
comply with conditions of [Le3l Theorem 5]. Hence, we cannot apply [Le3, The-
orem 5| to immediately obtain Theorem [Il Therefore, we should reprove [Le3|
Theorem 5]. In [Le3l Theorem 5], we use the moment method. In this paper,

we use the martingale method. But the main idea of this article is the same as
in [Le3| Theorem 5] and is as follows:

In order to prove the central limit theorem, it is sufficient to calculate the upper
bound of the number of solutions of the exponential Diophantine equation

d
Zﬁinfi’l 77(];15171 :07 k’t,j S {_na"'aoa"'an}a 51 EIC, (19)
i=1

i=1,...,d, j=1,...,s — 1, where d — oo in [Le3| Theorem 5|, and d = 4
in this paper. We apply the S-unit theorem to obtain this bound.

In Subsection 2.2, we consider a dyadic decomposition of the domain of
summation 't of the Fourier series of the error R in the regions T N By,
where By j = [2F1,2F1 4 1) x - +. x [2Fs=1 2ksm1 1) x [j2Fs 2R 4 1) k € Z°,
ki+---+ks=0,j € Z In [Le3], we used a more natural decomposition I't =
Ukyookeez(F1 UTH)ph -~-n§i‘11. However, the dyadic decomposition is more
appropriate to construct the martingale difference area ((.A(G k))Z:v see (Z3.9),
(241) and ([28))). In addition, this allows us to compute the volume of the most
important domains of the lattice I't, such as By ; N {v € I'* | Nm(y) < n'/2}.

In Subsection 2.3, we cite two famous Diophantine results—the S-unit the-
orem [ESS|] (see Theorem A) and lower bounds for linear forms in logarithms
of algebraic numbers see [BW], Theorem B] We decompose the domain of sum-
mation I'* to five parts: 't = Gy U--- U G5. Next we apply Theorem B to the
main part G.

In Subsection 2.4, we find upper bounds on the variance of the error R (R =
A(Gy) + -+ A(G5)). Tt is clear that it is sufficient to compute separately the
variance of A(G;), i =1,...,5 (see Lemma [{] - Lemma [I0]).

In Subsection 2.5, we obtain (in Lemma [I3]) lower bounds on the variance
of R. Lemma is a simple consequence of Lemma The proof of Lemma

is based on the admissibility property of the lattice I't and on Minkowski’s
convex body theorem.
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In Subsections 2.6 and 2.7, we use the S-unit theorem to compute

> BIAG] and 30 ELA(G) - E(AYG))]

i=1
In Subsection 2.8, we prove the martingale property of the sequence
(A(Gi))izl'

Using Theorem C, we prove CLT for the main part S,, of R.
In Subsection 2.9, we prove that the difference R —S, is very small, and
Theorem [ follows.

2. Proofs of theorems

We will prove Theorem [I by using the martingale CLT [Mo] (see Theorem C).

First we will find the upper and lower bounds of the variance of the error R.
Next we approximate R by a martingale difference area R = A(G)+- - -+A(G,,).

According to Theorem C, in order to prove the CLT, it is sufficient to show
that W,, + A,, = o(1) for n — oco. By Lemma [I9 it is sufficient to calculate

the upper bound of E[A*(G;)] (resp. E[A2(Gi) — E(A2(Gz))]2) to get W,
see (2Z8I3) (resp. A, see (ZBI0) and ZR20)). We calculate E[A*(G;)] in
Lemma [T4] and E[Az(Gi) — E(.A2(G1))] ? in Lemma [I6l

The main part of evidence in both of these lemmas is to estimate the number
of solutions of an exponential Diophantine equation similar to (L9) (see (2:6.7),
@7T) and 27717)). We get these estimates by using the S-unit theorem.
2.1. Poisson summation formula

We shall need the Poisson summation formula:

detT Y " f(y = X) =Y f(v)e((v. %)), (2.1.1)
~el ~el+

where

-~

Fory = [ ety x)) ax
is the Fourier transform of f(X), aﬂjld
e(z) = exp(2nv/—1x), (y,X) = y121 + - - - + yss.
Formula ([2.I11) holds for functions f(x) with period lattice I' if one of the
functions f or f is integrable and belongs to class C (see, e.g., [SW p. 251]).
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Let d = (dl,...,ds), d; > 0 (Z = 1,...,8), Oq = [*d1/2,d1/2] Xoeee
o X [—ds/2,ds/2], and let 1o, (v) be the Fourier transform of the indicator
function 1o, (). It is easy to prove that 1o, (0) = dids - - - ds and

i=1 2mv =1y i1

for Nm(+) # 0. We fix a nonnegative function w(x), x € R®, of the class C*,
with a support inside the unit ball |x| < 1, such that

To, () = H e(divi/2) — e(—=divi/2) H sin(md;;) (2.1.2)

/ w(x)dx = 1. (2.1.3)
We set w,(x) = 7 %w(771x), 7> 0, and
() = [ ellyx))ulx) dx. (214)
Notice that the Fourier transform «,(y) = @&(7y) of the function w;(y)
satisfies the bound
|wr (¥)] < e2(1+ Tly])7*. (2.1.5)

LEMMA 1. There exists a constant ¢ > 0, such that we have for N > ¢
R(Oe.n +x%,T) — k(OB-N +x,T)| <2%

where

k(og.N+x,F):e— Y dogn(B(TY)e((y.x)), T=N"2 (2.16)

Proof. Let (’)g{\I = [0,max(0,0; N7 + 7)) x -+ x [0,max(0,0sNs + 7)), and
let 1o () be the indicator function of O. We consider the convolutions of the
functions Lox- (7v) and w,(y) :

Wy * HO§T (x) = / wr(x — y)]loir (y)dy. (2.1.7)

It is obvious that the nonnegative functions ([(ZI.7) are of class C*° and are com-
pactly supported in 7-neighborhoods of the bodies Olj\tf, respectively. We obtain
]105_;, (X) < ﬂOe-N(X) < ]1(9‘9*_‘;I (X)v ]105_;, (X) < wr % ﬂOe-N(X) < ]1(9‘9*_‘;I (X)

(2.1.8)

Replacing x by v —x in ([2.1.8) and summing these inequalities over v € I' = 'y,
we find from (1), that

N(Oph +x,T) <N (Ogn +x,T) SN(OF L +x,1),

and
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N(Ogh +x,T) < N(Ogn +x,T) < N(OF % +x,T),

where

N(Oon+xT) =Y wrx Loy (v —X). (2.1.9)
~el
Hence

~N(OFN +xT) + N(Ogx +x,T) < N(Ogn +%,T) = N(Og.n +x,T)

<N(OFN +x,T) = N(Og i +x,T).
Thus
|V (Og.n +x,T) = N(Og.n +x,T)| < N(Of 1y +x.T) = N(Op +x,T).
(2.1.10)

Consider the right side of this inequality. We have that Oy %\ Op X is the union
of boxes OW | i=1,...,2° — 1, where

vol(0%) < vol(OF7) = vol(Oy") < [ (Vi +7) = J[ (Vi — 7)
i=1

i=1
<N (f[(l +7) — ﬁ(l - T)> < ésNT =¢/N, T=N"2
i=1 i=1
with some ¢ > 0. From (4)), we get [Nm(vy)| > C3, for v € I'ps \ 0. We see
INm (v, =) < vol(0W4x) < C5; for ~;,75€ OD4x and N > &/C3.
Therefore, the box O + x contains at most one point of T'ys for N > ¢/C%,.
By (2I.10), we obtain
IN(Ogn +%x,T) =N (Ogn +x,T) <25 =1, for N>¢/C5.  (2.1.11)

Let

vol(Og.N)
det I’

By ([ZI9), we have that N'(Qg.n + x,T) is a periodic function of x € R”

with the period lattice I'. Applying the Poisson summation formula to the series
(Z13), and bearing in mind that & (y) = &(7y), we obtain from (2.1.6])

R(OQ.N +x,T) = 7;\3,((99.N +x,T).

Note that (ZI5]) ensures the absolute convergence of the series ([2.1.0]) over

~ € I't\ {0}. Using (L2), (2I.11) and @II2), we get the assertion of Lemmalll
g

R(Og.n +%x,T) = N(Og.n +x,T) — (2.1.12)
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2.2. Dyadic decomposition

Let ®,; be the ring of coefficients of the full module M, ; be the group
of units of Dy, M1 = M, My = M*, and let M1, --,Mk,s—1 be the set
of fundamental units of Hs, (k = 1,2). According to the Dirichlet’s theorem
(see, e.g., p. 112]), every unit 7 € 4y, has a unique representation in the
form

n= (=14 E=1,2, (2.2.1)

where ay,...as_1 are rational integers and a € {0,1}. We will denote o (8, )
by the same symbol Uy, .

LEMMA 2. Letyy,...,ys > 0 bereals,y = (y1,---,9s), y = Nm(y) = y1y2 - - Ys-
Then there exists ni(y) € Y, with

yiy o (n ()| € [1/co, co, (2.2.2)

wheret=1,...,s, k=1,2, and

co=exp | > > |lfoi(m,)ll | >1. (2.2.3)

k=1,21<i,j<s

Proof. We fix £k € {1,2}. The matrix (In|o;(nx,;)|)1<i,j<s is non singular
BSL pp. 104,115]. Hence, there exist reals by, ..., bs—1 with

Z bjIn|oi(nk,;)| =1/slny — Iny;, i=1,...,s—1.
1<j<s
Taking a; = [b;], j = 1,...,5s — 1 and nx(y) = 77231"'77:,35__1
i€ l,s—1],

= 37 o)l < Wy o)D) < S Inlos(me)ll. (2:2.4)

1<j<s 1<j<s

1> we obtain for

Hence
—Ine¢y < ln(yiy_l/s|ai(nk(y))|) <lney, i=1,...,s—1, k=1,2.

Bearing in mind that [Nm(nx(y))| = 1 and y = y1y2 - - - ys, we get from (2.2.4)

and (Z23)

I (yoy ™ losme@))]) == D In (yiy™/*|oi(ne(w))]) € [~ Inco,Incol.
1<i<s
Therefore, the assertion (Z2.2)) is true for ¢ € [1,s], £k = 1,2, and Lemma
is proved. (]
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We apply this lemma to the vector y = N = (Ny,...,N;). Let Ni/ =

Niloi(m(IN))|, ¢ = 1,...,s, and let o(m(N)) = (o1(m(IN)),...,0s(n(N))).
We see that

N €Ty N (O N-K +x) & ~-o(m(N)€Tyn (e-N’ -Ks+x~a(n1(N))).
Hence

N(@ N-K°+x,Ty) :N(9~N’~Ks+x-a(n1(N)),FM>.

By ([2), we have
R(O-N-K° +x,Ty) = R(e N’ K* +x~a(n1(N)),FM).
Therefore, without loss of generality, we can assume that
NiN“Ys e [1/eo 0], i=1,...,s. (2.2.5)
Now, let n = [logy N| + 1,
F, = {7 € T\ {0}: il Nm(v)[ /" € [1/eo, 0], i = 1, s, [Nm()| < n'/2}
and

F, = U {'yl €F, : v = max ('y o(n ))1} (2.2.6)
’YE]F/ UEﬂML vy-o(n)eF

By (L4)), we get that
it AW @ eF,, v 243 then ~B £~4@ o) Vypeiy. (2.2.7)
LEMMA 3. Let a,b > 1 be integers,

G(a,b) = {7 €T\ {0} : max |yl € (2%,2°7"],  [Nm(v)| < n1/2}, (2.2.8)

:U U ~-om, (2.2.9)

~YEF, nei(y,a,b)
with

$U(v®, a,b) = {n €ty : O a(n) € Gla, b)} . (2.2.10)

Then
G(a,b) = G (a,b), #U(Y?,a,0) = O(b(a+b)*2) for v € F,, (2.2.11)

G(a,b) = O(n1/2b(a +b)"7?),
1

> |Nm O(nn)  and > ——=0(). (2.2.12)

2
Yy€EF, ~EF, Nm (‘Y)
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Proof. It is easy to see that G(a,b) 2 G (a,b). Let v € G(a,b). By Lemma
2l there exists 7 € U0 with v - o(n) € F,,. From ([ZZ8), we obtain that there
exists ;. € Uyre with v = ~ - a(pn) € F,,. By @29) and ZZI0), we get
that v = vMa((gm) ') € G (a,b) and G(a,b) = G'(a, b). Let
m = (ml7"'7ms) € st my+ -+ mg :07 K = ("/“'17"'7HS)7 Ki € {7171}(7’:
L,...,8),v(p)=sifu#s,v(p)=1if p=s,j>0and

B(m7 /’1/7 K? j)

= H (Hi2mi, Hi2mi+1] X (jKV(M)Q_m"(H)C%, (j+1)lﬁy(u)2_m"(u)c’]5w]

1<i<v(p)

: [T (k2™ m2mt]. (2.2.13)
v(p)<i<s

It is easy to see that

B(mlnuvnlvjl)mB(m27u7K'27j2):Q) for (m17/1/7’<"’17j1)#(m27u7’<"’27j2)'
(2.2.14)

Applying (T4]), we have for every p € [1, s] that

r\for = (J U U U (2.2.15)

— AN j > j
H17‘.‘7HSE{ 171} m,1+n-q--+7ns=() ]_O ‘YEB(m7ﬂ7K’7])

Let
AV, v® e T+ N B(m, p, K, 5).

From (22.13), we see that
INm(y™ — )| < C3;.
By (I4), we obtain that v() = ~(2) and
#I+ N B(m, u, k,5) < 1. (2.2.16)

Suppose
ne uMJ- N B(m7u7’<"’7j)'

Using ([2.2.13), we have that
1=|Nm(n)| = (j +21)C5,2727Y  with 21,2 € [0,1]. (2.2.17)

Hence
- 1+21_S/C]s\4 <7 <1/Cy.

Applying [2.2.16), we get
> #8le NB(m, p, K, 5) <24 1/Chy. (2.2.18)

720
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We denote J_l(B(m, 1, k, 7)) and o~ (U(7(?, a, b)) by the same symbols
B(m, p, k,7) and U(v@, a,b). Now let

Gu(r®,0,8) = {7 € 4(r©,0,8) : Pl <O i=1,...,5}.

It is easy to see that

Uy a,0) = | 4.4, a,b). (2.2.19)
Let HE[Ls]
n € ,(v9,a,b) N Blm, u, &, 5). (2.2.20)
Denote m; € Z (i = 1,...,s) from the following condition:
logs |o(n)i| = m; + 2 with 2z, €[0,1). (2.2.21)

By 2238) and (2220), we obtain
logy [(v o (m))u| = logy 7| + my, + 2, € (a,a + 1],
and
my, € Ji = (a—1—log, [7V|, a+b—log, 7 V||NZ with #Ji < b+2. (2.2.22)
From [229), (ZZ20) and (L4), we get

log, |%(O)a(17)i| = log, |%(O)|+mi+zi <a-+b and m; < a+b—log, |v;
(2.2.23)

(0)|

Using (2223), 2221) and (222])), we derive that
logy [ o (n)i| = logz %" = 3 logz lo(n)i]
JE[L,s],j#i
> log, |’y(0)| - Z (mj +1)

> Z log, |7J(»0)| —(s=1)(a+b+1)
J€[ls]

—(s=1)(a+b+1)+log, |Nm(7(0))|
>—(s—1)(a+b+1)+log, Cy;.

By ([2223), we have m; € [log |7 ”a(n)i| — logs [1\")] — 1,a + b — logy [4\")[].
Hence

m; € Jo:=[-1—(s—1)(a+b+1)+ slog, Cy

~logy |+ b logy |2, ],
with #Jo < s(a+b+ 1) 4+ 2 + s|logy Chy.
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We fix p € [1,s] and we consider ([ZZI). For given my,...,m, -1,
My ()15 - -+ M, We take m,,) = — Zie[l’shiy(ﬂ) m;. By (Z2I3]), we get
#8,,(v"%, a,b)

< Z Z Z Z# (0),a,b)ﬁB(m,u,l-§,j)).

K1y..oks€{—1,1} m €J1 mi€J2

#u v ()
Bearing in mind (Z218)), (22219) and (Z222]), we obtain
AUV, a,b) = O(#1(#J2)° %) = O(b(a +b)*?). (2.2.24)

Hence, the assertion (2.2.11]) is proved.

Let F1 C R® be a fundamental domain for the field &, and let
Fy ={~ eIt \{0} : |%||Nm('y)|_1/s € [1/co,c0], i=1,...,8} (see (222)).
By pp. 312, 322], the points of F; can be arranged in a sequence AF)
so that 0 < [Nm(¥™)| < [Nm(5?)| < --- and Wk < [Nm(5®)| < @k,
k=1,2,...for some ¢® > ¢(1) > 0. Therefore, the points of F» can be arranged
in a sequence ) so that

0 < Nm(y™) < [Nm(y®)| <
and
Ok < Nm(y®)| < Wk, k=1,2,... forsome c¢® >c® >0.
Using (Z2.6), we have that
> 1/INm(y)| =O(ln(n)), Y 1/Nm?*(y) =0(1), and #F, =0(n'"?).

’YEFn 'YEF'IL

By [229) and (IZZE) we obtain
#G(a,b) < > #U(Y,a,0) = O(n'/?b(a + b)*7?).
~(@€eF,

Hence, Lemma [3] is proved. O

2.3. Diophantine inequalities

We consider the following simple variant of the S-unit theorem (see [ESS|
Theorem 1.1, p. 808]): Let f1,...,8q4 € K, 8; # 0, i = 1,...,d, deg(K) = s.
We consider the equation

Bim +-+Bama=1 with 1= (n1,...,n4) € (tpre)" (2.3.1)

A solution n of 3] is called non-degenerate if ), ; Bin; # 0 for every
nonempty subset I of {1,...,d}.
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THEOREM A. The number A(f,...,B4) of non-degenerate solutions
n € (Upr0)? of equation Z3)) satisfies the estimate

A(Bi, ..., Ba) < exp ((6d)*s). (2.3.2)

Linear forms in logarithms. Write A for the linear form in logarithms,
A =blogas + -+ by log ay,

where by,..., by are integers, |b;| < B (i = 1,...,k), B > e. We shall assume
that aq, ..., ay are non-zero algebraic numbers with heights at most Aq,..., Ag
(all > e), respectively.

THEOREM B. [BW] Theorem 2.15, p. 42] If A # 0, then
A]> exp (= (16kd)* " Ay -1 Ayl B), (2.3.3)

where d denote the degrees of Q(au, ..., ay).

G = {7 eIt |y| < N, INm(y)| < n}/? and
INiy| > 200m" v e 1, 3]}, (2.3.4)
G = {'y eTt: |y > N5},
G® = {'y eIt |y < N°, [Nm(y)| > n1/2}, (2.3.5)
GW = {7 el N < |y] < N, [Nm(v)| < n1/2} and
¢ = {y e\ {0} : |y < N, Nm(v)| <n'/?  and
Jie[l,s] with |Niy| < 2““")4}. (2.3.6)
It is easy to see that G NGU) = for i # j, and
. r\ {0} =YW uc®ue®ua®ua®, (2.3.7)
et
Y a . 1< nA/9
Go {‘y e G\ 121?%(3 lvi] <2 } ) (2.3.8)
y _ . _ in/9 (i+1)n4/9—n2/9]
G {‘y e G\Y . 121?§s|%| € (2 ,2 ,
and

Go— {7 e GW : max |yl € (2<i+1>"4/9—"2/9 2<”+1>"‘”9}} i=1,2,...
‘ 1<j<s ’ ’ o
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By (Z34) and (Z3.8), we have that G; NG =0 for i # j, G; NG = 0 and

[n®/?]
GV =Gou |J (GiuG). (2.3.9)
i=1
LEMMA 4. There exist ¢,¢é > 0 such that for allv € [1,s] and k € {—1,1}
min N,y — k7P| > N, |72 exp(—é(Inn)?) > én?0s,

YD) DG 5V k(P

Proof. Let 7,(,1)/7(2)/1 < 0. From (234)), we obtain

min Ny — k7P| > N, 72| > g(nn)", (2.3.10)
F (D eGP 2y (D

(2)

Now let v, )/7 k > 0. Taking into account that |exp(z) — 1] > |x| any real z,

we get
D = k9P| = P (exp(n(ry /42)) = 1] = 1P In(eyD /42)]. (2.3.11)

By 224), 2238), @29) and 234), we have that there exists (fy M)

such that fy(k) = V,Sk) o, (nk), where %) € F,, and 7, is a unit in K (k= 1,2).

Let 4 = o¢(j®) with some f*) € ML (k = 1,2). Using @Z1)), 20) and
(234), we obtain

a®) a(k) a(k>
%(/k) = JV(f(k))(*l) ou(m2,)" - ou(m2s—1)"
0 (FN| < cen/ @) for i=1,...,s, (2.3.12)
and
ai" In (0, (n2,1)) + -+~ + al In (0, (12.5-1))
< Y@ || +|1n o, F*)]] < In N 4 1/(2s) Inn + In(co).

Bearing in mind that det((hl(o’i(’l]gd‘)))lgi’jgs_l) 75 0 (see , PP- 104, ].].5]),
we get that there exists C7 > 0 such that

0P| < Cn for i=1,...,s—1,k=1,2 and n=[log, N]+ 1.

Let k1 = sign(*y,(,l)/y,?)), where sign(z) = 1 for x > 0 and sign(z) = —1 for z < 0.
We see that

In [yD /42| =1 (k17 42)) = In (m(—l)“‘” L)) = In((-1)*7 o, (52)))
+ (al" - a§2))1ﬂ(0u(772,1)) 4+ (a W —af )1) In (o (12,56-1))-
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Let Cs max;e(i,s—1] H(72,:), where H(c) is the height of a. By (L4, Oy ) is
an algebraic integer (k = 1,2). Thus

f@)=a"+ foaw ™ ot fo = (@ = 0a(Co ) -+ (2 = (O3 )
is the characteristic polynomial of C_lf(k). Hence

H(Cy i) < max. < il

i€f0,s
From ([23.12), we have that

H(C3 ) < (205 cont/ @)
and

H(§®) < (201\_4200n1/(28)) .

Applying Theorem B with d = s, £k = s+ 1, a1 = Kl(*l)amUV(f(l))a

Q2 = (_1)a<2)UV(f(2))7 a3 = UV<772,1>7 ey Qg1 = Uu(n2,s—1>>
A1 = A2 = (20;/[200n1/(23))8,143 = = As—l = 02 and B = 201”,
we obtain

[ In(r1ySD /)] = exp(=é, (Inn)?),

with some ¢, > 0. Taking into account (23.11]) and that N, |7(2)| > nm)*
we have
min N = 2] = NP exp(—é, (Inn)?) > é,n”%,
~D) 4D EGM) 7§D 17D

with some ¢, > 0. Now using (Z3.1I0), we get the assertion of Lemma @l O

2.4. Upper bound of the variance of R(6-N - K* +x,T")

In this subsection, we prove that A(G;) is the main part of R. In 233),
we decomposed G to essential parts (G )ie[1,n) and to auxiliary parts (G )ie[1,n)-
This allows us to obtain in Lemma [Tl that the approximation of R be the sum
of essential elements (A(G;)). The random variables (A(G;)) are almost inde-
pendents. Thus in Lemma [IT] we do the main step to construct the martingale
approximation for R.

Let ~
A(G) = (detT) ™1 >~ Topn (V)@ (T7)e((7, %)), (2.4.1)
~eG
A(G) = (detT)™" > [Topn (M@(Ty)], (2.4.2)
~eG
and let
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B(G,k) = (et D) w(ry = ) (Z% Kk 9ka)/2+$k)> (2.4.3)

boer (2my/—1)*Nm
We obtain from (2.1.2)
A(G) = Z Kiks - ks B(G, K). (2.4.4)

Ki1yeeey rs€{—1,1}

Using the Cauchy—Schwartz inequality, we get
A@P <2 > IB(G, k)| (2.4.5)

By 237) and (Z1.6), we see that

R(Ogn +%,T) = AGW) + . + AGD). (2.4.6)
Let
det D)~ t(r
h(vy) = (<27T\/—) va) (Z’kak> (2.4.7)

It is easy to see that

K) = Z h(v)e (Z /fk%Qka/2>, (2.4.8)

and ~eG k=1

A(G) = Z K1K2 * - K Z h(¥y)e (Z /fk%Qka/2> . (2.4.9)

K1yekis€{—1,1} ~EG k=1
LEMMA 5. With the notations as above
A(GP) = 0O(1/N).
Proof. By [243) and (ZI15) we have that

det T) =1 (7]y|) 72 _
(2) < ( — N2
1B(G ,K)ICzWEEG@) @ Nm) N2 (2.4.10)

Notice that for every lattice £ € R® one has the bound (see, e.g., [GL]

pp. 141-142]) , . -
#{yel :j<<j+1}=03""1).
Hence
oo > oo
yET+:|y|>N> J=N® yelL:|ylelf,j+1)
_ O( Z j—s—1> o O<N—5s)
J>N®
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By (C4), 233) and (Z4.I0), we obtain
IB(G®) k)| < ca(Cirdet T(2m)*)™H > N*¥|y|72 = O(N ™).

YETL:|v|>N?

Using (2.4.4), we get the assertion of Lemma [Bl O

LEMMA 6. Let v e T4, i = 1,2, v £ ~3) Then

Bl —+.0-N)/2+ ]| < —7r

Proof. Bearing in mind that

1
e(z)—1 1 i
dx| = T th 2.4.11
/0 e(rz)dx 5 ’ Sl with 2z # 0, ( )
(4) and that Ny --- Ny = N, we have
1 1
1) _~2) 9.N)/2 ‘ < < .
B e =40 N2 4 B)] | £ ey < L
O
LEMMA 7. With the notations as above
E[A(GY)P] = O(n*1), EJAGOP = 0w %?),  (24.12)
and
JAG)| < A(G) = O(n®), with GCGW. (2.4.13)

Proof. By [243), 2.45) and the Cauchy—Schwartz inequality, we obtain that

5 s det ) ~2|@(7v)[?
E[AG)P] <20 )] (Z ((2;)F2)s|1\1|m((7‘)y\)2|

L2 PR ks€{—1,1} \nveG

det T) 2@ (ry ™) ||@(ry®
3 (det I) o (ry ) [|w(ry™))]

+M 4D eq (27T)2S|Nm(~y(1) ) | |Nm(‘y(2) )|

~ (D) £ (2)

x [Ble((v® =+, k-0 N>/2+B)]|>

with 8 = 22:1(721) — 71532))@;.
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Applying Lemma [6 we get

223
2 2s
E[JAG)P] < 22 sl,M<G)+W52(G,G) (2.4.14)
nell,s]
with
_ (det T) 2w (ry)[?
S1.u(G) = > | Z R (2.4.15)
'YeGa"YilS"Y,ul:"':l """ S
and
.. 2| WY& (2)

D eG A ed, v(1)£y ) (27)25|Nm(y(D)|[Nm(y@)|

We fix p € [1,s], and we consider S ,(G). Let v € B(m, 1, K, j). According to
@2213) and [Z2ZT1d), we have
INm(4)| = (j + 21)05,;2267Y and #I N B(m, pu,k,j) <1 (2.4.17)
with z1, 29 € [0,1]. By (23.30) and [24.17), we obtain
j+1>nt2(05,227H)7 for v e GO,

Hence

2 2 m =0 Y | =0m™V?), (2418

720 veGGINB(m,p,k,j5) j>nt/2

Z Z m:O Zl/j2 =0(1), for G € G,
)

]ZO ‘yeGmB(mzﬂ7K’7] ]Zl
(2.4.19)

Bearing in mind that Nm(y) < N° for vy € G UG®) and n = [logy N] + 1,
we get from ([2.3.3]) and (Z4.17) that

1 \ _om
Z Z )W_O Z 1/ ] =0(n). (2.4.20)

720 ve(GMUGBHNB(m,u,k,j 1<j<Nb5s
By @Z13), @35) and ([T4), we have for v € (G UG®) N B(m, p, K, j) that
logy |Vl € [miymi+1), i€[ls), i#v(n), |l <N° [Nm(v)|>Cy,
Cir N6 < y], slogy Cyr —5(s — 1) logy N < log, |yi| < 5logy N,i € [1, 5].
Therefore

m; € J, i€[l,s], i #v(p) with J=[slogy, Cpy—5(s—1)n,bn]. (2.4.21)
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From (22.17), 15 and 2415), we derive
(detT)~2c3
S1..(G) < —. (2.4.22
Lu(G) = Z Z Z (27)25|Nm(~)[2 ( )

K1, ks€{—1,1} m1+...+ms=0 'yEGﬁB(m,uNJ)
meZ®,5>0 |vil<slvuli=t,

Hence, we obtain for ¢ = 1,3 that

‘ detT")~2¢3
S1.u(GW) < Z Z Z m

K1,.. 7”56{ 1 1} my €JREL,s], k#UOL) ‘YEG(l)ﬂB(m,ﬂ, 7])
mi+...+mg=0, 5>

Applying [ZZ418), (2419) and [ZZ2T]), we get that
S1.,( Gy =0m"Y),  and S ,(GP) =0m"112). (2.4.23)
Analogously, we have from (ZZI6) and ZZ20) that for G,G ¢ G UG®)

s -of( ¥ S OXY ) | o

Ki,...,ks€{—1,1} my €J,kE[L,s] >0 veGo
k#v(p),m1+...+ms=0

(2.4.24)
where Gy = GV UGB N B(m, u, K, j).
According to ([2:414]), we obtain (Z4.12). By (242]) and (Z1.2), we have that
A(G) < (detT)"'ep Y 1/[Nm(y)].

~yeG

Now using (2.4.20), similarly to (22422)-(24.23), we get Z413).

Hence, Lemma [7 is proved. O

LEMMA 8. With the notations as above
S1,,(G) =0m* =) with G =Gy U Gi, p=1,...,s.

1<i<n5/941

Proof. Let v € G; N B(m,u,k,j). By @2ZI3), we have that log, [vx| €
[my, m + 1) with k € [1,s], k¥ # v(p). From [2338) and ([[4]), we derive for
vl < lyul,i=1,...,s that

logy [vk| < (i +1)n*?,  log, || > slogy Car — Z logs |v], E=1,...,s,
Jell,s], j#k

and

4/9 2/9

log, [ > (i + n** — n
Therefore

my € Ji with Jp = ((i F YO — 20 1,3+ 1)n4/9] g <n?9 42,
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and
mp € Jo with Jp = (—(s —1)(i + 1)n*° + slogy Cas — 1, (i + 1)n4/9] :
kells) k# (), i #02=0 ((+1)n*?), i=1,2,...
By 24.22)), we get that
- (detT)~2c3
DD DD DD DD B D D RN TVRGWIEE
Klyene ks€{—1,1} m, €J1 kE€J2 >0 ~ed;NB(m,u,k,j)
k#p,v(p) \»yi\§|»y#|,i:1,...,s
Using ([2.4.19), we obtain
Sl,u(éi) _ O(#Jl#st_z) _ O(is_Qn((s_2)4+2)/9).
Similarly we get that S; ,(Go) = O(n*=1/9). Now from (ZZIH) and [Z3.5),

we have

Sl,u(é) = SI,M<GO) + Z Sl,u(éi)

1<i<n5/941

-0 Z is—2n((s—2)4+2)/9 _ O<ns—1—2/9)'

1<i<n5/9
Hence, Lemma [8 is proved. O

LEMMA 9. With the notations as above
2
E UA(G@)‘ ] =0 (n*?(lnn)?).

Proof. Let
GO =y e GO : |N,v,| < 2(mm)” anqd |Njv;| > g(nn)* for j < p}. (2.4.25)
By [23.0), we have that
a®) — U GO GO NGGI) = for p#j.
ne(l,s]
Similarly to (24T4)-(24.16), using the Cauchy—Schwartz inequality, we obtain
from ([ZI.2)) and (24.1) that

E “A(G(B))ﬂ <ot Y Y T i ®,4),

HE[L,s] 7 E{-11} (1) ~(2)eqG.w)
JEMLs].i#n
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with
(det T) 2@ (ry W) [|@ (v @) -

PO ) = e NGy )

and

1/)(7(1),7(2)) =|E sin(WGMNMVf})) X sin(WGMNM%(LZ))

xe( S - (2))0Nm]/2>H

1<j<s, j#u

Hence
E[JAG™)] <520 ) > (S1(p) + S2(w))
ﬂe[lvs] H]‘G{—l,l},je[l,s],j?ﬁﬂ
with

Si(p) = Y vy and S = > P(P,A?)

~EGHB) (D) 42 e,
S0 2 (2)

Bearing in mind that |sin(x)| < |z|, we derive from ([2.4.27) that
1/;(’77'7) < min(1, |27 Ny, [%).-
Consider Sy(p1). By (ZZIT), we get for (1) £ ~(2) that
~ 1
(1) (2)
V(y ) < H N o _ (2)|
jellsl#n ™
N ‘,Y(l) o )‘ 2(lnn)4+1

= <
msIN|Nm(y () — @) = w571 Cf N
According to (Z22.8)), (Z3.0) and (L4)), we have
G®) C G(slogyCrr — (s —1)(n+1),n +1).

(2.4.26)

(2.4.27)

(2.4.28)

(2.4.29)

(2.4.30)

Using Lemma [, we obtain #G®) = O(n®). Applying Z426) and @429),

we get
So(p) = O(n2N—Lanm)'+1y — O(1).
Now we fix p € [1, 5], and we consider S (ut). Let
~ e T+ N Bm, u, &Y, ).
According to [22.13)) and (24.25), we have that
logy | N7, =logy Ny +my, + 21 < (Inn)*, 29 €[0,1).

(2.4.31)
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Hence
my, € J, with J=(—00,(Inn)* —log, N,].

By [2ZI7) and (4], we obtain that C4, max(1,7) < Nm(vy) < (j +1)C5,257!
and

min(1, |N,v, min(1 N222m“)
I SR G (zz )

mu€J YEGEWNB(m,p,k) j) ejiz1
Jj=0

N222mn 1 .
o oy MLy s o
m,, <—logy, N, m, €[—logy, Ny,(Inn)t—log, N,] j>1
Jj=1

(2.4.32)
Bearing in mind (Z21I3]) and that |y| < N, we have for k # u, v(p) that

my; + 21 = logy |yk| = logy Nm(7y) — Z log, |vj] = log, Cpy — (s = 1)(n+1),
JEM,s].j#k

with z; € [0,1) and

my € J with J=[log,C4 — (s —1)(n+1)—1,n+1]. (2.4.33)
By Z213), 2426), (Z4.29), (Z430) and (ZI15), we get
Ssw< U U U > $(7,7)

kMe{-1,1}s . mezs, -0 720 veGGHNB(m,pu,x(1) 5)

1+ tms=
< > X XX >
kMe{-1,1}s my cJ myed, 720 veGGwNB(m,u,k1) 5)
ke[l,s],k#p,v(p)

(det ') "2c3 min(1, |27 N, v, %)
(2)2*[Nm(v)[? '

Applying (2432) and (Z4.33)), we derive
Si(p) = O(#J° 2 (Inn)*) = O(n*~?(Inn)*).

By 2428) and (2431]), Lemma[J is proved. O
LEMMA 10. With the notations as above
A(GW) =0(1). (2.4.34)
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Proof. By (ZI1), @I2) and 241, we have
|A(G (4))| < (detT)~ Z H |Sln (6; Nz’Yz)|

2
’YEG’(4> i=1 |%

From ([Z33), we get for v € G® that |y| > N,
Jvell,s]  with  logy(lv|) = logy([v]/s) =2 n—1—log,s,

and
loga(|m) 4 -~ +logy(|7s]) < 1/2logyn, 1= [logy N + 1.
Hence, there exists p € {1,...,s} \ {v} with

1
10g2(|%‘)£; Z log, (7il)

i€[1,s],i#v

— 511< > logy (i) logz(lm)),

i€[1,s]
< (—n+1+logys+1/2logyn)/(s — 1),

and
Il < ANTTTR!/2,

Bearing in mind that N, N~/ € [1/c, co], we obtain

. 1__1 s
| sin(m (9 N;ﬁum < 7T|9 u7u| < 7T|Nu7u| O(N= 371n1/2) =0(n77).

Therefore

AGH) =0 <n-s > 1/|Nm() |> = O(n#GW).

~EG®)

Taking into account that G*) € G(0,10n), we get from Lemma [ the assertion

of Lemma [T 0O
LEMMA 11. There exists a real wo > 0 such that
E[(R(e NCK*+x,1))°] < wnt (2.4.35)
E [|R(e NCKF 4 x,T)—A(GV) 2] = O(ns=171/2), (2.4.36)
and
E[(R(e.N.KS+x,F) Y AG))?] = om0, (2.4.37)

i€[1,n5/9]
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Proof. By (ZZ40) and Lemmalll we get

5
R(O-N-K*+x,T) - > AGY)

i=1

< 2%

It is easy to see that
5
IR(0-N-K* +x,T) = AGD)| < > JAGD)] +2°.
=2
Using the Cauchy—Schwartz inequality, we obatain

E[|R(6-N-K*+x,I) - AGM)] < 5<ZE |AGD))?] + 22s>.
=2
Applying Lemma BFLemma [0, we have (2:4.30). By Lemma [ the triangle
inequality and the Cauchy-Schwartz inequality, we get (2.4.35).
Now consider the statement (2.437). From [2.3.9) and (Z4.1]) we obtain, that

[n5/9] [n5/9]
AGW) = Z A(G (G), with G=0Go | G (2.4.38)
=1

According to (Z4T14)), we have

2s o
E[JAG)?] <22 ) 81,.(G 2 S5 (G, Q).

Pl 7T CyN

Using Lemma[8 and (2.4.24]), we derive
E[JAG)I’] = O(n*~172/7).

From (Z4.30) and the triangle inequality, we get (Z4.3T). Therefore, Lemma [IT]
is proved. (]

2.5. Lower bound of variance of R(0-N - K* +x,T")

The main idea of the proof of Lemma is to choose in G con®~!

different blocks D(m) of volume 2det(I') and lying under the hyperbole
{x €R* | |z1 - x4| < det(T")}. The next step is to prove that for given v € D(m)
the corresponding summands in ([2.5.0]) are sufficiently large. This follows from
the statement min; | N;7v;| > 1 and the obvious inequality

max(|cos(y)|,|cos2y|) > 1/2 for all y.

LEMMA 12. There exist reals ws, cs > 0 such that for N > c5 and for all x
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; (detT")—2
= —— —F
Y 2 G NeeP

Hsinz(ﬂé?iNi%)}
i=1
x 2cos?(2m(y,x)) > wyn®" 1. (2.5.1)

Proof. Let m € Z5,m; + -+ +ms =0, ¢ = 2+ [det '+ /C3,], and
D(m) = [[[-¢™ ¢™] x [~ det T g™, det T*g™].
i=1
According to Minkowsky’s theorem, there exists
~v(m) € T+\ {0} with ~(m) € D(m).

We see that
@ see tha INm(~y(m))| < det T (2.5.2)

Suppose |y(m);| < g™~ for some i € [1,s — 1]. By (4] we get
Cir < INm(y(m))| < det T /g < C3;.
We arrive at a contradiction. Hence
() | € (@™ g™ fori € [1s — 1], and ~(m®) £ y(m®), (25.3)
for m() £ m®) . Let
G={v(m)| —n/(4s)log,2 <m; < —2s, i=1,---,s—1}. (2.5.4)
We see for sufficiently large N that
#G >n*""((5s) "' log, 2) (2.5.5)

By [ZZ3) N;NY* € [1/co, o). From ([Z54), we obtain for sufficiently large N
that

Ni2_2s > |Nz"7i| > 0612n/5_n/(48) log, 2—2 > 2ln4n7 ie [1,8 _ 1]7 ~ e G.
Consider v, with v € G. By [Z5.2), we have
sl = INm(y) (1 ¥s=1) T € |71+ Yoo [ THChy, det T,
Now using (Z.5.3) and (ZE54), we obtain for sufficiently large N that

s—1

log, |[Nsvs| < n/slog, 2 + log,(co det ') —my—--my_1 < 3/4nlog, 2,
and
s n(logq 2)
log, |[Nsvs| > (n—1)/slog, 2—log, co+log, Ciy—myi—---—ms_1—5 > —

Therefore, we get for sufficiently large N and for v € G
lv| < N/2, INm(y)| < det T-, [Ny | > 207 i =1, s, (2.5.6)
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So G U2G C Gy (see [Z34)).
Let v € G. Taking into account that |[N;y;| >4 (i =1,...,s), we obtain

1 1
/ sin?(70; Nyy;) d; = 1/2 — 1/2 / cos(2m6;Nyy;) dé; > 1/4. (2.5.7)
0 0

Let T = [1/6,1/3] U [2/3,5/6]. If {(v,x)} ¢ I, then |cos(2n{{~,x)})| > 1/2.
Let {(v,x)} € I. Then we take 2+ instead of 7. We see that

|cos(2m{(2v,x)})| = 1/2,
and

max (cos2 (27 (y(m), x)), cos (27r<2'y(m),x))) > 1/4. (2.5.8)
By R5I)-E2538), we have

) > Z %(1/4)3_1 max (0052 (27 (v(m),x)), cos® (27T<2‘)’(1’I1),X>)>

2s(12s
Smeq TV
mEZS_l
> wy#G, with wy = (detT)~2((27)*C35) 1475,
Applying ([Z535), we get the assertion of Lemma [T21 O

LEMMA 13. There exist reals cg, w1 > 0 such that for N > cg
E[(R(O N -K* +x,1))?] > wn® ' (2.5.9)

Proof. Applying ZI2) and ([ZZ1]), we have
E[JAGY,0))’] = 81 + 55, (2.5.10)
with
Sy = Z PV, @), Sy = Z S, =), (25.11)

(1) 4(2) ca(D) (1) 4(2) (D)
~(D) =14 (2) (1) 24 (2)

where
. (det T) 20 (1t (—742))

Py, =)= PN (7 N (=) © (7D =@y, 2) (v = 4?).

and

Py, 4@ = B| [ sin(a8;Niy") sin(—m0; Niv{ ) | (2.5.12)
=1

We consider S;. Bearing in mind (21.3), (Z14), that
le(z) — 1| = 2| sin(7z)| < 27|z|
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and that w(x) is supported inside the unit ball B = {x : [x| < 1}, we obtain
for 7 =1/N? and |y| < N that

or9) = 1= | [ ettrvomstoax—1] = | [ (e(brx/) = ) dx

< 27T/N/ w(x)dx = 27/N. (2.5.13)
B

By [Z5I2), we see that

By, =) (Nm(y)Nm(—y?)) 7= (v, @) (Nm(yD)Nm(y?)) .
(2.5.14)

Taking into account that 1+ cos(2z) = 2cos?(z), we get from (Z5.1), 51T,
Z513) and 2514) that

5’1=1[)+O<1/N > m> (2.5.15)

~yeGM)
By 418), ZZ423), @513) and Lemma [[2] we have for sufficiently large N
S1 > 0.5wzn® L. (2.5.16)
Now we consider Sy. We see from (Z5.12) and (ZZI)

P (v, ~?) ‘

27% Z mgl),‘qél) o ,122)]4]
R mPe{~1,1}

1<i<s,j=1,2
270 )] e (Z 0; N; (%(1) + m%@))/?)} |
K1,...,ks€{—1,1} i=1

. T 1
2 > [[min (1, oD (2))|> . (2.5.17)

Riyeoske€{—1,1} i=1 i TR

E

IN

IN

Applying Lemma @l we get that ¢(y"),~v2) = O(n=2%%). By @Z4146), ZZ24)
and (Z.5.11]), we derive that

8 = 0(n2°5,(GW,GW)) = O(n~).
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From (Z35.10) and (Z5.16]), we have for sufficiently large N that
E[|AGY,0)*] = 0.25uwsn " (2.5.18)

By the triangle inequality, we obtain

(E[(R(e "N -K°® +x, 1“))2])1/2

1/2 1/2
> <E[|A(G<”,0)|2D - <E[|R(9-N-KS +x,T) A(G<1>,o)|2D :
Using (2.5.18) and Lemma [T1] we get the assertion of Lemma [I3] O

2.6. Four moments estimates for A(G;)

Let
1, if Tis true,

6(%) = )
0, otherwise.

LEMMA 14. With the notations as above, we have
E[JA(G)|Y] = O(2=Dp/96—1), (2.6.1)

Proof. Using the following simple inequality

4
2 o < (2512“%!@1') <2 3 lailh

1<i<2s 1<i<2s
we obtain from (2.4.7))
E[JAG, [ <2 > [B(Gi k7" (2.6.2)

K1,...ks€{—1,1}
Applying [Z48) and Lemma [0 we get
EIB(Gim) = TT > Ia)I(3(3 =0)+ (1= 83 = 0))N'0(1)),

1<]<4’7(J)€G

where 4 = (1) —~4(2) 1 40) —4 @) From (Z47), 24106), ZZ24) and Lemmal3]

we derive that
E[|B((Gi, k,7)|))] = Vi + Vo + O(n**/N), (2.6.3)

where

et I) & (ry @)
= ]I Z Sl o )|5(ﬁ=0)5k('7), k=1,2,  (2.6.4)

©)
1<,]<4 <-7>EG 27T |Nm 7j )|
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Wlth ‘_y = (7(1)’7(2)’7(3)77(4))’

01(3) =8(Fj, 1€ 1,4, j#1|4D = (-1)!7H40), and &(3) =1-61(%).
(2.6.5)
By [22.0) and (2210), we have that

.y(j) _ :y(j) . 0(77(”) with :y(j) _ (%j)7 o ’:ygj))’:y(j) €T,
and ‘ ) ‘
N9 e YYD, a,b), (j=1,...,4).

Using ([22.10) and (Z3.8)), we obtain that

4/9 4/9 2/9

a=1in and b=n""—n*".

Hence

Vk:0< I > > ;)'5,9(70 (2.6.6)

1555150088, nei g ap INEEY
x 5(5,(1) . 0(77(1)) — 4@ 0(77(2)) +56) .g(n(?»)) — AW 0(77(4)) - 0).
It is easy to see that
~M. 0(77(1)) — 5@ 0(77(2)) +5@). 0(77(3)) — 5@ 0(77(4)) -0
if and only if
(%1)01 (77(1)) - %2)01(77(2)) + %3)01 (77(3)))/%4)01 (77(4)) =1
(2.6.7)

First we consider V3. We fix 4,5 33 5 and n® | From @Z0) and
([Z5.5), we get that there is no degenerate solutions (n*), ) 7)) of the equa-
tion (Z6.7)). Applying Theorem A, we have that the number of non-degenerate
solutions (7,7 n®)) of @B is finite. Hence

1
Vi=0 . (268
2 2 Nm(5 )] [Nm(5))] (205)

D EF,,1<j<4n® es(F D ,a,b)
By (2210 and 2ZI2), we derive
Vi = O((ln n)*b(a + b)3_2> = O(i3_2n4/9(5_1)(1n n)4). (2.6.9)

Now we consider Va. Let yU0) = (—1)lo—dotlylo) Bearing in mind that
‘Ay = 7(1) — 7(2) + 7(3) — 7(4) — 07 we Obtain that Fy(]l) — (fl)ll_jl‘i‘l—y(ll)
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with {j1,01} = {1,2,3,4} \ {jo, lo}. Hence, from (264, we get

1 2
o[ 5 )

;;/<1) EFTL 77(1> eﬂ(;“/<1)7a7b)

By 2211) and ([(ZZT2), we have
Vy = O(bz(a n b)2(s—2)) _ O(i2(5_2)n8/9(5_1)).

Using (Z6.2), (Z63) and (ZG9), we obtain (Z6.1]) and the assertion of Lem-
ma [I4] O

2.7. Conditional variance estimate

From (Z88) and (289), we get that the bound in the martingale CLT
depends on A, = FE(|VZ — 1|), where V2 is a Lévy conditional variance.
By (Z:816]) and (2:820), in order to obtain A,,, it is sufficient to find the upper
bound of s (see (2.7.12])). We will obtain this bound in Lemma [[7] by using the
auxiliary variables HL]‘,HL]' and ﬁivj’ with Hi,j = Hz,j + HL]‘. In Lemmaﬂﬂ
we prove that ﬁi,j is the essential part of H; ;. In order to obtain the upper
bound of ﬁi,j, we decompose the domain of the summation by using the aux-
iliary functions 6;(1) (see (ZZI)-(@272)) Next we use Diophantine inequalities

232) and [233)) (see Lemma [I0)).

Let
- 5= (.),(1)7.7(2)7.7(?0’.),(4))7

Y= = ¥s) = 0 AW 4 @y

5= k® . ) 4 @) )

== G o) = O gD @2, (27.1)
01(y) =0(y =0, ¥=0),
02(y) =0(y =0, ¥ #0),
93(y) =d(y #0, ¥ = 0),
04(y) =0(y #0, ¥ # 0, v € [1,5]7, = 0 and ¥, =0),
05() =0(3 #0,¥#0, € [L,s]y, =0and fv € [1,5] 4, =0, ¥, =0),
96(y) =0(y #0, ¥ # 0, Vv € [1,5]7, # 0 and ¥, #0),
07()=d6(% #0, ¥ #0, Vv € [1,s]%, # 0 and Iv € [1,s] %, =0).
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It is easy to verify that

> (v =1. (2.7.2)

1<k<7

LeEMMA 15. Letl > 2, 4,5 =1,2,..., and let

H; (1) = > 3 S (W) h(y ™) (2.7.3)

kW, kW e{—1,1}° (1) 4y @, vO) y(Ded;

X (51 ( Z Z le/i(y)’yéy)Nk/2>

ke[l,s] ve[l,2]

e( Z Z 0 m(y)w,iy)N /2)

kell,s] ve[3,4]

Then
H; ;(1) = O(n=10%). (2.7.4)

Proof. Applying [247) and Lemma [0l we get

i,m=of Y > Y Mm@y )

K/(l),.‘.,l‘\‘/(4>€{—l,l}s 7(”77(2)6@7; ’7(3>,’Y(4)6G.j
1 1
X H mln( > i (1, —)
kel " Nkl — ] N4l
From (Z7.0]), we have that for [ > 2 there exists ko € [1, s] such that

maX(‘;Yko - ;yk?o‘? |ryk0|) > 0.
Using Lemma [l we derive that N; max(|¥x, — Yk, |, [k|) > ¢n?°. Thus

4
H;(1)=0 n_203< Z (Nm(‘y))_1> . (2.7.5)

~eGM)

By @Z38) and @34) G = G(0,2n). Similarly to (Z6.8) and ([2.6.9)), we obtain

from Lemma [3] that
Hi,j(” — O<n—203n83) _ O(n—los)' (2.7.6)
Hence, Lemma [T3] is proved. O
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LEMMA 16. Letl > 2, i < j, and

H, (1) = > 3 ST by ™) by )

;{;/(1)7“‘7&(4)6{_171}5 "/(1)77(2>€Gi 7(3)77(4>€Gj

X 6,(7)E (Z ST sy Nk/2> . (2.7.7)

ke(l,s] ve(l,4]

Then
H; (1) = O(js2n*/0s=1F2/45), (2.7.8)

1,

Proof. Applying [247) and Lemma [6] we get

mo-of Y Y ¥

D, kWe{=11} v 4@ ed; vO) yWed,

-----

X ’Nm('y(l)...v(‘l))‘ () H mm( T V|> . (2.7.9)

ve(l,s]

We will prove Lemma [I6] separately for each [ € [2,7]:
Case | € {2,5}: We will consider the case | = 2. The proof for the case

| =5 is similar. By (Z7.0) and (279]), we have

INm (4D - - .4 @)]

Mg = 2 2 2 5%, = 0,5, #0)

KW e{-1,1}s y() v eq; v®) yHeG;

-----

.y(j) — :y(j) .J(n(j)) with :y(j) cF,

- 4/9 as = ay :jn4/9
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We fix 41,52, 53 5@ and n®. Bearing in mind that 4, # 0 and i < 7,
we obtain that there is no degenerate solutions (n*), 1) 7®) (see [EZ31)))
of the equation

B= Y PiPe,m®) =o.
1<k<4

Similarly to [26.8) and ([2Z:6.9), we derive from Theorem A, ([Z2.11]) and
(Z212) that

INJM,V:O Z Z _ :O(js_2n4/9(s_l)(ln n)4>.

, . Nm (7
D eF, n (7™ aq,ba) )
1<5<4

Hence, the assertion (Z7.8) is proved.

Case | € {3,7}: We have from Z7.T)) for both cases | = 3 and | = 7 that
there exists v € [1, s] such that 4, # 0,4, =0 and 4, = n,(,l)%(,l) +/€,(,2)7,(,2).
Applying Lemma [l we get |N,7,| > ¢n?%. Now using [Z7.5), (27.6) and
2273)), we obtain (2.7.8).

Case | = 4: By ([271), we have that there exist u,v € [1,s] with 4, = 0,
4, = 0, and ¥, # 0. It is easy to derive that ~1) = £~ 4B) = £4@)

and 4, = 17y + o) with & € {—2,0,2}, i = 1,3. Hence
Ful =27 or [yl =20P] or |3l =2ky{) 4P| #£o0.

Applying [234) and Lemma @ we get |N,5,| > ¢n?°® for sufficiently
large N. By [277.0), 277.0) and (Z79), we obtain (278]).

Case | = 6: By (233), we have that there exists v € [1,s] such that
7,(,4) > 9in*/? Using Lemma Ml we obtain for sufficiently large N that
| = 15395 + 5090 ] > D] exp(—é(Inn)?) > 27" exp(—é(inn)?)]

S Q42 5 D0 4 2,0

Hence, we get for sufficiently large N that
Nl = Nl nD 4 K20+ w924 kDo) > N /2 > 2

Now from Z75), 7.0) and [279), we obtain (Z7.8). Thus, Lemma [0 is
proved. O

bet Hiy= 3 (Hiy (1) — i 5(0). (2.7.10)

1<I<7
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By @12), @Z3) and @IT), we get
Hyj= > > > h( W) (W) (2.7.11)

M,k e{—1,1} y () 42 eG; YO,y EG;

(zxlzz

ke(l,s]le(1,4] ke(l,s]le(1,2]

x|E -E E

(2.2

ke[l,s]l€[3,4]

with ¢k,l = le/ig)’ylg)Nk/Q.
LEMMA 17. With the notations as above, we have

2
x:=E ( > (AGH) - E[A2(G,-)])> = 0?75 (2.7.12)
i€[1,n5/9]
Proof. Let
w5 = E[(A*(Gi) — BE[A%(Gi)]) x (A%(G;) — E[A%(G))])]-
It is easy to see that
w,; = B[A(Gi) A%(G;)] — E[A%(G))|E[A*(G;)],
and
)< getde, with de= Y g, and =2 Y |ml (27.13)
i€[0,n5/9] i,j€[1,m5/9], i<j
By Lemma [I4] we obtain
i < B[JAG)|'] = O 2p®/ot= 1),

and
= 0( > i2(8_2)n8/9(s_1)> = O(n?(=1=5/9), (2.7.14)
i€[0,n5/9)
Using (Z49) and @7.IT), we get
i = H; ;. (2.7.15)

From 7)), @73) and 271), we derive

H; (1) — Hi;(1) = 0.
By Lemma [I[5 and Lemma [T6 we have
H;;(1) = O(n=1%) and H; ;(l) = O(j* 2nd/96=D+2/45) 1 — 9 3 7 i<}
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Applying ([ETI0), we obtain H; ; = O(j*2n*/°=1). Now from ([ZT.I3) and
ETTH), we ot

P O( Z js—1n4/9(s—1)+2/45> _ O(n5s/9+(s—1)4/9+2/45) _ O(ns—2/5)_

JE[L,MS/?]
By @2713) and (2Z7I4), Lemma [T is proved. O

2.8. Martingale approximation
Denote by F(I) the sigma field on [0,1)° generated by

1 s ks +1
(f557) e[ 57) ko)

27 2
10) = 0,1(i) = (i + 1)[n*?] + [n/s — n*/?],
Fi=F((i) and & =E[A(G:) | Fi] - EJA(G:) | Fisal, i =1,2,... (2.8.1)
Then (&;)i>1 is the martingale difference array satisfying

E[§|Fici] =0, i=1,2,...

Let

LEMMA 18. With the notations as above
E[A(G)) | Fi_1] = O(n™10%), A(Gy) — & = O(n=10%), (2.8.2)
AGH)2 =2 =0n"%) and |&* <8JAG)I* +0(n~%). (2.8.3)
Proof. It is easy to see that
(k+1)/2'
|2l/k/21 sin(A0) df| = 2/A| cos(A(k+1)/2") —cos(Ak/2')| < 2"F/A with A>0.

Hence, we obtain for |y;| > 2in""*] and |N;| > cyt2("=1/5 that

(k+1)/2bi-1 o
]2li—1/ sin(N;7;0) de‘ < o2 145, (2.8.4)
k/2li-1
Bearing in mind that
(kj+1)/2'i=1
E[¢1(61) - -+ - ¢5(05) | Fi-i] H2l ¢;(6;) db;
kj/2ti=1

k k141 ks ks+1
on |gEr B o x [w—,lw—,l), we have from (@38), @L2), @ZI),
Lemma Bl and (2:84)), that

E[A(G)) | Fia] = O(n*271"")) = O(n=1%). (2:85)
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Now let

i nA/91_1p2/9 1,2 k k+1
sl < 2000 and g *bg?)’

then

sin(Njyjé?](-l)) —sin( JVJG() ‘—‘NV 9(1) 9(2))cos( JVJG(?’))’

<ol bz

(3) kE k+1
0; e{ﬁ, 5 )

)

with

Therefore

Hsm nyjé?(l) Hsm J’yﬂ@) —I—O( [ 1/9]_["2/9]> .
Thus

ﬁsin(Nj’ijj) ~E f[sin(NmeHﬂ +0(2["”9]—["2/9]>. (2.8.6)

j=1

Taking into account (2.3.8)), 2I1.2), 241) and (28.3), we get [Z82). It is easy

to see that o o ) . .
|A(G:)” = &1 < CIA(G)] + |A(G ‘) = &GDIAG) = &l
j€i|* < 8JAGH)|*+ 8JA(G:) — &
Applying ([2.413)), we obtain (2.8.3). Hence, Lemma [I8 is proved. O

We shall use the following variant of the martingale central limit theorem

(see [Md, p. 414)):

Let (2, F,P) be a probability space and {((ux, Fngi) | n = 1,2,...,k =
1,...,kn} be a martingale difference array with E[(, x| Fy k—1] = 0 a.s. (F, 0 is
the trivial field).

THEOREM C. Let L(n,e€) = Zlgkgkn E[Cﬁ,@(Kn,k\ > 6],
Su= D Guks and V= )" E[G[Fur1], (2.8.7)

1<k<i 1<k<ky,

1
Ap=E[V} -1, W,= [ L(n,ede, and > E[Z,]=1 (288)
0

Then
sup |P(S, < t) — ®(t)| < T(WL/4 + AL/3), (2.8.9)
t
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Now we apply Theorem C to the martingale difference array (Z8I) with
ok = Fi, G = &i/0, 0= (et ] E[¢2))'/2, and k, = [n5/°].

LEMMA 19. Let

> &le (2.8.10)

1<i<kn
Then
sup [P(S, < t) — ®(t)| = O(n~1/1),
t

Proof. By 281, (&)i>1 is the martingale difference sequence (and conse-
quently orthogonal). Using the triangle inequality, Lemma [[1, Lemma [[3] and
Lemma [I8 we obtain

= Y EEGI=E|| > &||=E| > AG)| +0()

1€[1,ky] 1€[1,ky] 1€[1,ky]
=E [(R(G ‘N -K* +x, r))z} + 0> 2% e n*Hws, wy],  (2.8.11)

with some wy > w3 > 0.
Let F be a sub-o-algebra of F. By Jensen’s inequality, we get

E[[0]°] < (B[|9))*/? and E[[0]* | F] < (E[[9|° | F)*/?, with > a > 0.
(2.8.12)
Consider W,,. We derive from (2.8.8) that

= > //|€Z/Q|6£1/Q|>€dpde< 3 // 1€,/ of?

1<i<k, 1<i<ky, {I&/o|>€}

x &/ (0e)PY/*> dPde <y /|§/g\74/25dp/ —24/25 4.

1<i<ky

Applying (Z811) and (2Z8I2) with a = 74/25, § = 4, we have

Ky 37/50
W, < 252 </ |£i/9|4 dP) -0 ( —(s—1)37/25 Z 37/50> _
i=1

(2.8.13)
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By Lemma [T4] we get

Wn:O<n—(s—1)37/100 Z Z.z(s—z)ggng(s—ngg)

1<i<kn

= 0 (n—(s—l)%+%(2(s—2)%4_1)_’_%(8_1)%)

= O (n™¥/1%) and WY/ =0O(n=1/1), (2.8.14)
Next consider A,,. Let
U= (&/o) (2.8.15)
1<k<k,
Using (Z811), 2873 and Lemma[I8, we derive
I 2
E|U, -1 = o *'E || ) (& - E[¢)) (2.8.16)
1<k<k,
d 2
<207'E > (A%(Gi) —E[A(Gy)) | | +O(m®).
1<k<k,
By Lemma [I7 we obtain
E[|U2 — 1]?] = O(n 257D H2=D=5/9) = O(n=5/9), (2.8.17)
Let
G = (&/0) ~El(&/0)*|Fia] and V3= 3 E[&/0)*|Fim] (2818)
1<i<k,

By 281), we see that (s;);>1 is the martingale difference array satisfying
E[¢|Fi—1] =0, i =1,2,... From (Z8I7), we have

Bv:-0P=E] ¥ of]= ¥ B

1<i<k, 1<i<kn,

Using (Z81])) and [Z812), we get
E[s7] < 207 (B[&/] + E[(BI¢7[Fi1])?)) < 40 B[g].
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By Lemma [[4] Lemma [I§ and 2811, we have

i=1

kn
-0 (n—2(s—1) Zi2(s—2) « n8/9(s—1)>

kn
B[V - U2P] =0 (n-“s-” S EAYG) + n>

i=1
-0 (n—Z(s—1)+5/9(25—3)+8/9(s—1)) _ O(n_5/9). (2.8.19)
By 2838) and (2812), we get
A2 = (B[IV2 —1[)? < E[IV2 — 1]

=E[V; - U} +U;, -1

< 2E[|VZ — UZ|*] 4 2E[|UZ — 1/?]. (2.8.20)
From (2:817) and (Z819), we derive

A2 =0(n~2/%), and AL®=0(m/1).

Applying ([Z814)) and Theorem C, we obtain the assertion of Lemma [TO d

2.9. End of the proof of Theorem [l

Let S, = R(0 N K, +x,I)/p and 6 = (E[R*(0 - N - K, + x,I])
Using Lemma [IT] and Lemma [I8, we obtain

1/2

2
E (R(G-N-KSer,F) > gi>
1<i<kn

< 9E (R(G-N~K5+X,F) > A(Gi)j

1<i<kn,

+2E ( > (A(GQ—@)) = O(n*~17%/9), (2.9.1)

1<i<kn,

By @8I, we get 6> — 0*> = O(n*~172/9), 4> > wyn®~! for some wy > 0, and

1 1 — 0 25
’_ _ _.’ _ |Q .Q| _ |Q Q.| _ O(n—3/2(s—l)—2/9). (2‘9.2)
o 0 00 0olo + 9
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Applying Z810), 1), @.9.2) and ZI.1), we derive

E[(S, — $,)?] < 2E ( > G- N-]KS+:J<,F)>2/Q2

1<k<kn,
+2(1/0—1/0)*E[R*(6 N -K, +x,I)] = O(n~%/9).
By Chebyshev’s inequality, we have
P(|Sn —Su| > n—1/15) _ O(n_2/9+2/15) _ O(n_1/15). (2.9.3)
It is easy to see that

{Su <3 C({Sn <t +n7YIN{ISy = Sul < n VBN U IS, = Sp| > 071}
and

{Su <t —n7PYC ({80 <t} N {I8n = Sul < 07V} U{ISy —Sal =0~/
Hence

P({S, <t— n‘1/15}) — P({|Sn —Sul > n‘1/15})

<SPS, <t}) < P({Sh <t+n YY) + P({ISh =S, > n7V0}). (2.9.4)
We note for |u| < n~'/1 that

t+|ul 25 1 t+n—1/1° 9 s
O(t+u)—2(t) < — / e " dug—/ du=—n""/"".
(o) < = [ L[ ae L

Using Lemma [T9, we get

sup‘P {Sn <t+u}) - t)‘

< SLtlp(|P({Sn <t+u}) —B(t+u)| + [P +u) — <I>(t)|)
— O(n_1/15), |U| < n—1/15.

By 294) and (Z9.3), we derive
sup |P(S, < t) — ®(t)| = O(n~1/1).
t

Bearing in mind that throughout the paper O-constants does not depend
on x, we obtain the assertion of Theorem [Tl O
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2.10. Sketch of the proof of Theorem

We use notations from §1.3. Let

10:[0 Y1) X - [0 Ys—1)s
=[=v1/2,y1/2) X -+ X [~ys—1/2,Ys-1/2),
=[-1/2,1/2)",

[-
[—
[—ysNdetT/2,ysN detT'/2),
[—2s(x, [ys N1) /2, 25(x, [ys N]) /2),
(

(

y1/2 : ay8—1/2328(xa [ysND/2) - X,

Uz = 1/2 71/2728(X7[y8N])/2)7X
with x = (-rla to 7xs—1)7 X = (‘rla' o 7xs—130)'

By (), (ILH) and ([I7), we obtain
A(lo, (T (x ))[ysN] D =N x B4+ul,T) =y ys N (I x I +ua, T).
Let a = z5(x, [ysN]), b = ys N det T, and let

o W =a/2,-6/2)Ub/2,0/2),  ifa>b,
(v, 1) = (—1,[-b/2,—a/2)U[a/2,b/2, otherwise.

By (LH) and (1), we get
A([o, (Tl(x))gisol\]]_l) =Ry + KRy — Y1y2 - 'ys—l(RZ + HR2)
with
Ri=R(I; x Is +w;,T), and R; =R(I; x I, +u;,T), i=1,2.
It is easy to verify (see also [Le2l p. 86]) that
R; =0((In(n))*™"), i=1,2.

Thus Ry — y1y2---ys 1Ry is the essential part of A(IO,(TZ(X))[%N] h.
Repeating the proofs of §2.4, we have the upper bound of the variance
of Ry — 1 ---ys—1Rs. Using Roth’s inequality (I6), we get the lower bound
of the variance Ry — yi---ys—1Ro. Next repeating the proofs of §2.5 — §2.8,
we obtain the assertion of Theorem 2l (Il
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