OPEN

ON THE PSEUDORANDOMNESS
 OF THE LIOUVILLE FUNCTION OF POLYNOMIALS OVER A FINITE FIELD

László Mérai - Arne Winterhof
Dedicated to the memory of Professor Pierre Liardet

Abstract

We study several pseudorandom properties of the Liouville function and the Möbius function of polynomials over a finite field. More precisely, we obtain bounds on their balancedness as well as their well-distribution measure, correlation measure, and linear complexity profile.

Communicated by Manfred Kühleitner

1. Introduction

In analogy to the Liouville λ-function and the Möbius μ-function for integers, Carlitz [2] introduced the mappings λ and μ for polynomials over the finite field \mathbb{F}_{q} by

$$
\lambda(F)=(-1)^{\omega(F)}, \quad F \in \mathbb{F}_{q}[X],
$$

where $\omega(F)$ denotes the number of irreducible factors of F (counted in multiplicities), and

$$
\mu(F)=\left\{\begin{array}{ll}
\lambda(F) & \text { if } F \text { is squarefree, } \\
0 & \text { otherwise, }
\end{array} \quad F \in \mathbb{F}_{q}[X] .\right.
$$

[^0]
LÁSZLÓ MÉRAI - ARNE WINTERHOF

Carlitz [2] proved

$$
\begin{equation*}
\sum_{\operatorname{deg} F=d} \lambda(F)=(-1)^{d} q^{\lfloor(d+1) / 2\rfloor} \tag{1}
\end{equation*}
$$

and

$$
\sum_{\operatorname{deg} F=d} \mu(F)=\left\{\begin{align*}
0 & \text { if } d \geq 2 \tag{2}\\
-q & \text { if } d=1
\end{align*}\right.
$$

where the sums are over all monic polynomials $F \in \mathbb{F}_{q}[X]$ of degree d.
For $\ell \geq 2, d \geq 2$, distinct polynomials $D_{1}, \ldots, D_{\ell} \in \mathbb{F}_{q}[X]$ of degree smaller than d, q odd, and $\left(\epsilon_{1}, \ldots, \epsilon_{\ell}\right) \in\{0,1\}^{\ell} \backslash(0, \ldots, 0)$, Carmon and Rudnick [3, Theorem 1.1] have recently proved that

$$
\begin{equation*}
\sum_{\operatorname{deg} F=d} \mu\left(F+D_{1}\right)^{\epsilon_{1}} \cdots \mu\left(F+D_{\ell}\right)^{\epsilon_{\ell}}=O\left(\ell d q^{d-1 / 2}\right), \quad d \geq 2 \tag{3}
\end{equation*}
$$

(For $d=1$ the sum trivially equals $(-1)^{\sum_{j=1}^{\ell} \epsilon_{j}}$.) Since the number of monic squarefree polynomials over \mathbb{F}_{q} of degree $d \geq 2$ is $q^{d}-q^{d-1}$ (see for example [12, Proposition 2.3]) the same result holds for λ instead of μ as well.
(11), (2), and (3) are results on the global pseudorandomness of polynomials of degree d over \mathbb{F}_{q}. More precisely, (11), (21), and (3) are essentially results on two measures of pseudorandomness, the balancedness and the correlation measure of order ℓ, respectively, for all monic polynomials of degree d. In this article we focus on the local pseudorandomness, that is, we deal only with the first $N<p^{d}$ monic polynomials of degree d (in the lexicographic order). The main motivation for doing this is to derive binary sequences and to analyze several measures of pseudorandomness for binary sequences: the balancedness, the well-distribution measure, the correlation measure of order ℓ, and the linear complexity profile. In particular, to obtain a lower bound on the linear complexity profile we need a local analog of (3). Although our results can be extended to any finite field of odd characteristic we focus on prime fields to avoid a more complicated notation. More precisely, let $p>2$ be a prime and denote by \mathbb{F}_{p} the finite field of p elements which we identify with the set of integers $\{0,1, \ldots, p-1\}$ equipped with the usual arithmetic modulo p. We order the monic polynomials over \mathbb{F}_{p} of degree $d \geq 2$ in the following way. For $0 \leq n<p^{d}$ put

$$
F_{n}(X)=X^{d}+n_{d-1} X^{d-1}+\cdots+n_{1} X+n_{0}
$$

if

$$
n=n_{0}+n_{1} p+\cdots+n_{d-1} p^{d-1}, \quad 0 \leq n_{0}, n_{1}, \ldots, n_{d-1}<p
$$

We study finite binary sequences $S_{p^{d}}=\left(s_{0}, \ldots, s_{p^{d}-1}\right) \in\{-1,+1\}^{p^{d}}$ with the property

$$
\begin{equation*}
s_{n}=\lambda\left(F_{n}\right)=\mu\left(F_{n}\right), \quad F_{n} \text { squarefree. } \tag{4}
\end{equation*}
$$

PSEUDORANDOMNESS OF THE LIOUVILLE FUNCTION OF POLYNOMIALS

Our results will be independent of the choice of $s_{n} \in\{-1,+1\}$ for nonsquarefree F_{n}.

First we prove the following local analog of (11) and (21) on the balancedness of the sequence $S_{p^{d}}$.
Theorem 1. For $d \geq 2,1 \leq N<p^{d}$, and s_{n} satisfying (4) for all $n=0,1, \ldots$ $\ldots, N-1$ such that F_{n} is squarefree, we have

$$
\sum_{n=0}^{N-1} s_{n}=O\left(d\left(N p^{-1 / 2}+p^{1 / 2} \log p\right)\right) \quad \text { if } d \text { is even }
$$

and

$$
O\left(d\left(N p^{-1 / 2}+p^{3 / 2} \log p\right)\right) \quad \text { if } d \text { is odd. }
$$

Next, we study several pseudorandom properties of $S_{p^{d}}$. For a survey on pseudorandom sequences and their desirable properties we refer to [17.

For a given binary sequence

$$
E_{N}=\left(e_{0}, \ldots, e_{N-1}\right) \in\{-1,+1\}^{N}
$$

Mauduit and Sárközy [9] defined the well-distribution measure of E_{N} by

$$
W\left(E_{N}\right)=\max _{a, b, t}\left|\sum_{j=0}^{t-1} e_{a+j b}\right|,
$$

where the maximum is taken over all $a, b, t \in \mathbb{N}$ such that

$$
0 \leq a \leq a+(t-1) b<N
$$

and the correlation measure of order ℓ of E_{N} by

$$
C_{\ell}\left(E_{N}\right)=\max _{M, D}\left|\sum_{n=0}^{M-1} e_{n+d_{1}} e_{n+d_{2}} \ldots e_{n+d_{\ell}}\right|
$$

where the maximum is taken over all $D=\left(d_{1}, \ldots, d_{\ell}\right)$ and M such that

$$
0 \leq d_{1}<d_{2}<\cdots<d_{\ell} \leq N-M
$$

We will prove the following bounds on the well-distribution measure and the correlation measure of order ℓ for $S_{p^{d}}$.
Theorem 2. We have the following bound on the well-distribution measure:

$$
W\left(S_{p^{d}}\right)=O\left(d p^{d-1 / 2} \log p\right), \quad d \geq 2
$$

Theorem 3. We have the following bound on the correlation measure of order ℓ :

$$
C_{\ell}\left(S_{p^{d}}\right)=O\left(\ell^{2} d p^{d-1 / 2} \log p\right), \quad d \geq 2
$$

LÁSZLÓ MÉRAI - ARNE WINTERHOF

Theorem 3 allows us to derive a lower bound on the linear complexity of the binary sequence $S_{p^{d}}^{\prime}=\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{p^{d}}^{\prime}\right)$ defined by the relation $s_{n}=(-1)^{s_{n}^{\prime}}$.

For an integer $N \geq 1$ the N th linear complexity $L(r, N)$ of a sequence $r=\left(r_{0}, \ldots, r_{T-1}\right)$ of length T over the finite field \mathbb{F}_{2} is the smallest positive integer L such that there are constants $c_{1}, \ldots, c_{L} \in \mathbb{F}_{2}$ satisfying the linear recurrence relation

$$
r_{n+L}=c_{L-1} r_{n+L-1}+\cdots+c_{0} r_{n}, \quad \text { for } 0 \leq n<N-L .
$$

If r starts with $N-1$ zeros, then we define

$$
L(r, N)=0 \quad \text { if } \quad r_{N-1}=0, \quad \text { and } \quad L(r, N)=N \quad \text { if } \quad r_{N-1}=1
$$

The sequence $(L(r, N))_{1 \leq N \leq T}$ is the linear complexity profile of r.
Brandstätter and Winterhof [1] proved a lower bound on the N th linear complexity $L\left(E_{N}^{\prime}, N\right)$ of a sequence $E_{N}^{\prime}=\left(e_{0}^{\prime}, \ldots, e_{N-1}^{\prime}\right)$ over \mathbb{F}_{2} terms of the correlation measure $C_{\ell}\left(E_{N}\right)$ of the finite sequence $E_{N}=\left(e_{0}, \ldots, e_{N-1}\right) \in\{-1,+1\}^{N}$ defined by $e_{n}=(-1)^{e_{n}^{\prime}}$.

Lemma 1. Let $E_{N}^{\prime}=\left(e_{0}^{\prime}, \ldots, e_{N-1}^{\prime}\right)$ be a finite sequence over \mathbb{F}_{2} of length N. Writing $e_{n}=(-1)^{e_{n}^{\prime}}$ for $0 \leq n \leq N-1$, we have

$$
L\left(E_{N}^{\prime}, N\right) \geq N-\max _{2 \leq \ell \leq L\left(e_{n}^{\prime}, N\right)+1} C_{\ell}\left(E_{N}\right)
$$

By Theorem 3 and Lemma 1 we immediately get the following lower bound.
Corollary 2. For fixed $d \geq 2$ and any $1 \leq N<p^{d}$ we have

$$
L\left(S_{N}^{\prime}, N\right) \gg \frac{N^{1 / 2}}{d^{1 / 2} p^{d / 2-1 / 4}(\log p)^{1 / 2}}
$$

for the sequence $S_{N}^{\prime}=\left(s_{0}^{\prime}, \ldots, s_{N-1}^{\prime}\right)$, where $s_{n}^{\prime}(0 \leq n<N)$ is defined by $s_{n}=(-1)^{s_{n}^{\prime}}$.

2. Proofs

As in [3] we start with Pellet's formula, see [11],

$$
\lambda(F)=\mu(F)=\left(\frac{D(F)}{p}\right) \quad \text { if } D(F) \neq 0
$$

where $(\dot{\bar{p}})$ denotes the Legendre symbol and $D(F)$ the discriminant of F. (See also Stickelberger [15] and Skolem [14] as well as [6, 16] for a short proof.)

Moreover, $(-1)^{d(d-1) / 2} D\left(F_{n}\right)$ equals the following determinant of a $(2 d-1) \times$ ($2 d-1$) matrix,

$$
\left|\begin{array}{cccccccc}
1 & n_{d-1} & \cdots & n_{1} & n_{0} & 0 & \cdots & 0 \\
0 & 1 & n_{d-1} & \cdots & n_{1} & n_{0} & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & 0 & 0 & 1 & n_{d-1} & \cdots & n_{1} & n_{0} \\
d & (d-1) n_{d-1} & \cdots & n_{1} & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \cdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & d & (d-1) n_{d-1} & \cdots & n_{1} & 0 \\
0 & 0 & 0 & 0 & d & (d-1) n_{d-1} & \cdots & n_{1}
\end{array}\right| .
$$

Note that

$$
D\left(F_{n}\right)=(-1)^{d+1} d^{d} n_{0}^{d-1}+(-1)^{d}(d-1)^{d-1} n_{1}^{d}+h\left(n_{0}, n_{1}, n-n_{0}-n_{1} p\right)
$$

where $h\left(X_{0}, X_{1}, X_{2}\right)$ is a polynomial over \mathbb{F}_{p} of relative degrees in X_{0} at most $d-2$ and in X_{1} at most $d-1$.

Proof of Theorem 1 Put $N-1=N_{0}+N_{1} p+N_{2} p^{2}$ with $0 \leq N_{0}, N_{1}<p$. Then we have

$$
\left|\sum_{n=0}^{N-1} s_{n}\right| \leq S_{1}+S_{2}+S_{3}
$$

where

$$
\begin{aligned}
& S_{1}=\sum_{n_{2}=0}^{N_{2}-1}\left|\sum_{n_{0}, n_{1}=0}^{p-1} s_{n_{0}+n_{1} p+n_{2} p^{2}}\right| \\
& S_{2}=\left|\sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{0}=0}^{p-1} s_{n_{0}+n_{1} p+N_{2} p^{2}}\right| \\
& S_{3}=\left|\sum_{n_{0}=0}^{N_{0}} s_{n_{0}+N_{1} p+N_{2} p^{2}}\right| .
\end{aligned}
$$

In the first case (d even), write

$$
s_{n_{0}+n_{1} p+n_{2} p^{2}}=\left(\frac{D\left(F_{n_{0}+n_{1} p+n_{2} p^{2}}\right)}{p}\right) \quad \text { if } D\left(F_{n_{0}+n_{1} p+n_{2} p^{2}}\right) \neq 0
$$

Note that there are at most $d-1$ different n_{0} with $0 \leq n_{0}<p$ for any fixed n_{1} and n_{2} with $D\left(F_{n_{0}+n_{1} p+n_{2} p^{2}}\right)=0$.

LÁSZLÓ MÉRAI - ARNE WINTERHOF

Since now $D\left(F_{n_{0}+n_{1} p+n_{2} p^{2}}\right)$ has odd degree in n_{0}, for any pair $\left(n_{1}, n_{2}\right)$ the monic polynomial $f(X)=-d^{-d} D\left(F_{X+n_{1} p+n_{2} p^{2}}\right)$ is not a square and we can apply the Weil bound (for complete character sums)

$$
\left|\sum_{n \in \mathbb{F}_{p}}\left(\frac{a f(n)}{p}\right)\right| \leq(\operatorname{deg}(f)-1) p^{1 / 2}, \quad a \neq 0
$$

(see for example [13, Theorem 2G] or [8, Theorem 5.41]) directly to estimate S_{1} and S_{2} and the standard method for reducing incomplete character sums to complete ones, see for example [7, Chapter 12] or [18, Theorem 2], to estimate S_{3},

$$
\begin{aligned}
S_{1} & \leq \sum_{n_{2}=0}^{N_{2}-1} \sum_{n_{1}=0}^{p-1}\left(\left|\sum_{n_{0}=0}^{p-1}\left(\frac{D\left(F_{n_{0}+n_{1} p+n_{2} p^{2}}\right)}{p}\right)\right|+d-1\right) \\
& \leq N_{2} p\left((d-2) p^{1 / 2}+d-1\right), \\
S_{2} & \leq \sum_{n_{1}=0}^{N_{1}-1}\left(\left|\sum_{n_{0}=0}^{p-1}\left(\frac{D\left(F_{n_{0}+n_{1} p+N_{2} p^{2}}\right)}{p}\right)\right|+d-1\right) \\
& \leq N_{1}\left((d-2) p^{1 / 2}+d-1\right), \\
S_{3} & \leq\left|\sum_{n_{0}=0}^{N_{0}}\left(\frac{D\left(F_{n_{0}+N_{1} p+N_{2} p^{2}}\right)}{p}\right)\right|+d-1 \\
& \leq(d-1) p^{1 / 2} \log p+d-1,
\end{aligned}
$$

and hence the result since $N_{1}+N_{2} p<N / p$. In the second case (d odd) the sums over n_{0} can be trivial but not the sums over n_{1}. Hence, we get

$$
S_{1}+S_{2}+S_{3} \leq N_{2} p\left((d-1) p^{1 / 2}+d\right)+\left(d p^{1 / 2} \log p+d\right) p+N_{0}
$$

and the result follows, since $N_{2} p<N / p$.
Proof of Theorem 2. We can assume without loss of generality, that $d<p^{1 / 2}$, since otherwise the theorem is trivial. Fix a, b, t with $0 \leq a \leq$ $a+(t-1) b \leq p^{d}-1$. If $t<p^{d-1}+1$, then we use the trivial bound

$$
\left|\sum_{j=0}^{t-1} s_{a+b j}\right| \leq t
$$

PSEUDORANDOMNESS OF THE LIOUVILLE FUNCTION OF POLYNOMIALS

Now we assume $t \geq p^{d-1}+1$ and thus $b<p$. Put

$$
T=p\left\lfloor\frac{t}{p}\right\rfloor
$$

Then we have $t-T=O(p)$ and

$$
\begin{equation*}
\sum_{j=0}^{t-1} s_{a+b j}=\sum_{j=0}^{T-1} s_{a+b j}+O(p) \tag{5}
\end{equation*}
$$

For $0 \leq a \leq a+b j \leq p^{d}-1$ let

$$
a=a_{0}+a_{1} p+a_{2} p^{2}, \quad 0 \leq a_{0}, a_{1}<p, 0 \leq a_{2}<p^{d-2}
$$

and

$$
j=j_{0}+j_{1} p+j_{2} p^{2}, \quad 0 \leq j_{0}, j_{1}<p, 0 \leq j_{2}<p^{d-2}
$$

Put

$$
w_{0}=\left\lfloor\frac{a_{0}+b j_{0}}{p}\right\rfloor \quad \text { and } \quad w_{1}=\left\lfloor\frac{a_{1}+b j_{1}+w_{0}}{p}\right\rfloor .
$$

Then we have

$$
a+b j=z_{0}+z_{1} p+z_{2} p^{2}, \quad 0 \leq z_{0}, z_{1}<p, 0 \leq z_{2}<p^{d-2}
$$

with

$$
z_{0}=a_{0}+b j_{0}-w_{0} p, \quad z_{1}=a_{1}+b j_{1}+w_{0}-w_{1} p, \quad z_{2}=a_{2}+b j_{2}+w_{1}
$$

and

$$
s_{a+b j}=\left(\frac{D\left(F_{z_{0}+z_{1} p+z_{2} p^{2}}\right)}{p}\right) \quad \text { if } D\left(F_{z_{0}+z_{1} p+z_{2} p^{2}}\right) \neq 0 .
$$

Note that we have at most $(b+1)$ possible choices for w_{0} and for w_{1} since $0 \leq w_{0}, w_{1} \leq b$.

We define

$$
S_{w_{0}, w_{1}}=\left\{a+j b: 0 \leq j<T,\left\lfloor\frac{a_{0}+b j_{0}}{p}\right\rfloor=w_{0},\left\lfloor\frac{a_{1}+b j_{1}+w_{0}}{p}\right\rfloor=w_{1}\right\}
$$

and note that these sets define a partition of $\{a+j b: 0 \leq j<T\}$. For each $\left(w_{0}, w_{1}\right)$ the set $S_{w_{0}, w_{1}}$ is of the form

$$
\begin{array}{r}
S_{w_{0}, w_{1}}=\left\{a_{0}-w_{0} p+b j_{0}+\left(w_{0}+a_{1}-w_{1} p+b j_{1}\right) p+\left(w_{1}+a_{2}+b j_{2}\right) p^{2}:\right. \\
\left.k_{i} \leq j_{i}<K_{i}, i=0,1,2\right\}
\end{array}
$$

where $k_{i}=k_{i}\left(w_{0}, w_{1}\right)$ and $K_{i}=K_{i}\left(w_{0}, w_{1}\right)(i=0,1,2)$ defined as

$$
k_{0}=\max \left\{0,\left\lfloor\frac{w_{0} p-a_{0}}{b}\right\rfloor\right\}, \quad K_{0}=\min \left\{p,\left\lfloor\frac{\left(w_{0}+1\right) p-a_{0}}{b}\right\rfloor\right\},
$$

LÁSZLÓ MÉRAI - ARNE WINTERHOF

$$
\begin{aligned}
k_{1}=\max \left\{0,\left\lfloor\frac{w_{1} p-a_{0}-w_{0}}{b}\right\rfloor\right\}, & K_{1}=\min \left\{p,\left\lfloor\frac{\left(w_{1}+1\right) p-a_{0}-w_{0}}{b}\right\rfloor\right\}, \\
k_{2}=0, & K_{2}=\frac{T-1}{p^{2}}-\left\lceil\frac{w_{1}}{p}\right\rceil
\end{aligned}
$$

We remark, that both $K_{0}-k_{0}$ and $K_{1}-k_{1}$ are $O(p / b)$.
If d is even, the absolute value of (5) is at most

$$
\begin{align*}
\sum_{w_{0}, w_{1}} & \sum_{j_{1}=k_{1}\left(w_{0}, w_{1}\right)}^{K_{1}\left(w_{0}, w_{1}\right)} \\
\quad \mid & \sum_{j_{2}=k_{2}\left(w_{0}, w_{1}\right)}^{K_{2}\left(w_{0}, w_{1}\right)} \tag{6}\\
& \left.\sum_{j_{0}=k_{0}\left(w_{0}, w_{1}\right)}^{K_{0}\left(w_{0}, w_{1}\right)}\left(\frac{D\left(F_{\left.a_{0}-w_{0} p+b j_{0}+\left(w_{0}+a_{1}-w_{1} p+b j_{1}\right) p+\left(w_{1}+a_{2}+b j_{2}\right) p^{2}\right)}^{p}\right) \mid}{}\right) \right\rvert\,
\end{align*}
$$

As before,

$$
D\left(F_{X+\left(w_{0}+a_{1}-w_{1} p+b j_{1}\right) p+\left(w_{1}+a_{2}+b j_{2}\right) p^{2}}\right) \in \mathbb{F}_{p}[X]
$$

has odd degree, thus we can apply the Weil-bound after using the standard technique to reduce incomplete sums to complete ones and get, that (6) is

$$
O\left(b^{2} \frac{p}{b} \frac{T}{p^{2}} d p^{1 / 2} \log p\right)=O\left(b T d p^{-1 / 2} \log p\right)
$$

Since $b T=O\left(p^{d}\right)$ we get the result for even d. For odd d, the proof is similar.
The proof of Theorem 3 is based on the following form of [3, Proposition 2.1].
Lemma 3. For given $0 \leq d_{1}<d_{2}<\cdots<d_{\ell}<p^{d}$ let $G \subset\left\{1,2, \ldots, p^{d-1}\right\}$ the set of integers a such that $D\left(F_{X+a p+d_{1}}\right) \in \mathbb{F}_{p}[X]$ is squarefree and coprime to $D\left(F_{X+a p+d_{i}}\right) \in \mathbb{F}_{p}[X]$ for $i=2,3, \ldots, \ell$. Then, for the complement of G we have

$$
\left|G^{c}\right|=\left|\left\{1,2, \ldots, p^{d-1}\right\} \backslash G\right| \leq 3 \ell d^{2} p^{d-2}
$$

Proof of Theorem 3. We can assume without loss of generality, that $d<p^{1 / 2}$, since otherwise the theorem is trivial.

Let $M \in \mathbb{N}$ and let $0 \leq d_{1}<d_{2}<\cdots<d_{\ell}<p^{d}-M$ be integers. If $M \leq p^{d-1}$ we use the trivial bound

$$
\left|\sum_{n=0}^{M-1} s_{n+d_{1}} s_{n+d_{2}} \ldots s_{n+d_{\ell}}\right| \leq M
$$

Now, we assume $M \geq p^{d-1}+1$. Let

$$
T=p\left\lfloor\frac{M}{p}\right\rfloor
$$

Then we have $M-T=O(p)$ and

$$
\left|\sum_{n=0}^{M-1} s_{n+d_{1}} s_{n+d_{2}} \ldots s_{n+d_{\ell}}\right|=\left|\sum_{n=0}^{T-1} s_{n+d_{1}} s_{n+d_{2}} \ldots s_{n+d_{\ell}}\right|+O(p)
$$

As it has already been written

$$
n=n_{0}+n_{1} p, \quad 0 \leq n_{0}<p, \quad 0 \leq n_{1}<p^{d-1}
$$

and

$$
d_{i}=d_{i, 0}+d_{i, 1} p, \quad 0 \leq d_{i, 0}<p, \quad 0 \leq d_{i, 1}<p^{d-1}, \quad i=1,2, \ldots, \ell
$$

If

$$
w_{i}=\left\lfloor\frac{n_{0}+d_{i, 0}}{p}\right\rfloor \in\{0,1\}, \quad i=1,2, \ldots, \ell
$$

then

$$
n+d_{i}=z_{i, 0}+z_{i, 1} p, \quad 0 \leq z_{i, 0}<p, \quad 0 \leq z_{i, 1}<p^{d-1}, \quad i=1,2, \ldots, \ell
$$

with

$$
\begin{aligned}
& z_{i, 0}=n_{0}+d_{i, 0}-w_{i} p, \\
& z_{i, 1}=n_{1}+d_{i, 1}+w_{i},
\end{aligned} \quad i=1,2, \ldots, \ell,
$$

and

$$
s_{n+d_{i}}=\left(\frac{D\left(F_{z_{i, 0}+z_{i, 1} p}\right)}{p}\right) \quad \text { if } D\left(F_{z_{i, 0}+z_{i, 1} p}\right) \neq 0, \quad i=1,2, \ldots, \ell
$$

For $\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) \in\{0,1\}^{\ell}$ write

$$
\begin{aligned}
S_{w_{i}, d_{i}} & =\left\{n: 0 \leq n<T,\left\lfloor\frac{n_{0}+d_{i, 0}}{p}\right\rfloor=w_{i}\right\} \\
& =\left\{j_{0}+j_{1} p: k_{i, 0} \leq j_{0}<K_{i, 0}, k_{i, 1} \leq j_{1}<K_{i, 1}\right\},
\end{aligned}
$$

where

$$
\left.\left.\begin{array}{rl}
k_{i, 0} & =k_{i, 0}\left(w_{i}\right) \\
K_{i, 0} & =K_{i, 0}\left(w_{i}\right)
\end{array}=\min \left\{p, p w_{i}-d_{i, 0}\right\}, w_{i}+1\right)-d_{i, 0}\right\}
$$

and

$$
\begin{aligned}
k_{i, 1} & =k_{i, 1}\left(w_{i}\right)=0 \\
K_{i, 1} & =K_{i, 1}\left(w_{i}\right)=T / p
\end{aligned}
$$

LÁSZLÓ MÉRAI - ARNE WINTERHOF

As $\left(w_{1}, w_{2}, \ldots, w_{\ell}\right)$ runs in $\{0,1\}^{\ell}$, the intersections $S_{w_{1}, d_{1}} \cap \ldots \cap S_{w_{\ell}, d_{\ell}}$ are a partition of integers $0 \leq n<T$. However, it can be shown in the same way as in [10], that there are at most $\ell+1$ non-empty intersections. More precisely, let us reorder the integers $d_{1}<d_{2}<\ldots<d_{\ell}$ and the carries $\left(w_{1}, w_{2}, \ldots, w_{\ell}\right)$ by the first components of

$$
\begin{aligned}
d_{i}:\left\{d_{1}, d_{2}, \ldots, d_{\ell}\right\} & =\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{\ell}^{\prime}\right\} \\
\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\} & =\left\{w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{\ell}^{\prime}\right\} \\
d_{1,0}^{\prime} & \leq d_{2,0}^{\prime} \leq \cdots \leq d_{\ell, 0}^{\prime}
\end{aligned}
$$

Then writing $d_{0,0}^{\prime}=0$ and $d_{0, \ell+1}^{\prime}=p$ we have

$$
\begin{align*}
& \left|\sum_{n=0}^{T-1} s_{n+d_{1}} s_{n+d_{2}} \ldots s_{n+d_{\ell}}\right| \\
& \leq\left.\sum_{\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) \in\{0,1\}^{\ell}}\right|_{n \in S_{w_{1}, d_{1} \cap \ldots \cap S_{w_{\ell}, d_{\ell}}} s_{n+d_{1}} s_{n+d_{2}} \ldots s_{n+d_{\ell}} \mid} ^{\leq \sum_{i=1}^{\ell+1} \sum_{j_{1}=0}^{T / p-1}\left|\sum_{j_{0}=p-d_{i, 0}^{\prime}-1}^{p-d_{i-1,0}^{\prime}} s_{j_{0}+j_{1} p+d_{1}} s_{j_{0}+j_{1} p+d_{2}} \ldots s_{j_{0}+j_{1} p+d_{\ell}}\right|} \\
& \leq \sum_{i=1}^{\ell+1} \sum_{j_{1}=0}^{T / p-1} \\
& \left(\left|\sum_{j_{0}=p-d_{i, 0}^{\prime}}^{p-d_{i-1,0}^{\prime}-1}\left(\frac{D\left(F_{j_{0}+j_{1} p+d_{1}}\right) D\left(F_{j_{0}+j_{1} p+d_{2}}\right) \cdots D\left(F_{j_{0}+j_{1} p+d_{\ell}}\right)}{p}\right)\right|+\ell(d-1)\right)
\end{align*}
$$

For a fixed i, if $j_{1} \in G$, then the innermost sum is non-trivial. On the other hand we estimate the inner sum of (7) trivially by p if $j_{1} \notin G$. Then we get that (7) is less than

$$
(\ell+1)\left(3 \ell d^{2} p^{d-1}+\frac{T}{p}\left(\ell(d-1) p^{1 / 2} \log p+\ell(d-1)\right)\right)=O\left(\ell^{2} d p^{d-\frac{1}{2}} \log p\right)
$$

and the result follows.

PSEUDORANDOMNESS OF THE LIOUVILLE FUNCTION OF POLYNOMIALS

Final Remarks

- Cassaigne, Ferenzi, Mauduit, Rivat and Sárközy [4, 5] studied the pseudorandomness of the Liouville function for integers.
- Our results as well as the results of [3] are based on Pellet's result which is not true for characteristic 2. Finding analog results for characteristic 2 would be very interesting.
- In this paper as well as in [3] d is fixed and p has to be large with respect to d to get nontrivial bounds. It would be interesting to study the same problems if p is fixed and d goes to infinity.

Acknowledgements. We wish to thank Christian Mauduit for pointing to this problem during a pleasant visit of the second author to Marseille. He also wishes to thank for the hospitality and financial support.

Finally, the authors want to thank the referee for a careful reading and very useful comments.

REFERENCES

[1] BRANDSTÄTTER, N.-WINTERHOF, A.: Linear complexity profile of binary sequences with small correlation measure, Period. Math. Hungar. 52 (2006), no. 2, 1-8.
[2] CARLITZ, L.: The arithmetic of polynomials in a Galois field, Amer. J. Math. 54 (1932), no. 1, 39-50.
[3] CARMON, D.-RUDNICK, Z.: The autocorrelation of the Möbius function and Chowla's conjecture for the rational function field, Q. J. Math. 65 (2014), no. 1, 53-61.
[4] CASSAIGNE J.-FERENCZI, S.-MAUDUIT, C.-RIVAT, J.-SÁRKÖZY, A.: On finite pseudorandom binary sequences. III. The Liouville function. I, Acta Arith. 87 (1999), no. 4, 367-390.
[5] CASSAIGNE J.-FERENCZI, S.-MAUDUIT, C.-RIVAT, J.-SÁRKÖZY, A.: On finite pseudorandom binary sequences. IV. The Liouville function. II, Acta Arith. $\mathbf{9 5}$ (2000), no. 4, 343-359.
[6] CONRAD, K.: Irreducible values of polynomials: a non-analogy, Number fields and function fields-two parallel worlds, Progr. Math. Vol. 239, Birkhäuser Boston, Boston, MA, 2005. pp. 71-85.
[7] IWANIEC, H.-KOWALSKI, E.: Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., Vol. 53, Amer. Math. Soc., Providence, RI, 2004.
[8] LIDL, R.-NIEDERREITER, H.: Finite fields (Second ed.), Encyclopedia of Mathematics and its Applications. Vol. 20, Cambridge University Press, Cambridge, 1997.
[9] MAUDUIT, C.-SÁRKÖZY, A.: On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), no. 4, 365-377.
[10] MÉRAI, L.-YAYLA, O.: Improving results on the pseudorandomness of sequences generated via the additive order, Discrete Math. 338 (2015), no. 11, 2020-2025.

LÁSZLÓ MÉRAI - ARNE WINTERHOF

[11] PELLET, A. E.: Sur la décomposition dune fonction entiére en facteurs irréductibles suivant un module premier, Comptes Rendus de l'Académie des Sciences Paris 86 (1878), 1071-1072.
[12] ROSEN, M.: Number Theory in Function Fields, Graduate Texts in Mathematics, Vol. 210. Springer-Verlag, New York, 2002.
[13] SCHMIDT, W. M.: Equations over finite fields: An Elementary Approach (Second ed.), Kendrick Press, Heber City, UT, 2004.
[14] SKOLEM, T.: On a certain connection between the discriminant of a polynomial and the umber of its irreducible factors $\bmod p$, Norsk. Mat. Tidsskr. 34 (1952), 81-85.
[15] STICKELBERGER, L.: Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper Verh. 1. Internat. Math.-Kongress. Zürich, 1897, Teubner, Leipzig, 1898, 182-193.
[16] SWAN, R. G.: Factorization of polynomials over finite fields Pacific J. Math. 12 (1962), 1099-1106.
[17] TOPUZOĞLU, A.- WINTERHOF, A.: Pseudorandom sequences Topics in Geometry, Coding Theory and Cryptography, Algebr. Appl., Vol. 6, Springer, Dordrecht, 2007, pp. 135-166.
[18] WINTERHOF, A.: Some estimates for character sums and applications, Des. Codes Cryptogr. 22 (2001), no. 2, 123-131.

Received April 27, 2015
Accepted August 31, 2015

László Mérai

Arne Winterhof
Johann Radon Institute for Comput. and Applied Mathematics Austrian Academy of Sciences
Altenbergerstr. 69
4040 Linz, AUSTRIA
E-mail: merai@cs.elte.hu
arne.winterhof@oeaw.ac.at

[^0]: 2010 Mathematics Subject Classification: 11K45, 11T06, 11T24, 11T71.
 Keywords: polynomials, finite fields, irreducible factors, pseudorandom sequence, balancedness, well-distribution, correlation measure, linear complexity, polynomial Liouville function, polynomial Möbius function.
 The authors are partially supported by the Austrian Science Fund FWF Project F5511-N26 which is part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications".

