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ABSTRACT. We study several pseudorandom properties of the Liouville func-

tion and the Möbius function of polynomials over a finite field. More precisely, we
obtain bounds on their balancedness as well as their well-distribution measure,
correlation measure, and linear complexity profile.

Communicated by Manfred Kühleitner

1. Introduction

In analogy to the Liouville λ-function and the Möbius μ-function for integers,
Carlitz [2] introduced the mappings λ and μ for polynomials over the finite
field Fq by

λ(F ) = (−1)ω(F ), F ∈ Fq[X],

where ω(F ) denotes the number of irreducible factors of F (counted in multi-
plicities), and

μ(F ) =

{
λ(F ) if F is squarefree,
0 otherwise,

F ∈ Fq[X].
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Carlitz [2] proved ∑
degF=d

λ(F ) = (−1)dq�(d+1)/2� (1)

and ∑
degF=d

μ(F ) =

{
0 if d ≥ 2,

−q if d = 1, (2)

where the sums are over all monic polynomials F ∈ Fq[X] of degree d.

For � ≥ 2, d ≥ 2, distinct polynomials D1, . . . , D� ∈ Fq[X] of degree
smaller than d, q odd, and (ε1, . . . , ε�) ∈ {0, 1}� \ (0, . . . , 0), Carmon and
Rudnick [3, Theorem 1.1] have recently proved that∑

deg F=d

μ(F +D1)
ε1 · · ·μ(F +D�)

ε� = O
(
�dqd−1/2

)
, d ≥ 2. (3)

(For d = 1 the sum trivially equals (−1)
∑�

j=1 εjq.) Since the number of monic
squarefree polynomials over Fq of degree d ≥ 2 is qd− qd−1 (see for example [12,
Proposition 2.3]) the same result holds for λ instead of μ as well.

(1), (2), and (3) are results on the global pseudorandomness of polynomi-
als of degree d over Fq. More precisely, (1), (2), and (3) are essentially results
on two measures of pseudorandomness, the balancedness and the correlation
measure of order �, respectively, for all monic polynomials of degree d. In this
article we focus on the local pseudorandomness, that is, we deal only with
the first N < pd monic polynomials of degree d (in the lexicographic order).
The main motivation for doing this is to derive binary sequences and to analyze
several measures of pseudorandomness for binary sequences: the balancedness,
the well-distribution measure, the correlation measure of order �, and the linear
complexity profile. In particular, to obtain a lower bound on the linear complex-
ity profile we need a local analog of (3). Although our results can be extended
to any finite field of odd characteristic we focus on prime fields to avoid a more
complicated notation. More precisely, let p > 2 be a prime and denote by Fp the
finite field of p elements which we identify with the set of integers {0, 1, . . . , p−1}
equipped with the usual arithmetic modulo p. We order the monic polynomials
over Fp of degree d ≥ 2 in the following way. For 0 ≤ n < pd put

Fn(X) = Xd + nd−1X
d−1 + · · ·+ n1X + n0

if
n = n0 + n1p+ · · ·+ nd−1p

d−1, 0 ≤ n0, n1, . . . , nd−1 < p.

We study finite binary sequences Spd = (s0, . . . , spd−1) ∈ {−1,+1}pd

with the
property

sn = λ(Fn) = μ(Fn), Fn squarefree. (4)
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Our results will be independent of the choice of sn ∈ {−1,+1} for non-
squarefree Fn.

First we prove the following local analog of (1) and (2) on the balancedness
of the sequence Spd .

������� 1� For d ≥ 2, 1 ≤ N < pd, and sn satisfying (4) for all n = 0, 1, . . .
. . . , N − 1 such that Fn is squarefree, we have

N−1∑
n=0

sn =O
(
d
(
Np−1/2 + p1/2 log p

))
if d is even

and
O
(
d
(
Np−1/2 + p3/2 log p

))
if d is odd.

Next, we study several pseudorandom properties of Spd . For a survey
on pseudorandom sequences and their desirable properties we refer to [17].

For a given binary sequence

EN = (e0, . . . , eN−1) ∈ {−1,+1}N.
Mauduit and Sárközy [9] defined the well-distribution measure of EN by

W (EN ) = max
a,b,t

∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣,
where the maximum is taken over all a, b, t ∈ N such that

0 ≤ a ≤ a+ (t− 1)b < N,

and the correlation measure of order � of EN by

C�(EN ) = max
M,D

∣∣∣∣∣
M−1∑
n=0

en+d1
en+d2

. . . en+d�

∣∣∣∣∣ ,
where the maximum is taken over all D = (d1, . . . , d�) and M such that

0 ≤ d1 < d2 < · · · < d� ≤ N −M.

We will prove the following bounds on the well-distribution measure and the
correlation measure of order � for Spd .

������� 2� We have the following bound on the well-distribution measure :

W (Spd) = O(dpd−1/2 log p), d ≥ 2.

������� 3� We have the following bound on the correlation measure of order � :

C�(Spd) = O(�2dpd−1/2 log p), d ≥ 2.
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Theorem 3 allows us to derive a lower bound on the linear complexity of the
binary sequence S′

pd = (s′1, s
′
2, . . . , s

′
pd) defined by the relation sn = (−1)s

′
n .

For an integer N ≥ 1 the N th linear complexity L(r,N) of a sequence
r = (r0, . . . , rT−1) of length T over the finite field F2 is the smallest positive
integer L such that there are constants c1, . . . , cL ∈ F2 satisfying the linear
recurrence relation

rn+L = cL−1rn+L−1 + · · ·+ c0rn, for 0 ≤ n < N − L.

If r starts with N − 1 zeros, then we define

L(r,N) = 0 if rN−1 = 0, and L(r,N) = N if rN−1 = 1.

The sequence (L(r,N))1≤N≤T is the linear complexity profile of r.

Brandstätter and Winterhof [1] proved a lower bound on the Nth linear com-
plexity L(E′

N , N) of a sequence E′
N = (e′0, . . . , e

′
N−1) over F2 terms of the corre-

lation measure C�(EN ) of the finite sequence EN = (e0, . . . , eN−1) ∈ {−1,+1}N
defined by en = (−1)e

′
n.

����	 1� Let E′
N = (e′0, . . . , e

′
N−1) be a finite sequence over F2 of length N.

Writing en = (−1)e
′
n for 0 ≤ n ≤ N − 1, we have

L(E′
N , N) ≥ N − max

2≤�≤L(e′n,N)+1
C�(EN ).

By Theorem 3 and Lemma 1 we immediately get the following lower bound.


�����	�� 2� For fixed d ≥ 2 and any 1 ≤ N < pd we have

L(S′
N , N) � N1/2

d1/2pd/2−1/4(log p)1/2

for the sequence S′
N = (s′0, . . . , s

′
N−1), where s′n (0 ≤ n < N) is defined by

sn = (−1)s
′
n .

2. Proofs

As in [3] we start with Pellet’s formula, see [11],

λ(F ) = μ(F ) =

(
D(F )

p

)
if D(F ) �= 0,

where
(

·
p

)
denotes the Legendre symbol and D(F ) the discriminant of F.

(See also Stickelberger [15] and Skolem [14] as well as [6, 16] for a short proof.)
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Moreover, (−1)d(d−1)/2D(Fn) equals the following determinant of a (2d − 1) ×
(2d− 1) matrix,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 nd−1 · · · n1 n0 0 · · · 0
0 1 nd−1 · · · n1 n0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 0 0 1 nd−1 · · · n1 n0

d (d− 1)nd−1 · · · n1 0 0 · · · 0
...

. . .
. . . . . .

. . .
. . .

. . .
...

0 0 0 d (d− 1)nd−1 · · · n1 0
0 0 0 0 d (d− 1)nd−1 · · · n1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Note that

D(Fn) = (−1)d+1ddnd−1
0 + (−1)d(d− 1)d−1nd

1 + h(n0, n1, n− n0 − n1p),

where h(X0, X1, X2) is a polynomial over Fp of relative degrees in X0 at most
d− 2 and in X1 at most d− 1.

P r o o f o f T h e o r e m 1. Put N − 1 = N0+N1p+N2p
2 with 0 ≤ N0, N1 < p.

Then we have ∣∣∣∣∣
N−1∑
n=0

sn

∣∣∣∣∣ ≤ S1 + S2 + S3,

where

S1 =

N2−1∑
n2=0

∣∣∣∣∣
p−1∑

n0,n1=0

sn0+n1p+n2p2

∣∣∣∣∣ ,

S2 =

∣∣∣∣∣
N1−1∑
n1=0

p−1∑
n0=0

sn0+n1p+N2p2

∣∣∣∣∣ ,

S3 =

∣∣∣∣∣
N0∑

n0=0

sn0+N1p+N2p2

∣∣∣∣∣ .
In the first case (d even), write

sn0+n1p+n2p2 =

(
D(Fn0+n1p+n2p2)

p

)
if D(Fn0+n1p+n2p2) �= 0.

Note that there are at most d − 1 different n0 with 0 ≤ n0 < p for any fixed
n1 and n2 with D(Fn0+n1p+n2p2) = 0.
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Since now D(Fn0+n1p+n2p2) has odd degree in n0, for any pair (n1, n2) the

monic polynomial f(X) = −d−dD(FX+n1p+n2p2) is not a square and we can
apply the Weil bound (for complete character sums)∣∣∣∣∣

∑
n∈Fp

(
af(n)

p

)∣∣∣∣∣ ≤ (deg(f)− 1
)
p1/2, a �= 0,

(see for example [13, Theorem 2G] or [8, Theorem 5.41]) directly to estimate
S1 andS2 and the standard method for reducing incomplete character sums
to complete ones, see for example [7, Chapter 12] or [18, Theorem 2], to es-
timate S3,

S1 ≤
N2−1∑
n2=0

p−1∑
n1=0

(∣∣∣∣∣
p−1∑
n0=0

(
D(Fn0+n1p+n2p2)

p

)∣∣∣∣∣+ d− 1

)

≤ N2p
(
(d− 2)p1/2 + d− 1

)
,

S2 ≤
N1−1∑
n1=0

(∣∣∣∣∣
p−1∑
n0=0

(
D(Fn0+n1p+N2p2)

p

)∣∣∣∣∣+ d− 1

)

≤ N1

(
(d− 2)p1/2 + d− 1

)
,

S3 ≤
∣∣∣∣∣

N0∑
n0=0

(
D(Fn0+N1p+N2p2)

p

)∣∣∣∣∣+ d− 1

≤ (d− 1)p1/2 log p+ d− 1,

and hence the result since N1+N2p < N/p. In the second case (d odd) the sums
over n0 can be trivial but not the sums over n1. Hence, we get

S1 + S2 + S3 ≤ N2p
(
(d− 1)p1/2 + d

)
+
(
dp1/2 log p+ d

)
p+N0

and the result follows, since N2p < N/p. �

P r o o f o f T h e o r e m 2. We can assume without loss of generality, that
d < p1/2, since otherwise the theorem is trivial. Fix a, b, t with 0 ≤ a ≤
a+ (t− 1)b ≤ pd − 1. If t < pd−1 + 1, then we use the trivial bound∣∣∣∣∣

t−1∑
j=0

sa+bj

∣∣∣∣∣ ≤ t.
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Now we assume t ≥ pd−1 + 1 and thus b < p. Put

T = p

⌊
t

p

⌋
.

Then we have t− T = O(p) and

t−1∑
j=0

sa+bj =

T−1∑
j=0

sa+bj +O(p). (5)

For 0 ≤ a ≤ a+ bj ≤ pd − 1 let

a = a0 + a1p+ a2p
2, 0 ≤ a0, a1 < p, 0 ≤ a2 < pd−2

and
j = j0 + j1p+ j2p

2, 0 ≤ j0, j1 < p, 0 ≤ j2 < pd−2.

Put

w0 =

⌊
a0 + bj0

p

⌋
and w1 =

⌊
a1 + bj1 + w0

p

⌋
.

Then we have

a+ bj = z0 + z1p+ z2p
2, 0 ≤ z0, z1 < p, 0 ≤ z2 < pd−2,

with

z0 = a0 + bj0 − w0p, z1 = a1 + bj1 + w0 − w1p, z2 = a2 + bj2 + w1,

and

sa+bj =

(
D(Fz0+z1p+z2p2)

p

)
if D

(
Fz0+z1p+z2p2

) �= 0.

Note that we have at most (b + 1) possible choices for w0 and for w1 since
0 ≤ w0, w1 ≤ b.

We define

Sw0,w1
=

{
a+ jb : 0 ≤ j < T,

⌊
a0 + bj0

p

⌋
= w0,

⌊
a1 + bj1 + w0

p

⌋
= w1

}
and note that these sets define a partition of {a + jb : 0 ≤ j < T}.
For each (w0, w1) the set Sw0,w1

is of the form

Sw0,w1
=
{
a0 − w0p+ bj0 +

(
w0 + a1 − w1p+ bj1

)
p+

(
w1 + a2 + bj2

)
p2 :

ki ≤ ji < Ki, i = 0, 1, 2
}
,

where ki = ki(w0, w1) and Ki = Ki(w0, w1) (i = 0, 1, 2) defined as

k0 = max

{
0,

⌊
w0p− a0

b

⌋}
, K0 = min

{
p,

⌊
(w0 + 1)p− a0

b

⌋}
,
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k1 = max

{
0,

⌊
w1p− a0 − w0

b

⌋}
, K1 = min

{
p,

⌊
(w1 + 1)p− a0 − w0

b

⌋}
,

k2 = 0, K2 =
T − 1

p2
−
⌈
w1

p

⌉
.

We remark, that both K0 − k0 and K1 − k1 are O(p/b).

If d is even, the absolute value of (5) is at most

∑
w0,w1

K1(w0,w1)∑
j1=k1(w0,w1)

K2(w0,w1)∑
j2=k2(w0,w1)∣∣∣∣∣∣

K0(w0,w1)∑
j0=k0(w0,w1)

(
D(Fa0−w0p+bj0+(w0+a1−w1p+bj1)p+(w1+a2+bj2)p2)

p

)∣∣∣∣∣∣ (6)

As before,
D(FX+(w0+a1−w1p+bj1)p+(w1+a2+bj2)p2) ∈ Fp[X]

has odd degree, thus we can apply the Weil-bound after using the standard
technique to reduce incomplete sums to complete ones and get, that (6) is

O

(
b2
p

b

T

p2
dp1/2 log p

)
= O

(
bTdp−1/2 log p

)
.

Since bT = O
(
pd
)
we get the result for even d. For odd d, the proof is similar. �

The proof of Theorem 3 is based on the following form of [3, Proposition 2.1].

����	 3� For given 0 ≤ d1 < d2 < · · · < d� < pd let G ⊂ {1, 2, . . . , pd−1}
the set of integers a such that D(FX+ap+d1

) ∈ Fp[X] is squarefree and coprime
to D(FX+ap+di

) ∈ Fp[X] for i = 2, 3, . . . , �. Then, for the complement of G
we have

|Gc| = ∣∣{1, 2, . . . , pd−1} \G∣∣ ≤ 3�d2pd−2.

P r o o f o f T h e o r e m 3. We can assume without loss of generality, that
d < p1/2, since otherwise the theorem is trivial.

Let M ∈ N and let 0 ≤ d1 < d2 < · · · < d� < pd−M be integers. If M ≤ pd−1

we use the trivial bound ∣∣∣∣∣
M−1∑
n=0

sn+d1
sn+d2

. . . sn+d�

∣∣∣∣∣ ≤ M.

Now, we assume M ≥ pd−1 + 1. Let

T = p

⌊
M

p

⌋
.
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Then we have M − T = O(p) and∣∣∣∣∣
M−1∑
n=0

sn+d1
sn+d2

. . . sn+d�

∣∣∣∣∣ =
∣∣∣∣∣
T−1∑
n=0

sn+d1
sn+d2

. . . sn+d�

∣∣∣∣∣+O(p).

As it has already been written

n = n0 + n1p, 0 ≤ n0 < p, 0 ≤ n1 < pd−1

and

di = di,0 + di,1p, 0 ≤ di,0 < p, 0 ≤ di,1 < pd−1, i = 1, 2, . . . , �.

If

wi =

⌊
n0 + di,0

p

⌋
∈ {0, 1}, i = 1, 2, . . . , �,

then

n+ di = zi,0 + zi,1p, 0 ≤ zi,0 < p, 0 ≤ zi,1 < pd−1, i = 1, 2, . . . , �,

with

zi,0 = n0 + di,0 − wip,

zi,1 = n1 + di,1 + wi,
i = 1, 2, . . . , �,

and

sn+di
=

(
D(Fzi,0+zi,1p)

p

)
if D(Fzi,0+zi,1p) �= 0, i = 1, 2, . . . , �.

For (w1, w2, . . . , w�) ∈ {0, 1}� write

Swi,di
=

{
n : 0 ≤ n < T,

⌊
n0 + di,0

p

⌋
= wi

}

= {j0 + j1p : ki,0 ≤ j0 < Ki,0, ki,1 ≤ j1 < Ki,1} ,
where

ki,0 = ki,0(wi) =max{0, pwi − di,0} ,
Ki,0 =Ki,0(wi)=min {p, p(wi + 1)− di,0}

and

ki,1 = ki,1(wi) = 0,

Ki,1 =Ki,1(wi)=T/p.
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As (w1, w2, . . . , w�) runs in {0, 1}�, the intersections Sw1,d1
∩ . . . ∩ Sw�,d�

are
a partition of integers 0 ≤ n < T . However, it can be shown in the same way
as in [10], that there are at most �+ 1 non-empty intersections. More precisely,
let us reorder the integers d1 < d2 < . . . < d� and the carries (w1, w2, . . . , w�)
by the first components of

di : { d1, d2, . . . , d�} = { d′1, d′2, . . . , d′�},
{w1, w2, . . . , w�} = {w′

1, w
′
2, . . . , w

′
�},

d′1,0 ≤ d′2,0 ≤ · · · ≤ d′�,0.

Then writing d′0,0 = 0 and d′0,�+1 = p we have

∣∣∣∣∣
T−1∑
n=0

sn+d1
sn+d2

. . . sn+d�

∣∣∣∣∣
≤

∑
(w1,w2,...,w�)∈{0,1}�

∣∣∣∣∣∣
∑

n∈Sw1,d1
∩···∩Sw�,d�

sn+d1
sn+d2

. . . sn+d�

∣∣∣∣∣∣
≤

�+1∑
i=1

T/p−1∑
j1=0

∣∣∣∣∣∣
p−d′

i−1,0∑
j0=p−d′

i,0−1

sj0+j1p+d1
sj0+j1p+d2

. . . sj0+j1p+d�

∣∣∣∣∣∣
≤

�+1∑
i=1

T/p−1∑
j1=0⎛

⎝
∣∣∣∣∣∣
p−d′

i−1,0−1∑
j0=p−d′

i,0

(
D(Fj0+j1p+d1

)D(Fj0+j1p+d2
) · · ·D(Fj0+j1p+d�

)

p

)∣∣∣∣∣∣+�(d−1)

⎞
⎠ (7)

For a fixed i, if j1 ∈ G, then the innermost sum is non-trivial. On the other hand
we estimate the inner sum of (7) trivially by p if j1 �∈ G. Then we get that (7)
is less than

(�+ 1)
(
3�d2pd−1 + T

p

(
�(d− 1)p1/2 log p+ �(d− 1)

))
= O

(
�2dpd−

1
2 log p

)
and the result follows. �
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Final Remarks

• Cassaigne, Ferenzi, Mauduit, Rivat and Sárközy [4, 5] studied the pseudo-
randomness of the Liouville function for integers.

• Our results as well as the results of [3] are based on Pellet’s result which
is not true for characteristic 2. Finding analog results for characteristic 2
would be very interesting.

• In this paper as well as in [3] d is fixed and p has to be large with respect
to d to get nontrivial bounds. It would be interesting to study the same
problems if p is fixed and d goes to infinity.

���������������� We wish to thank Christian Mauduit for pointing to
this problem during a pleasant visit of the second author to Marseille. He also
wishes to thank for the hospitality and financial support.

Finally, the authors want to thank the referee for a careful reading and very
useful comments.
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