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ABSTRACT. We study several pseudorandom properties of the Liouville func-
tion and the Md&bius function of polynomials over a finite field. More precisely, we
obtain bounds on their balancedness as well as their well-distribution measure,
correlation measure, and linear complexity profile.

Communicated by Manfred Kiihleitner

1. Introduction

In analogy to the Liouville A-function and the Mébius p-function for integers,
Carlitz [2] introduced the mappings A and g for polynomials over the finite

field F, by
AF) = (1)), F e Fy[X],

where w(F') denotes the number of irreducible factors of F' (counted in multi-
plicities), and

F € F,[X].

A(F) if F is squarefree,
MNZ{ () !

0 otherwise,
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Carlitz [2] proved
> ME) = (—1)lgHe D) M

deg F'=d

> ur={ 5§ &

deg F'=d

and

(2)

v

d>2,
d=1,
where the sums are over all monic polynomials F' € F,[X] of degree d.

For ¢ > 2, d > 2, distinct polynomials Di,...,D; € F,[X] of degree
smaller than d, ¢ odd, and (e1,...,¢e) € {0,1}*\ (0,...,0), Carmon and
Rudnick [3, Theorem 1.1] have recently proved that

> w(F+ D) - p(F + Dp)* = O(tdg*'?), d>2. (3)
deg F'=d

(For d = 1 the sum trivially equals (fl)zﬁz1 % q.) Since the number of monic
squarefree polynomials over F, of degree d > 2 is ¢¢ — %! (see for example [12]
Proposition 2.3]) the same result holds for X instead of u as well.

@, @), and (@) are results on the global pseudorandomness of polynomi-
als of degree d over [F,. More precisely, (), [2]), and (B]) are essentially results
on two measures of pseudorandomness, the balancedness and the correlation
measure of order ¢, respectively, for all monic polynomials of degree d. In this
article we focus on the local pseudorandomness, that is, we deal only with
the first N < p? monic polynomials of degree d (in the lexicographic order).
The main motivation for doing this is to derive binary sequences and to analyze
several measures of pseudorandomness for binary sequences: the balancedness,
the well-distribution measure, the correlation measure of order ¢, and the linear
complexity profile. In particular, to obtain a lower bound on the linear complex-
ity profile we need a local analog of (). Although our results can be extended
to any finite field of odd characteristic we focus on prime fields to avoid a more
complicated notation. More precisely, let p > 2 be a prime and denote by F, the
finite field of p elements which we identify with the set of integers {0, 1,...,p—1}
equipped with the usual arithmetic modulo p. We order the monic polynomials
over [F), of degree d > 2 in the following way. For 0 < n < p? put

Fo(X)=X%+ng 1 X+ 4+ X +ng
if
n=mng+np+--+na1p®', 0<ng,n,... ng-1 <p.
We study finite binary sequences Sya = (so,...,55a_1) € {—1, +1}pd with the

property
sn = MNF,) = pn(Fy,), F, squarefree. (4)
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Our results will be independent of the choice of s, € {—1,+1} for non-
squarefree F,.

First we prove the following local analog of () and ([2]) on the balancedness
of the sequence S,q.

THEOREM 1. Ford > 2,1 < N < p?, and s, satisfying @) for alln =0,1,...
.., N — 1 such that F,, is squarefree, we have

N—1
Z Sn :O(d(Np_1/2 +p1/2 logp)) if d is even
and =0

o(d(Np—1/2 +p3/2 1ogp)) if d is odd.

Next, we study several pseudorandom properties of S,q«. For a survey
on pseudorandom sequences and their desirable properties we refer to [I7].
For a given binary sequence

En = (60, cey 61\]_1) S {—1, —|—].}N
Mauduit and Sérkozy [9] defined the well-distribution measure of En by

t—1
Z €a+jb
§=0

where the maximum is taken over all a,b,t € N such that

0<a<a+(t—1)b<N,

W(Ey) = max
bt

a,0,

)

and the correlation measure of order £ of En by

M-1
Ci(En) = max Z €ntdy Cntds - -+ Cntdy| s
n=0
where the maximum is taken over all D = (dy,...,dy) and M such that

0<di<do<--<dy<N-—M.

We will prove the following bounds on the well-distribution measure and the
correlation measure of order £ for Spa.

THEOREM 2. We have the following bound on the well-distribution measure:
W(S,a) = O(dp®~?logp), d>2.
THEOREM 3. We have the following bound on the correlation measure of order { :

Ci(Sya) = O(2dp*~1?logp), d > 2.
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Theorem [3] allows us to derive a lower bound on the linear complexity of the
binary sequence S}, = (s1,583,...,5,4) defined by the relation s, = (—1)%n.

For an integer N > 1 the Nth linear complexity L(r,N) of a sequence
r=(rg,...,rr—1) of length T over the finite field Fy is the smallest positive
integer L such that there are constants ci,...,cy € Fy satisfying the linear
recurrence relation

T+l = CL-1TntL—1+ -+ corn, for0<n<N—L.
If r starts with NV — 1 zeros, then we define
L(r,N)=0 if ry-1 =0, and L(r,N)=N if ry_;=1.

The sequence (L(r, N))i1<n<r is the linear complezity profile of r.

Brandstétter and Winterhof [I] proved a lower bound on the Nth linear com-
plexity L(E%, N) of a sequence E)y = (e, ..., €/5_,) over Fy terms of the corre-
lation measure Cy(Ey) of the finite sequence Ex = (e, ...,en_1) € {—1, +1}V
defined by e,, = (—1)°n.

LEMMA 1. Let E)y = (ep,...,€N_1) be a finite sequence over Fy of length N.
Writing e,, = (fl)e/n for0<n <N —1, we have
L(EN,N)> N — max  Cy(En).

2<0<L{el, ,N)+1
By Theorem Bl and Lemma [Tl we immediately get the following lower bound.

COROLLARY 2. For fited d > 2 and any 1 < N < p® we have
N1/2
d1/2pd/2-174(log p)1/2
for the sequence Sl = (sh,...,8N_1), where s, (0 < n < N) is defined by

’

Sp = (—1)%n.

L(Sy\,N) >

2. Proofs

As in [3] we start with Pellet’s formula, see [11],
D(F
AF) = u(F) = (P52 it o) 20,
p

where (5> denotes the Legendre symbol and D(F') the discriminant of F.
(See also Stickelberger [15] and Skolem [I4] as well as [6l, [16] for a short proof.)
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Moreover, (—1)¥4=1D/2D(F,) equals the following determinant of a (2d — 1) x
(2d — 1) matrix,

1 nNg—1 s n1 un 0 0
1 nd—1 tee n1 no 0
0 0 0 1 Ng—1 ny  nNo
d (d — 1)Tld_1 n1 0 0 0
0 0 0 d (d — 1)1’Ld_1 s ni 0
0 0 0 0 d (d — 1)Tld_1 s ni
Note that

D(F,) = (—l)dedng_l + (—1)d(d — l)d_lnil + h(ng,n1,n —ng — nip),

where h(Xo, X1, X2) is a polynomial over F, of relative degrees in X at most
d— 2 and in X; at most d — 1.

Proof of Theorem M Put N —1= Ny+ Nip+ Nop? with 0 < Ny, N7 < p.
Then we have

N—-1

E Sp| <51+ 52+ 53,

n=0

where
N2—1 p—l
S = § § Sno+nip+nap? |

no=0 |[ng,n1=0
N1—1 p—l

Sy = E : E :Sno+n1p+N2p2

TL1:O TL[):O

)

No

S3=1 D Snot Nupt-Nap? | -

n():O

In the first case (d even), write

D(F, 2) .
Sno+nipt+nap? = < n0+;1p+n2p ) if D(Fpgtnyptnap2) 7 0.

Note that there are at most d — 1 different ng with 0 < ng < p for any fixed
ny and ng with D(F, 4nyptnap?) = 0.
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Since now D(Fy,4n,p+nap2) has odd degree in ng, for any pair (ni,n2) the
monic polynomial f(X) = —d ?D(Fx i, pinyp?) is D0t a square and we can
apply the Weil bound (for complete character sums)

()

nelF,

< (deg(f) - 1)p1/27 a 7& 07

(see for example [I3, Theorem 2G| or [8, Theorem 5.41]) directly to estimate
S1and 59 and the standard method for reducing incomplete character sums
to complete ones, see for example [7, Chapter 12] or [I8, Theorem 2], to es-

timate Ss,
p—1
Z (D<Fno+n1p+n2p2)> +d1>

n():O p
e 1>

IN

no=0 n,=0

IN

Nop((d—2)p'"* +d 1),

So Ni_:l ( I’z—:l (D<Fno+n1p+sz2)>

n1=0 no=0 p

IN

< Ni((d-2)p?+d-1),
No
D(Foyi npin 2>>
S S no 1p 2D +d—1
TANEES

TL[):O
< (d—1)p"*logp+d—1,

and hence the result since N3+ Nap < N/p. In the second case (d odd) the sums
over ng can be trivial but not the sums over n;. Hence, we get

Si + So + S5 < Nop((d — 1)p'/? + d) + (dp*/?logp + d)p + No

and the result follows, since Nop < N/p. ([l

Proof of Theorem We can assume without loss of generality, that
d < p'/2, since otherwise the theorem is trivial. Fix a,b,¢ with 0 < a <
a+ (t—1)b<p?—1.1ft < p?=! + 1, then we use the trivial bound

t—1

E Sa+bj

=0

<t
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Now we assume t > p?~ 4+ 1 and thus b < p. Put

r-rl}

Then we have t — T = O(p) and

t—1 T-1
Z Sa+bj = Z Satbj + O(p)- ()
j=0 j=0

For0<a<a+bj <p?—1let

a:ao+a1p+a2p2, 0<ag,a <p, 0<ay <pd_2

and

j=Jo+jp+ip®, 0<jo, 51 <p, 0<jo<pi?

_ {a0+b]’0J _ {ch +bj1+w0J
wy = | ——— and w; = | ————|.

Put

p p
Then we have

a+bj:zo+z1p+zzp2, 0<z29,21<p, 0< 29 <pd_2,

with
20 = ag + bjo —wop, z1 = ai +bji +wo —wip, 22 =az+bjx+ wy,

and

D Fz 21 p+22p2 .
Satbj = ( ( D+p P )> if D(F20+21p+22p2) 7& 0.

Note that we have at most (b + 1) possible choices for wy and for wy since
0 S Wop, W1 S b.
We define

bj bj
swo,wlz{aﬂb;()gj@, {MJ _— LMJ :wl}
p p

and note that these sets define a partition of {a + jb : 0 < j < T}.
For each (wp,w1) the set Sy, w, is of the form

Swoun = {ao — wop + bjo + (wo + a1 — wip + bjr)p+ (w1 + az + bja)p°:
ki S]z <K7l7 i:07172}7
where k‘l = k:i(wo,wl) and I(—z = Ki<w0,w1) (Z = 0, 1, 2) defined as

om0 [ 22720} (0 Dp )
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o o
kl:max{o, Lw“ Kl:mm{pw(wﬁ )pb ag wOJ}

T-1
ko =0, Ky=-—01n— {ﬂw
p p
We remark, that both Ko — ko and K1 — ky are O(p/b).
If d is even, the absolute value of () is at most

Ky (wo,wr) Ko (wo,w1)
wo, W1 j1=ki(wo,w1) ja=ka(wo,w1)

Ko (wo,wn)

Z D(Fao—wop+bjo+(wo+a1—w1p+bj1)P+(w1+a2+bj2)P2 )> (6)
p

Jo=ko(wo,w1)
As before,
D<FX+(w0+a1—w1p+bj1)p+(w1+a2+bj2)p2) € Fp [X]

has odd degree, thus we can apply the Weil-bound after using the standard
technique to reduce incomplete sums to complete ones and get, that (@) is

T
10 <b2%—2dp1/2 logp> -0 (dep—1/2 1ogp) .
p
Since vT' = O (pd) we get the result for even d. For odd d, the proof is similar. [J

The proof of Theorem [Bis based on the following form of [3| Proposition 2.1].

LEMMA 3. For given 0 < dy < dy < --- < dy < p? let G C {1,2,...,p%" 1}
the set of integers a such that D(Fxyapta,) € Fp[X] is squarefree and coprime
to D(Fxtap+d,) € Fp[X] fori = 2,3,...,L. Then, for the complement of G
we have

IG°l = |{1,2,....p" "I\ G| < 3td*p*2.

Proof of Theorem We can assume without loss of generality, that
d < p'/2, since otherwise the theorem is trivial.

Let M ¢ Nandlet 0 < dy < dy < --- < dp < p — M be integers. If M < p?~!
we use the trivial bound

M-1
E Sntdy Sntds - - - Sntdy| < M.
n=0

Now, we assume M > p?~1 4+ 1. Let

r-a[2]
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Then we have M — T = O(p) and

M—1 T—1
E Sn+dySn+dy - - Sntde| = E Sntd; Sntdy -+ Sntdy| T O<p>
n=0 n=0

As it has already been written

n=ng+np, 0<ng<p, 0<ng<pi?

and
d; :di70+d1‘71p, 0 Sd@o <p, 0 Sdi,l <pd_1, 1= 1,2,...,6.
If
d;
w; = {MJ €{0,1}, i=1,2,...,¢
p
then

n+di:z,—,0+zup, ngi,0<p7 0§Z7;71 <pd_1, i:1,2,...,£,
with
Zi0 = ng + di o — w;p
' ' “ i=1,2,...,1,
zi1 =mn1+d;1 +w;,

and

D(F., 42, _ .
Snid, = (%) if D(F., j4z.p) #0, i=1,2,...,L

For (wy,wa, ..., we) € {0,1}¢ write
Swi,d; = {n 0<n<T, LMJ :wi}
p
={jo+7ip: kio <jo < Kip, kin < j1 < K;1},
where
kio = kio(w;) =max{0,pw; —dio},
K; o =K;o(w;)=min{p,p(w; +1) —d; o}

and
ki1 =ki1(w;) =0,
Ki1=K;1(w;)=T/p.
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As (w1, ws, ..., wy) runs in {0,1}¢, the intersections Swi,dy N o.M Sy, d, are
a partition of integers 0 < n < T. However, it can be shown in the same way
as in [10], that there are at most £ 4+ 1 non-empty intersections. More precisely,
let us reorder the integers di < ds < ... < d¢ and the carries (wq,ws, ..., wp)
by the first components of

di . {dl,dg,...,dg}z{dll, ,2,..., 2},
{w17w27"'7w5}:{wllﬂw/ZV"?wz}’

! ! !
1,0 dyg < - §d£,0~

Then writing d o = 0 and dj, ,, ; = p we have

T-1
E Sn+4-dy Sntds - - - Sntdy
n=0

S E E Sn4dy Snddsy - - - Sntdy

(w1,w2,...;we) €{0,1} |nESwy ay N-NSuwy d,

(+1T/p—1 p_d;—l,()

< E E E Sjotiip+di Sjo+iiptds - - - Sjo+jip+de

i=1 j1=0 |jo=p—d} ,—1

(+1T/p—1
<> 2
i=1 j1—0
Sty D(Fjy4jypt+d ) D(Fjotjiprds) - D(Fjotjip+d,)
> +ed-1)| (7
Jo=p—d; , p

For a fixed i, if j; € G, then the innermost sum is non-trivial. On the other hand
we estimate the inner sum of (7)) trivially by p if j; ¢ G. Then we get that (1)
is less than

(£+1)(36d2p" + Z(e(d — 1)p*/*1ogp + £(d — 1)) = O(£dp*~* log )

and the result follows. O
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Final Remarks

e Cassaigne, Ferenzi, Mauduit, Rivat and Sarkozy [4, 5] studied the pseudo-

randomness of the Liouville function for integers.

e Our results as well as the results of [3] are based on Pellet’s result which

is not true for characteristic 2. Finding analog results for characteristic 2
would be very interesting.

e In this paper as well as in [3] d is fixed and p has to be large with respect

to d to get nontrivial bounds. It would be interesting to study the same
problems if p is fixed and d goes to infinity.
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