

# ON A CONNECTION BETWEEN PSEUDORANDOM MEASURES

# RICHÁRD SERŐK

Dedicated to Professor Harald Niederreiter on the occasion of his 70th birthday

ABSTRACT. Mauduit and Sárközy found the following connection between the well-distribution measure and the correlation measure of order 2:  $W(E_N) \leq 3\sqrt{NC_2(E_N)}$ . In this paper we will generalize this result to get similar connection between the combined PR-measure and the correlations of even order.

Communicated by Christian Mauduit

Mauduit and Sárközy in [6] introduced different pseudorandom measures of finite binary sequences in order to study their pseudorandom (often called as PR) properties.

For a binary sequence  $E_N = (e_1, \ldots, e_N) \in \{-1, +1\}^N$  of length N, the well-distribution measure of  $E_N$  is defined as

$$W(E_n) = \max_{a,b,t} |U(E_N, t, a, b)| = \max_{a,b,t} |\sum_{i=1}^{t} e_{a+jb}|,$$

where the maximum is taken over all  $a \in \mathbb{Z}$ ,  $b, t \in \mathbb{N}$  such that  $1 \le a + b \le a + bt \le N$ .

The correlation measure of order k of  $E_N$  is defined as

$$C_k(E_N) = \max_{M,D} |V(E_N, M, D)| = \max_{M,D} \left| \sum_{n=1}^M e_{n+d_1} e_{n+d_2} \dots e_{n+d_k} \right|,$$
 (1)

where the maximum is taken over all  $D = (d_1, \ldots, d_k)$  with non-negative integers  $d_1 < \cdots < d_k$  and  $M \in \mathbb{N}$  such that  $M + d_k \leq N$ .

In [6], the authors showed that a finite binary sequence can be considered as a good PR-sequence, if both the well-distribution measure and the correlation measure are small. For more details, see Katalin Gyarmati's survey paper [4].

<sup>2010</sup> Mathematics Subject Classification: Primary 11K45.

Keywords: binary sequences, pseudorandomness, well-distributions, correlation.

# RICHÁRD SEBŐK

The combined (well-distribution-correlation) PR-measure of order k of  $E_N$  is defined as

$$Q_{k}(E_{N}) = \max_{a,b,t,D} |Z(a,b,t,D)|$$

$$= \max_{a,b,t,D} \left| \sum_{j=0}^{t-1} e_{a+jb+d_{1}} e_{a+jb+d_{2}} \dots e_{a+jb+d_{k}} \right|,$$
(2)

where the maximum is taken over all  $a, b, t, D = (d_1, d_2, \dots, d_k)$  such that all the subscripts  $a + jb + d_l$  belongs to  $\{1, \dots, N\}$ .

In [7] Mauduit and Sárközy found a strong connection between the well distribution measure of  $E_N$  and the correlation measure of order 2 of  $E_N$ , for every  $E_N \in \{-1, +1\}^N$  (in [3], Gyarmati generalized Theorem A).

THEOREM A. For any  $N \ge 1$  and  $E_N = \{e_1, \dots, e_N\} \in \{-1, +1\}^N$ , we have

$$W(E_N) \le 3\sqrt{NC_2(E_N)}. (3)$$

We would like to improve this result in the following form:

**THEOREM 1.** For any  $N \ge 1$  and  $E_N = \{e_1, \dots, e_N\} \in \{-1, +1\}^N$ ,  $k \in \mathbb{N}$ , for  $1 \le l \le k$ , we have

$$Q_k(E_N) \le 2\sqrt{N \max_{1 \le l \le k} C_{2l}(E_N)}.$$
(4)

Proof. Assume that

$$a, b, t \in \mathbb{N}$$
 and  $1 \le a \le a + (t - 1)b \le a + (t - 1)b + d_k \le N$  (5)

and write

$$e_n = 0$$
 for  $n > N$ .

If t = 1, then

$$|Z(a,b,t,D)| = |Z(a,b,1,D)| = 1 \le \max_{1 \le l \le k} C_{2l}(E_N) \le (N \max_{1 \le l \le k} C_{2l}(E_N))^{1/2}.$$
(6)

If  $t \geq 2$ , then it follows from (5) that

and

$$t - 1 \le (t - 1)b \le N - a \le N - 1 \tag{7}$$

whence

$$t \leq N$$
.

## ON A CONNECTION BETWEEN PSEUDORANDOM MEASURES

Let  $g_i = d_i - d_1$ . Then  $g_1 = 0$ , but we will write it down sometimes if it makes things more understandable.

$$\sum_{i=a}^{a+b-1} \left( \sum_{j=0}^{t-1} e_{i+jb+d_1} \cdots e_{i+jb+d_k} \right)^2$$

$$= \sum_{i=a}^{a+b-1} \left( \sum_{j_1=0}^{t-1} e_{i+j_1b+d_1} \cdots e_{i+j_1b+d_k} \right) \left( \sum_{j_2=0}^{t-1} e_{i+j_2b+d_1} \cdots e_{i+j_2b+d_k} \right)$$

$$= \sum_{i=a}^{a+b-1} \left( \sum_{j_1=j_2} 1 + 2 \sum_{0 \le j_1 < j_2 \le t-1} e_{i+j_1b+d_1} \cdots e_{i+j_1b+d_k} e_{i+j_2b+d_1} \cdots e_{i+j_2b+d_k} \right)$$

$$= tb + 2 \sum_{i=a+d_1}^{a+d_1+b-1} \sum_{0 \le j_1 < j_2 \le t-1} e_{i+j_1b+g_1} \cdots e_{i+j_1b+g_k} e_{i+j_2b+g_1} \cdots e_{i+j_2b+g_k}$$

$$= tb + 2 \sum_{i=a+d_1}^{a+d_1+b-1} \sum_{j_1=0}^{t-1} e_{i+j_1b+g_1} \cdots e_{i+j_1b+g_k} e_{i+j_1b+fb+g_1} \cdots e_{i+j_1b+fb+g_k}$$

$$= tb + 2 \sum_{j=1}^{t-1} \sum_{i=a+d_1}^{a+d_1+b-1} \sum_{j_1=0}^{t-1-f} e_{i+j_1b+g_1} \cdots e_{i+j_1b+g_k} e_{i+j_1b+fb+g_1} \cdots e_{i+j_1b+fb+g_k}$$

$$= (t-1)b + b + 2 \sum_{j=1}^{t-1} \sum_{n=a+d_1}^{a+d_1+(t-f)b-1} e_{n+g_1} \cdots e_{n+g_k} e_{n+fb+g_1} \cdots e_{n+fb+g_k}$$

$$< N + N + 2 \sum_{j=1}^{t-1} \begin{vmatrix} a+d_1+(t-f)b-1 \\ n=a+d_1 \end{vmatrix} e_n \cdots e_{n+g_k} e_{n+fb} \cdots e_{n+fb+g_k}$$

$$(8)$$

By investigating the innermost sum, we need to find the cases when

$$n + g_i = n + fb + g_i,$$

thus

$$fb = g_i - g_i = d_i - d_1 - (d_i - d_1) = d_i - d_i$$

for some  $1 \le f \le t - 1$ .

If there is no such i and j that  $fb = d_i - d_j$ , then we sum the product of 2k different elements of the sequence  $E_N$ , and by the choice of  $D' = (d'_1, \ldots, d'_{2k})$ , with

$$0 \le d_1' \le \dots \le d_{2k}' \le a + (t-1)b + d_{2k}' \le N$$

and

$${a+d_1+g_1, a+d_1+g_2, \dots, a+d_1+g_k, a+d_1+fb+g_1, a+d_1+fb+g_2, \dots, a+d_1+fb+g_k} = {d'_1, \dots, d'_{2k}}$$

we got that

$$\sum_{n=0}^{(t-f)b-1} e_{n+a+d_1+g_1} \dots e_{n+a+d_1+g_k} e_{n+a+d_1+fb} \dots e_{n+a+d_1+fb+g_k} =$$

$$= V(E_N, (t-f)b - 1, D')$$

whence

$$\left| \sum_{n=0}^{(t-f)b-1} e_{n+a+d_1+g_1} \dots e_{n+a+d_1+g_k} e_{n+a+d_1+fb} \dots e_{n+a+d_1+fb+g_k} \right| \le (9)$$

$$\leq |V(E_N, (t-f)b-1, D')| \leq C_{2k}(E_N).$$

If there exist some i and j such that  $fb=d_i-d_j$ , then as we sum the product of 2k elements of the sequence  $E_N$  in the innermost sum, some of them are pairwise equal since their indices are identical. Of course the product of elements are 1, and  $n+a+d_1+g_0$  are smaller than all the others, and  $n+a+d_1+fb+g_k$  are greater than all the others, so at least two elements with those indices will remain.

$$\sum_{n=0}^{(t-f)b-1} e_{n+a+d_1+g_1} \dots e_{n+a+d_1+g_k} e_{n+a+d_1+fb} \dots e_{n+a+d_1+fb+g_k} =$$

$$= \sum_{n=0}^{(t-f)b-1} e_{n+j_1} e_{n+j_2} e_{n+j_3} \dots e_{n+j_{2l}},$$

where  $1 \le l < k$ . With  $D'' = (j_1, j_2, \dots, j_{2l})$ 

$$\sum_{n=0}^{(t-f)b-1} e_{n+j_1} e_{n+j_2} \dots e_{n+j_{2l}} = V(E_N, (t-f)b-1, D'),$$

thus

$$\left| \sum_{n=a+d_1}^{a+d_1+(t-f)b-1} e_{n+j_1} e_{n+j_2} \dots e_{n+j_{2l}} \right| \le$$

$$< |V(E_N, (t-f)b-1, D'')| < C_{2l}(E_N).$$
(10)

## ON A CONNECTION BETWEEN PSEUDORANDOM MEASURES

If we take a look at (8) again, for every f in

$$\sum_{f=1}^{t-1} \left| \sum_{n=a+d_1}^{a+d_1+(t-f)b-1} e_n \dots e_{n+g_k} e_{n+fb} \dots e_{n+fb+g_k} \right|$$

we can give an upper bound to the innermost sum as

$$\left| \sum_{n=a+d_1}^{a+d_1+(t-f)b-1} e_n \dots e_{n+g_k} e_{n+fb} \dots e_{n+fb+g_k} \right| \le C_{2l}(E_N)$$

for some  $1 \leq l \leq k$ , which means

$$\sum_{f=1}^{t-1} \left| \sum_{n=a+d_1}^{a+d_1+(t-f)b-1} e_n \dots e_{n+g_k} e_{n+fb} \dots e_{n+fb+g_k} \right| \le \sum_{f=1}^{t-1} \max_{1 \le l \le k} C_{2l}(E_N).$$
 (11)

So by (11) and (7), from (8) we get that

$$(Z(a,b,t,D))^{2} < 2N + 2(t-1) \max_{1 \le l \le k} C_{2l}(E_{N})$$

$$\le (2N + 2(t-1)) \max_{1 \le l \le k} C_{2l}(E_{N})$$

$$< 4N \max_{1 \le l \le k} C_{2l}(E_{N}), \tag{12}$$

in the case when  $t \geq 2$ , and with (6), it proves the theorem.

Cassaigne, Mauduit and Sárközy in [2] Theorem 4 proved a result for a connection between correlation measures of different order.

**THEOREM B.** For  $k \in \mathbb{N}$ ,  $l \in \mathbb{N}$ , k|l,  $N \in \mathbb{N}$   $E_N \in \{-1, +1\}^N$ , we have

$$C_k(E_N) \le N^{1-\frac{k}{l}} \left( (C_l(E_N))^{\frac{k}{l}} \frac{(l!)^{\frac{k}{l}}}{k!} + (l^2)^{\frac{k}{l}} \right)$$

Using this result we will see that  $Q_2(E_N)$  can be bounded by  $C_4(E_N)$ 

**Corollary 1.** For all  $E_N = \{e_1, ..., e_N\} \in \{-1, +1\}^N$ , we have

$$Q_2(E_N) \le 5\sqrt{NC_4(E_N)}. (13)$$

Proof. If t=1, then

$$|Z(a,b,t,D)| = |Z(a,b,1,D)| = 1 \le C_4(E_N) \le 5(NC_4(E_N))^{1/2}.$$
 (14)

# RICHÁRD SEBŐK

If  $t \geq 2$ , then take (8) with k = 2, which yields

$$\sum_{i=a}^{a+b-1} \left( \sum_{j=0}^{t-1} e_{i+jb+d_1} e_{i+jb+d_2} \right)^2 < \tag{15}$$

$$<2N+2\sum_{f=1}^{t-1}\left|\sum_{n=a+d_1}^{a+d_1+(t-f)b-1}e_ne_{n+d}e_{n+fb}e_{n+fb+d}\right|.$$

From Theorem B we can give an upper bound for  $C_2(E_N)$ 

$$C_2(E_N) \le \sqrt{N} \left( \sqrt{6} \sqrt{C_4(E_N)} + 4 \right) < 7 \sqrt{NC_4(E_N)}.$$
 (16)

In the case b|d, for a fix f, fb = d and the upper bound for the innermost sum in (15) is given by  $C_2(E_N)$ , otherwise by  $C_4(E_N)$ . By Theorem B and (16) we got

$$(Z(a,b,t,D))^{2} = \left(\sum_{j=0}^{t-1} e_{i+jb+d_{1}} e_{i+jb+d_{2}}\right)^{2} \leq \sum_{i=a}^{a+b-1} \left(\sum_{j=0}^{t-1} e_{i+jb+d_{1}} e_{i+jb+d_{2}}\right)^{2}$$

$$< 2N + 2(t-2)C_{4}(E_{N}) + 2C_{2}(E_{N})$$

$$\leq 2NC_{4}(E_{N}) + 2(N-2)C_{4}(E_{N}) + 2 \cdot 7\sqrt{NC_{4}(E_{N})}$$

$$\leq 2NC_{4}(E_{N}) + 2(N-2)C_{4}(E_{N}) + 14NC_{4}(E_{N})$$

$$< 18NC_{4}(E_{N}). \tag{17}$$

In the case  $b \nmid d$ 

$$(Z(a,b,t,D))^{2} = \left(\sum_{j=0}^{t-1} e_{i+jb+d_{1}} e_{i+jb+d_{2}}\right)^{2} \le \sum_{i=a}^{a+b-1} \left(\sum_{j=0}^{t-1} e_{i+jb+d_{1}} e_{i+jb+d_{2}}\right)^{2}$$

$$< 2N + 2\sum_{f=1}^{t-1} C_{4}(E_{N}) = 2N + 2(t-1)C_{4}(E_{N})$$

$$\le 2NC_{4}(E_{N}) + 2(N-1)C_{4}(E_{N})$$

$$< 4NC_{4}(E_{N})$$

$$(18)$$

which proves the corollary.

#### ON A CONNECTION BETWEEN PSEUDORANDOM MEASURES

#### Remark

One would like to know if there is a stronger form of Theorem 1:

$$Q_k(E_N) \ll \sqrt{NC_{2k}(E_N)},$$

but so far I did not manage to answer this question. If there is such a sequence  $E_N$ , where  $Q_k(E_N)$  cannot be bounded by a constant times  $\sqrt{NC_{2k}(E_N)}$ , then by [1] and [5] we know that for every even l,

$$\min_{E_N \in \{-1,+1\}^N} C_l(E_N) \ge \sqrt{\frac{1}{2} \left[ \frac{N}{l+1} \right]},$$

thus

$$Q_k(E_N) \gg N^{\frac{3}{4}}$$

holds for this sequence.

I would like to thank Professor C. Mauduit for asking this important question.

#### REFERENCES

- N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl. Measures of pseudorandomness for finite sequences: minimal values, Combin., Probab. Comput 15. (2005), 1-29.
- [2] J. Cassaigne, C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences VII: The measures of pseudorandomness Acta Arith. 103 (2002), 97-118.
- [3] K. Gyarmati, An inequality between the measures of pseudorandomness, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 46 (2003), 157-166,
- [4] K. Gyarmati, Measures of pseudorandomness, P. Charpin, A. Pott, A. Winterhof (eds.), Radon Series in Computational and Applied Mathematics, de Gruyter (2013), 43-64.
- [5] Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl, Measures of pseudorandomness for finite sequences: minimal and typical values, Proceeding of WORDS'03, TUCS Gen. Publ. 27, Turku Cent. Comput. Sci., Turku, (2003) 159-169.
- [6] C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences I: Measures of pseudorandomness, the Legendre symbol, Acta Arith. 82, (1997), 365-377.
- [7] C. Mauduit and A. Sárközy, On the measures of pseudorandomness of binary sequences Discrete Math. 271, (2003) 195-207.

Received August 26, 2014 Accepted October 23, 2014

### Eötvös Loránd University

Department of Algebra and Number Theory H-1117 Budapest, Pázmány Péter sétány 1/C E-mail: sebokr@cs.elte.hu