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ABSTRACT. Let sq(n) denote the base q sum of digits function, which for n ≤ x,

is centered around q−1
2

log
q
x. In this paper we provide bounds on the tails of the

distribution of sq(n), and prove that given α in the range 1
2
≤ α < 0.7375, and

any ǫ > 0, there exists a constant c depending on ǫ such that
∣

∣

{

p ≤ x, p prime : sq(p) ≥ α(q − 1) log
q
(x)

}
∣

∣ ≥
2

25
x
2(1−α)

e
−c

√

log q(log x)1/2+ǫ

for sufficiently large x. In particular, this shows that there are infinitely many
primes with more than twice as many ones than zeros in their binary expansion.

Communicated by Michael Drmota

1. Introduction

A prime number of the form 2n−1 is called a Mersenne prime and it will only
have ones in its binary expansion. The first few such primes are 3, 7, 31, and
127, and currently the largest known prime is of this form with over 12.9 million
digits. It is a long standing conjecture that there are infinitely many Mersenne
primes, and this currently seems entirely out of reach of modern analytic meth-
ods. However, we may weaken the condition and ask about primes with a large
number of 1’s in their base 2 expansion. With this in mind, we ask:

Problem 1. Are there infinitely many primes with more than twice as many
ones than zeros in their binary expansion?
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The set of integers with more than twice as many ones than zero’s is very
small as most integers have approximately half of their digits equal to 1. If we
let sq(n) denote the sum of the digits of n written in base q, then we are asking
if there exists infinitely many primes p satisfying s2(p) ≥ 2

3 log2 p. Moving to
a slightly more general setting, we will look at the sum of digits base q rather
than just the binary case. On average sq(n) is

q−1
2 multiplied by the number of

digits, so we have the asymptotic
∑

n≤x

sq(n) ∼
q − 1

2
logq x.

However, things become more complicated when we restrict ourselves to the
prime numbers. In 1946 Copeland and Erdos [2] proved that

1

π(x)

∑

p≤x

sq(p) ∼
q − 1

2
logq(x)

where π(x) =
∑

p≤x 1 is the prime counting function, and a more precise error

term was subsequently given by Shiokawa [4]. In 2009, Drmota, Mauduit and
Rivat [3] gave exact asymptotics for the set

{

p ≤ x, p prime sq(p) = α (q − 1) logq x
}

where α lies in the range

α ∈
(

1

2
−K

(log log x)
1
2
−ǫ

√
log x

,
1

2
+K

(log log x)
1
2
−ǫ

√
log x

)

,

and is chosen so that α (q − 1) logq x is an integer which avoids certain congru-
ence conditions. However, these results only apply to the center of the distribu-
tion, and they don’t allow us to make any conclusions about problem 1. In [3]
they ask about finding non-trivial bounds for the sum

∑

p≤x 2
sq(p), as this would

yields results regarding the tail distribution of the sum of digits of primes. That
is, they ask about lower bounds for the size of

{

p ≤ x, p prime : sq(n) ≥ α(q − 1) logq x
}

where α > 1
2 does not depend on x. These are exactly the type of bounds we

are looking for in order to answer our question, as problem 1 is the case when
α = 2

3 and q = 2 . In this note, we provide such lower bounds, and prove the
following theorem:

Theorem 1. Given 0.2625 < β ≤ 1
2 and 1

2 ≤ α < 0.7375, there exists a constant
c depending on ǫ such that for sufficiently large x we have
∣

∣

{

p ≤ x, p prime : sq(n) ≥ α(q − 1) logq x
}∣

∣ ≥ 2

25
x2(1−α)e−c

√
log q(log x)1/2+ǫ
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and
∣

∣

{

p ≤ x, p prime : sq(n) ≤ β(q − 1) logq x
}∣

∣ ≥ 2

25
x2βe−c

√
log q(log x)1/2+ǫ

.

To approach this problem we do not examine the sum
∑

p≤x 2
sq(p), and instead

exploit the fact that the multinomial distribution is sharply peaked, using results
regarding primes in small intervals to attain the desired lower bound. From
theorem 1, problem 1 follows as a corollary. In fact, we have that for any α <
0.7375 there are infinitely many primes where the proportion of 1’s in their
binary expansion greater than α.

2. The Tail Distribution

We start by providing bounds on the size of the tails of the multinomial
distribution.

Lemma 1. (Chernoff bound) Given 0 < a < 1
2 < b < 1, we have that

∣

∣

{

n < qk : b (q − 1) k ≤ sq(n)
}∣

∣ ≤ qk exp

(

−2k

9

(

b− 1

2

)2
)

, (1)

and
∣

∣

{

n < qk : sq(n) ≤ a (q − 1) k
}∣

∣ ≤ qk exp

(

−2k

9

(

a− 1

2

)2
)

. (2)

P r o o f. Each integer in the interval
[

0, qk − 1
]

can be written so that it has
exactly k digits base q, by adding zeros in front where neccesary. The distribution
of each of the k digit’s is an independent random variable which corresponds to
the roll of a q sided dice with sides 0, 1, . . . , q−1. Normalizing, let ξ be a random
variable where

P

(

ξi =
2

q − 1
j − 1

)

=
1

q

for 0 ≤ j ≤ q − 1, and for each i let ξi = ξ. Our goal is then to examine

P

(

γ ≤ ξ1 + ξ2 + · · ·+ ξk
k

)

.

For any nonnegative t,

P

(

γ ≤ ξ1 + ξ2 + · · ·+ ξk
k

)

≤ E
(

et(ξ1+···+ξk)
)

etkγ

=
(

e−tγ
E
(

etξ
))k
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= e−kI(t,γ)

where

I (t, γ) = tγ − logE
(

etξ
)

.

Evaluating the expectation, we find that

E
(

etξ
)

=

q−1
∑

j=0

1

q
et(

2j
q−1

−1) =
e−t

q

q−1
∑

j=0

(

e
2t

q−1

)j

=
1

q

sinh
(

t+ t
q−1

)

sinh
(

t
q−1

) .

This gives rise to the series expansion

log





1

q

sinh
(

t+ t
q−1

)

sinh
(

t
q−1

)



 =
q2 − 1

6(q − 1)2
t2 − q4 − 1

180(q − 1)4
t4 +O

(

q6

(q − 1)6
t6
)

,

where the error term holds uniformely for qt
q−1 < 1. This allows us to prove the

inequality

logE
(

etξ
)

≤ q2t2

6(q − 1)2
,

for q, t satisfying qt
q−1 < 1. To maximize I(t, γ), we choose t = γ

3
q−1
q+1 , and obtain

the upper bound

P

(

γ ≤ ξ1 + ξ2 + · · ·+ ξk
k

)

≤ exp

(

−k

6

(

q − 1

q + 1

)

γ2

)

,

which proves equation (1) upon taking γ = 2b−1, and noting that q−1
q+1 ≥ 1

3 since

q ≥ 2. The proof of equation 2 is identical, as the distribution is symmetric. �

Next, we will need the best existing results on prime gaps. In 2001, Baker,
Harman and Pintz proved that for x ≥ x0,

π
(

x+ xθ
)

− π(x) ≥ 9

100

xθ

log x
(3)

for any θ ≥ 0.525 [1]. Armed with equation 3 and lemma 1, we are now ready
to prove theorem 1.

P r o o f. Let α
′

= α + r(x) where r(x) is chosen so that α
′

< 0.7375. Let

k =
[

logq x
]

, l = ⌈2
(

1− α
′

)

k⌉ so that qk ≤ x and ql ≥ x0.525. Consider the

interval
[

qk − ql, qk − 1
]

, which is an interval whose first k− l digits base q are
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equal to q − 1. By Baker, Harman and Pintz, if x is sufficiently large, there will
be

≥ 9

100

ql

log (qk)
≥ 9

100

ql

log x

primes in this interval, where the constant is explicit. By equation (2), there

are at most ql exp
(

− 2lδ2

9

)

integers between 0 and ql which have digit sum less

than (q − 1)l
(

1
2 − δ

)

. Letting δ = 9
√

log log x
l

, it follows that there are at most

ql/ log2 x integers in the interval
[

qk − ql, qk − 1
]

whose digit sum is less than

(q − 1)(k − l) + (q − 1)l

(

1

2
−
√

log l

l

)

.

For x ≥ e100, 1
log x

≤ 1
100 , which implies that for sufficiently large x there are

more than 2
25

ql

log x
primes in the interval

[

qk − ql, qk − 1
]

with digit sum larger

than

α
′

(q − 1)k − (q − 1)
√

l log log x.

Expanding α
′

= α+r(x), and taking r(x) =
√

log log x
logq x

yields a digit sum greater

than

α(q − 1) logq(x),

which proves the result since

ql

log x
≥ x2(1−α)x−2r(x)

log x
≥ x2(1−α) exp

(

−4
√

log q
√

log x
√

log log x
)

.

The proof of the lower bound for the size of the corresponding set of primes with
sq(p) ≤ β(q − 1) logq(x) for 0.2625 < β ≤ 1

2 is identical. �
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