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ON THE DENSITY OF RANGES OF GENERALIZED
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DOMAINS
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Dedicated to Professor Harald Niederreiter on the occasion of his 70th birthday

ABSTRACT. We begin by defining functions σt,k , which are generalized divisor
functions with restricted domains. For each positive integer k, we show that, for

r > 1, the range of σ
−r,k is a subset of the interval

[

1,
ζ(r)

ζ((k + 1)r)

)

. After some

work, we define constants ηk which satisfy the following: If k ∈ N and r > 1, then

the range of the function σ
−r,k is dense in

[

1,
ζ(r)

ζ((k + 1)r)

)

if and only if r ≤ ηk .

We end with an open problem.

Communicated by Rita Giuliano

1. Introduction

Throughout this paper, we will let N denote the set of positive integers, and
we will let P denote the set of prime numbers. We will also let pi denote the ith

prime number.

For a real number t, define the function σt : N → R by σt(n) =
∑

d|n
d>0

dt for all

n ∈ N. Note that σt is multiplicative for any real t. For each positive integer
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C. DEFANT

n, if r > 1, we have 1 ≤ σ−r(n) =
∑

d|n
d>0

1

dr
<

∞
∑

i=1

1

ir
= ζ(r), where ζ denotes

the Riemann zeta function. The author has shown [1] that if r > 1, then the
range of the function σ−r is dense in the interval [1, ζ(r)) if and only if r ≤ η,
where η is the unique number in the interval (1, 2] that satisfies the equation
(

2η

2η − 1

)(

3η + 1

3η − 1

)

= ζ(η).

For each positive integer k, let Sk be the set of positive integers defined by

Sk = {n ∈ N : pk+1 ∤ n ∀ p ∈ P}.
For any real number t and positive integer k, let σt,k : Sk → R be the restriction
of the function σt to the set Sk, and let log σt,k = log ◦ σt,k. We observe that,

for any k ∈ N and r > 1, the range of σ−r,k is a subset of

[

1,
ζ(r)

ζ((k + 1)r)

)

. This

is because, if we allow

v
∏

i=1

q
βi

i to be the canonical prime factorization of some

positive integer in Sk (meaning that βi ≤ k for all i ∈ {1, 2, . . . , v}), then

1 = σ−r,k(1) ≤ σ−r,k

(

v
∏

i=1

q
βi

i

)

=

v
∏

i=1

σ−r,k(q
βi

i ) =

v
∏

i=1





βi
∑

j=0

q
−jr
i





≤
v
∏

i=1





k
∑

j=0

q
−jr
i



 <

∞
∏

i=1





k
∑

j=0

p
−jr
i



 =
∞
∏

i=1

1− p
−(k+1)r
i

1− p−r
i

=
ζ(r)

ζ((k + 1)r)
.

To simplify notation, we will write Gk(r) =
ζ(r)

ζ((k + 1)r)
.

Our goal is to analyze the ranges of the functions σ−r,k in order to find
constants analogous to η for each positive integer k. More formally, for each
k ∈ N, we will find a constant ηk such that if r > 1, then the range of σ−r,k is
dense in [1, Gk(r)) if and only if r ≤ ηk.

2. The Ranges of σ−r,k

Definition 2.1. For k,m ∈ N and r ∈ (1,∞), let

fk(m, r) = log

(

1 +
1

prm

)

+

m
∑

i=1

log





k
∑

j=0

1

p
jr
i



 .
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Notice that, for any k ∈ N and r ∈ (1,∞), the range of σ−r,k is dense in the
interval [1, Gk(r)) if and only if the range of log σ−r,k is dense in the interval
[0, log(Gk(r))). For this reason, we will henceforth focus on the ranges of the
functions log σ−r,k for various values of k and r.

Theorem 2.1. Let k ∈ N, and let r ∈ (1,∞). The range of log σ−r,k is dense in

the interval [0, log(Gk(r))) if and only if fk(m, r) ≤ log(Gk(r)) for all m ∈ N.

P r o o f. First, suppose that there exists some m ∈ N such that fk(m, r) >

log(Gk(r)). Then

log

(

1 +
1

prm

)

+

m
∑

i=1

log





k
∑

j=0

1

p
jr
i



 > log





∞
∏

i=1





k
∑

j=0

1

p
jr
i









=

∞
∑

i=1

log





k
∑

j=0

1

p
jr
i



 ,

which means that

log

(

1 +
1

prm

)

>

∞
∑

i=m+1

log





k
∑

j=0

1

p
jr
i



 .

Fix some N ∈ Sk, and let N =
v
∏

i=1

q
γi

i be the canonical prime factorization of

N . Note that γi ≤ k for all i ∈ {1, 2, . . . , v} because N ∈ Sk. If ps|N for some
s ∈ {1, 2, . . . ,m}, then

log σ−r,k(N) ≥ log

(

1 +
1

prs

)

≥ log

(

1 +
1

prm

)

.

On the other hand, if ps ∤ N for all s ∈ {1, 2, . . . ,m}, then

log σ−r,k(N) = log

(

v
∏

i=1

σ−r,k(q
γi

i )

)

= log





v
∏

i=1





γi
∑

j=0

1

q
jr
i









≤ log





v
∏

i=1





k
∑

j=0

1

q
jr
i







 < log





∞
∏

i=m+1





k
∑

j=0

1

p
jr
i









=

∞
∑

i=m+1

log





k
∑

j=0

1

p
jr
i



 .
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Because N was arbitrary, this shows that there is no element of the range of

log σ−r,k in the interval





∞
∑

i=m+1

log





k
∑

j=0

1

p
jr
i



 , log

(

1 +
1

prm

)



. Therefore, the

range of log σ−r,k is not dense in [0, log(Gk(r))).

Conversely, suppose that fk(m, r) ≤ log(Gk(r)) for all m ∈ N. This is equiv-
alent to the statement that

log

(

1 +
1

prm

)

≤
∞
∑

i=m+1

log





k
∑

j=0

1

p
jr
i





for all m ∈ N. Choose some arbitrary x ∈ (0, log(Gk(r))). We will construct
a sequence in the following manner. First, let C0 = 0. Now, for each positive

integer l, let Cl = Cl−1 + log





αl
∑

j=0

1

p
jr
l



, where αl is the largest nonnegative

integer less than or equal to k such that Cl−1 + log





αl
∑

j=0

1

p
jr
l



 ≤ x. Also, for

each l ∈ N, let Dl = log





k
∑

j=0

1

p
jr
l



− log





αl
∑

j=0

1

p
jr
l



, and let El =

l
∑

i=1

Di. Note

that

lim
l→∞

(Cl + El) = lim
l→∞





l
∑

i=1

log





αi
∑

j=0

1

p
jr
i



+

l
∑

i=1

Di





= lim
l→∞

l
∑

i=1

log





k
∑

j=0

1

p
jr
i



 = log(Gk(r)).

Now, because the sequence (Cl)
∞
l=1 is bounded and monotonic, we know that

there exists some real number γ such that lim
l→∞

Cl = γ. Note that, for each l ∈ N,

Cl is in the range of log σ−r,k because

Cl =
l
∑

i=1

log





αi
∑

j=0

1

p
jr
i



 = log

(

l
∏

i=1

σ−r(p
αi

i )

)

= log σ−r,k

(

l
∏

i=1

pαi

i

)

.

Therefore, if we can show that γ = x, then we will know (because we chose
x arbitrarily) that the range of log σ−r,k is dense in [0, log(Gk(r))), which will
complete the proof.
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Because we defined the sequence (Cl)
∞
l=1 so that Cl ≤ x for all l ∈ N, we

know that γ ≤ x. Now, suppose γ < x. Then lim
l→∞

El = log(Gk(r)) − γ >

log(Gk(r))− x. This implies that there exists some positive integer L such that
El > log(Gk(r)) − x for all l ≥ L. Let m be the smallest positive integer that
satisfies Em > log(Gk(r)) − x. First, suppose Dm ≤ x − Cm so that x ≥ Cm +

Dm = Cm−1+log





k
∑

j=0

1

p
jr
m



. This implies, by the definition of αm, that αm = k.

Then Dm = 0. If m > 1, then Em−1 = Em > log(Gk(r)) − x, which contradicts
the minimality of m. On the other hand, if m = 1, then we have 0 = Dm =
Em > log(Gk(r)) − x, which is also a contradiction. Thus, we conclude that
Dm > x− Cm. Furthermore,

∞
∑

i=m+1

log





k
∑

j=0

1

p
jr
i



 = log(Gk(r)) −
m
∑

i=1

log





k
∑

j=0

1

p
jr
i





= log(Gk(r)) − Em − Cm < x− Cm < Dm, (1)

and we originally assumed that log

(

1 +
1

prm

)

≤
∞
∑

i=m+1

log





k
∑

j=0

1

p
jr
i



. This

means that log

(

1 +
1

prm

)

< Dm = log





k
∑

j=0

1

p
jr
m



− log





αm
∑

j=0

1

p
jr
m



, or,

equivalently, log

(

1 +
1

prm

)

+ log





αm
∑

j=0

1

p
jr
m



 < log





k
∑

j=0

1

p
jr
m



. If αm > 0, we

have

log

(

(

1 +
1

prm

)2
)

≤ log

(

1 +
1

prm

)

+ log





αm
∑

j=0

1

p
jr
m



 < log





k
∑

j=0

1

p
jr
m





< log





∞
∑

j=0

1

p
jr
m



 = log

(

prm
prm − 1

)

,

so

(

1 +
1

prm

)2

<
prm

prm − 1
. We may write this as 1 +

2

prm
+

1

p2rm
< 1 +

1

prm − 1
, so

2 <
prm

prm − 1
= 1 +

1

prm − 1
. As prm > 2, this is a contradiction. Hence, αm = 0.
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By the definitions of αm and Cm, we see that Cm−1 + log

(

1 +
1

prm

)

> x and

that Cm = Cm−1. Therefore, log

(

1 +
1

prm

)

> x− Cm−1 = x− Cm.

However, recalling from (1) that

∞
∑

i=m+1

log





k
∑

j=0

1

p
jr
i



 < x− Cm, we find that

∞
∑

i=m+1

log





k
∑

j=0

1

p
jr
i



 < log

(

1 +
1

prm

)

, which we originally assumed was false.

Therefore, γ = x, so the proof is complete. �

Given some positive integer k, we may use Theorem 2.1 to find the values of
r > 1 such that the range of log σ−r,k is dense in [0, log(Gk(r))). To do so, we
only need to find the values of r > 1 such that fk(m, r) ≤ log(Gk(r)) for all
m ∈ N. However, this is still a somewhat difficult problem. Luckily, we can make
the problem much simpler with the use of the following theorem. We first need
a quick lemma.

Lemma 2.1. If j ∈ N\{1, 2, 4}, then pj+1

pj
<

√
2.

P r o o f. Pierre Dusart [2] has shown that, for x ≥ 396 738, there must be at least

one prime in the interval

[

x, x+
x

25 log2 x

]

. Therefore, whenever pj > 396 738,

we may set x = pj + 1 to get pj+1 ≤ (pj + 1) +
pj + 1

25 log2(pj + 1)
<

√
2pj . Using

Mathematica 9.0 [3], we may quickly search through all the primes less than
396 738 to conclude the desired result. �

Remark 2.1. There is an identical statement and proof of Lemma 2.1 in [1],
but we include it again here for the sake of completeness (and so that we may
later refer to Lemma 2.1 with a name).

Theorem 2.2. Let k∈N, and let r∈ (1, 2]. The range of the function log σ−r,k

is dense in the interval [0, log(Gk(r))) if and only if

fk(m, r) ≤ log(Gk(r)) for all m ∈ {1, 2, 4}.

P r o o f. In light of Theorem 2.1, we simply need to show that if
fk(m, r) ≤ log(Gk(r)) for all m ∈ {1, 2, 4}, then fk(m, r) ≤ log(Gk(r)) for all
m ∈ N. Thus, let us assume that k and r are such that fk(m, r) ≤ log(Gk(r))
for all m ∈ {1, 2, 4}.
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Now, if m ∈ N\{1, 2, 4}, then, by Lemma 2.1,
pm+1

pm
<

√
2 ≤ r

√
2, which im-

plies that
2

prm+1

>
1

prm
. We then have

fk(m+ 1, r) = log

(

1 +
1

prm+1

)

+

m+1
∑

i=1

log





k
∑

j=0

1

p
jr
i





≥ 2 log

(

1 +
1

prm+1

)

+

m
∑

i=1

log





k
∑

j=0

1

p
jr
i





> log

(

1 +
2

prm+1

)

+

m
∑

i=1

log





k
∑

j=0

1

p
jr
i





> log

(

1 +
1

prm

)

+
m
∑

i=1

log





k
∑

j=0

1

p
jr
i



 = fk(m, r).

This means that fk(3, r) < fk(4, r) ≤ log(Gk(r)). Furthermore, fk(m, r) <

log(Gk(r)) for all m ≥ 5 because (fk(m, r))∞m=5 is a strictly increasing sequence
and lim

m→∞
fk(m, r) = log(Gk(r)). �

We now have a somewhat simple way to check whether or not the range of
log σ−r,k is dense in [0, log(Gk(r))) for given k ∈ N and r ∈ (1, 2], but we can do
better. In what follows, we will let Tk(m, r) = fk(m, r)− log(Gk(r)).

Lemma 2.2. For fixed k ∈ N and m ∈ {1, 2, 4}, Tk(m, r) is a strictly increasing

function in the variable r for all r ∈
(

1,
7

3

)

.

P r o o f. Tk(m, r) = log

(

1 +
1

prm

)

−
∞
∑

i=m+1

log





k
∑

j=0

1

p
jr
i



, so, for fixed

k ∈ N and m ∈ {1, 2, 4}, we have

d

dr
Tk(m, r) =

∞
∑

i=m+1

((

∑k
a=1 ap

−ar
i

∑k

b=0 p
−br
i

)

log pi

)

− log pm
prm + 1

.
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Observe that, for any pi ∈ P, k ∈ N, and r ∈
(

1,
7

3

)

, we have

∑k
a=1 ap

−ar
i

∑k

b=0 p
−br
i

≥ p−r
i

1 + p−r
i

=
1

pri + 1
. Therefore, in order to show that

d

dr
Tk(m, r) > 0, it suffices to show that

∞
∑

i=m+1

log pi
pri + 1

>
log pm
prm + 1

.

For each m ∈ {1, 2, 4}, define the function Jm :

(

1,
7

3

]

→ R by

Jm(x) =
log pm
pxm + 1

−
m+6
∑

i=m+1

log pi
pxi + 1

.

One may verify, for each m ∈ {1, 2, 4}, that the function Jm is increasing on the

interval

(

1,
7

3

)

and that Jm

(

7

3

)

< 0. Thus, for m ∈ {1, 2, 4},

log pm
prm + 1

<

m+6
∑

i=m+1

log pi
pri + 1

<

∞
∑

i=m+1

log pi
pri + 1

.

This completes the proof. �

Lemma 2.3. For each positive integer k, the functions Tk(1, r) and Tk(2, r) each
have precisely one root for r ∈ (1, 2].

P r o o f. Fix some k ∈ N. First, observe that lim
r→1+

Tk(1, r) = −∞ and

lim
r→1+

Tk(2, r) = −∞. Also, when viewed as single-variable functions of r, Tk(1, r)

and Tk(2, r) are continuous over the interval (1, 2]. Therefore, if we invoke Lemma
2.2 and the Intermediate Value Theorem, we see that it is sufficient to show that
Tk(1, 2) and Tk(2, 2) are positive. We have

Tk(1, 2) = log

(

1 +
1

22

)

−
∞
∑

i=2

log





k
∑

j=0

1

p
2j
i



 > log

(

5

4

)

−
∞
∑

i=2

log





∞
∑

j=0

1

p
2j
i





= log

(

5

4

)

− log

(

∞
∏

i=2

p2i
p2i − 1

)

= log

(

5

4

)

+ log

(

4

3

)

− log(ζ(2))

= log

(

10

π2

)

> 0
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and

Tk(2, 2) = log

(

1 +
1

32

)

−
∞
∑

i=3

log





k
∑

j=0

1

p
2j
i



 > log

(

10

9

)

−
∞
∑

i=3

log





∞
∑

j=0

1

p
2j
i





= log

(

10

9

)

− log

(

∞
∏

i=3

p2i
p2i − 1

)

= log

(

10

9

)

+ log

(

9

8

)

+ log

(

4

3

)

− log(ζ(2))

= log

(

10

π2

)

> 0.

�

Definition 2.2. For k ∈ N and m ∈ {1, 2, 4}, we define Rk(m) by

Rk(m) =

{

r0, if Tk(m, r0) = 0 and 1 < r0 < 2;

2, if Tk(m, r) < 0 for all r ∈ (1, 2).

Also, for each positive integer k, let Mk be the smallest element m of {1, 2, 4}
that satisfies Rk(m) = min(Rk(1), Rk(2), Rk(4)).

Remark 2.2. Observe that, for each k ∈ N, Lemma 2.2, when combined with
the fact that lim

r→1+
Tk(m, r) = −∞ for all m ∈ {1, 2, 4}, guarantees that the

function Rk is well-defined. Furthermore, note that Lemma 2.3 tells us that
Rk(Mk) < 2. Essentially, Mk is the element m of the set {1, 2, 4} that gives
g(r) = Tk(m, r) the smallest root in the interval (1, 2), and if multiple values of
m give g(r) this minimal root, Mk is simply defined to be the smallest such m.

Lemma 2.4. For all k ∈ N and m ∈ {1, 2, 4}, Rk+1(m) ≥ Rk(m), where equality

holds if and only if m = 4 and Rk(m) = 2.

P r o o f. Fix k ∈ N and m ∈ {1, 2, 4}. Note that if fk(m, r) ≤ log(Gk(r)) for
some r ∈ (1, 2], then

fk+1(m, r)−
m
∑

i=1

log





k+1
∑

j=0

1

p
jr
i



 = log

(

1 +
1

prm

)

= fk(m, r) −
m
∑

i=1

log





k
∑

j=0

1

p
jr
i



 ≤ log(Gk(r)) −
m
∑

i=1

log





k
∑

j=0

1

p
jr
i





=

∞
∑

i=m+1

log





k
∑

j=0

1

p
jr
i



 <

∞
∑

i=m+1

log





k+1
∑

j=0

1

p
jr
i
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= log(Gk+1(r)) −
m
∑

i=1

log





k+1
∑

j=0

1

p
jr
i



 ,

so fk+1(m, r) < log(Gk+1(r)). We now consider two cases.

Case 1: Tk(m, r0) = 0 for some r0 ∈ (1, 2). In this case, Rk(m) = r0, so
Tk(m,Rk(m)) = 0. Therefore, fk(m,Rk(m)) = log(Gk(Rk(m))). By the ar-
gument made in the preceding paragraph, we conclude that
fk+1(m,Rk(m)) < log(Gk+1(Rk(m))), which is equivalent to the statement
Tk+1(m,Rk(m)) < 0. Either Rk+1(m) = 2 > Rk(m) or Tk+1(m,Rk+1(m)) =
0 > Tk+1(m,Rk(m)). In the latter case, Lemma 2.2 tells us that Rk+1(m) >

Rk(m).

Case 2: Tk(m, r) < 0 for all r ∈ (1, 2). In this case, Rk(m) = 2, and fk(m, 2) ≤
log(Gk(2)). By the argument made in the beginning of this proof, we conclude
that fk+1(m, 2) < log(Gk+1(2)). Therefore, combining Lemma 2.2 and Defini-
tion 2.2, we may conclude that Rk+1(m) = Rk(m) = 2. Note that, by Lemma
2.3, this case can only occur if m = 4. �

We now mention some numerical results, obtained using Mathematica 9.0,
that we will use to prove our final lemma and theorem.

Let us define a function Vk(m, r) by

Vk(m, r) = log

(

1 +
1

prm

)

−
105
∑

i=m+1

log





k
∑

j=0

1

p
jr
i



. Then, for fixed k ∈ N and

m ∈ {1, 2, 4}, we have

d

dr
Vk(m, r) =

105
∑

i=m+1

((

∑k

a=1 ap
−ar
i

∑k

b=0 p
−br
i

)

log pi

)

− log pm
prm + 1

>

m+6
∑

i=m+1

(

log pi
pri + 1

)

− log pm
prm + 1

.

Referring to the last two sentences of the proof of Lemma 2.2, we see that
d

dr
Vk(m, r) > 0 for r ∈

(

1,
7

3

)

when k ∈ N and m ∈ {1, 2, 4} are fixed. In

particular, we will make use of the fact that V1(1, r) is an increasing function of

r on the interval

(

1,
7

3

)

. We may easily verify that V1(1, 1) < 0 < V1

(

1,
7

3

)

, so
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there exists a unique number r1 ∈
(

1,
7

3

)

such that V1(1, r1) = 0. Mathematica

approximates this value as r1 ≈ 1.864633. We have

V1(1, r1) = 0 = T1(1, R1(1)) = log

(

1 +
1

2R1(1)

)

−
∞
∑

i=2

log

(

1 +
1

p
R1(1)
i

)

< log

(

1 +
1

2R1(1)

)

−
105
∑

i=2

log

(

1 +
1

p
R1(1)
i

)

= V1(1, R1(1)).

Because V1(1, r) is increasing, we find that R1(1) > r1. The important point
here is that R1(1) ∈ (1.8638, 2). One may confirm, using a simple graphing

calculator, that

(

1 +
1

2r

)(

3r

3r + 1

)

> 1 +
1

3r
for all r ∈ (1.8638, 2). Therefore,

we may write

T1(2, R1(2)) = 0 = T1(1, R1(1)) = log

(

1 +
1

2R1(1)

)

−
∞
∑

i=2

log

(

1 +
1

p
R1(1)
i

)

= log

((

1 +
1

2R1(1)

)(

3R1(1)

3R1(1) + 1

))

−
∞
∑

i=3

log

(

1 +
1

p
R1(1)
i

)

> log

(

1 +
1

3R1(1)

)

−
∞
∑

i=3

log

(

1 +
1

p
R1(1)
i

)

= T1(2, R1(1)).

As T1(2, r) is increasing on the interval (1, 2) (by Lemma 2.2), we find that
R1(2) > R1(1). We may use a similar argument, invoking the fact that

(

1 +
1

2r

)(

3r

3r + 1

)(

5r

5r + 1

)(

7r

7r + 1

)

> 1 +
1

7r

for all r ∈ (1.8638, 2), to show that R1(4) > R1(1). Thus,
R1(1) = min(R1(1), R1(2), R1(4)), so M1 = 1.

Now, one may easily verify that, for all r ∈ (1.67, 1.98),

1 +
1

2r
<

(

1 +
1

3r

)(

1 +
1

3r
+

1

32r

)

(2)

and

1 +
1

3r
>

(

5r

5r − 1

)(

7r + 1

7r − 1

)

. (3)
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If we fix some integer k ≥ 2, then, for all r ∈ (1.67, 1.98), we may use (2) to
write

fk(1, r) = log

(

1 +
1

2r

)

+ log





k
∑

j=0

1

2jr





< log

((

1 +
1

3r

)(

1 +
1

3r
+

1

32r

))

+ log





k
∑

j=0

1

2jr





≤ log

(

1 +
1

3r

)

+ log





k
∑

j=0

1

3jr



+ log





k
∑

j=0

1

2jr



 = fk(2, r).

Similarly, for all r ∈ (1.67, 1.98), we may use (3) to write

fk(2, r) = log

(

1 +
1

3r

)

+

2
∑

i=1

log





k
∑

j=0

1

p
jr
i





> log

((

5r

5r − 1

)(

7r + 1

7r − 1

))

+

2
∑

i=1

log





k
∑

j=0

1

p
jr
i





= log





∞
∑

j=0

1

5jr



+ log





∞
∑

j=0

1

7jr



+ log

(

1 +
1

7r

)

+
2
∑

i=1

log





k
∑

j=0

1

p
jr
i





> log





k
∑

j=0

1

5jr



+ log





k
∑

j=0

1

7jr



+ log

(

1 +
1

7r

)

+

2
∑

i=1

log





k
∑

j=0

1

p
jr
i





= log

(

1 +
1

7r

)

+

4
∑

i=1

log





k
∑

j=0

1

p
jr
i



 = fk(4, r).

We now know that fk(2, r) > fk(1, r), fk(4, r) whenever k ∈ N\{1} and r ∈
(1.67, 1.98). As our last preliminary computation, we need to evaluate
lim
n→∞

Rn(2). For each positive integer n, Rn(2) is the unique solution r ∈ (1, 2)

of the equation fn(2, r) = log(Gn(r)). We may rewrite this equation as

log

(

1 +
1

3r

)

=

∞
∑

i=3

log





n
∑

j=0

1

p
jr
i



 ,
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or, equivalently,





n
∑

j=0

1

2jr









n
∑

j=0

1

3jr





(

1 +
1

3r

)

=

∞
∏

i=1





n
∑

j=0

1

p
jr
i



. Because

the summations and the product in this equation converge (for r > 1) as n → ∞,
we see that lim

n→∞
Rn(2) is simply the solution (in the interval (1, 2)) of the equa-

tion lim
n→∞









n
∑

j=0

1

2jr









n
∑

j=0

1

3jr





(

1 +
1

3r

)



 = lim
n→∞





∞
∏

i=1





n
∑

j=0

1

p
jr
i







, which

we may write as
(

2r

2r − 1

)(

3r + 1

3r − 1

)

= ζ(r). (4)

The only solution to this equation in the interval (1, 2) is r = η ≈ 1.8877909 [1].
For now, the important piece of information to note is that
lim
n→∞

Rn(2) ∈ (1.67, 1.98).

Lemma 2.5. For all integers k > 1, Mk = 2.

P r o o f. Fix some integer k > 1. First, suppose Mk = 1. This means that
Rk(1) ≤ Rk(2). Using Lemma 2.4 and the facts that R1(1) > 1.8638 and
lim
n→∞

Rn(2) < 1.98, we have

1.8638 < R1(1) < Rk(1) ≤ Rk(2) < lim
n→∞

Rn(2) < 1.98.

Therefore, Rk(1) ∈ (1.67, 1.98), so we know that fk(2, Rk(1)) > fk(1, Rk(1))
= log(Gk(Rk(1))). Hence, Tk(2, Rk(1)) > 0. Lemma 2.2, when coupled with our
assumption that Rk(1) ≤ Rk(2), then implies that Tk(2, Rk(2)) > 0. However,
this is impossible because Lemma 2.3 and the definition of Rk(2) guarantee that
Tk(2, Rk(2)) = 0.

Next, suppose Mk = 4. This means that Rk(4) < Rk(2). Also, referring to
Remark 2.2, we see that Rk(4) < 2. Therefore, by the definition of Rk(4), we
find that fk(4, Rk(4)) = log(Gk(Rk(4))). Now, we may write

1.8638 < R1(1) < R1(4) < Rk(4) < Rk(2) < lim
n→∞

Rn(2) < 1.98.

As Rk(4) ∈ (1.67, 1.98), we have

fk(2, Rk(4)) > fk(4, Rk(4)) = log(Gk(Rk(4))).

Thus, Tk(2, Rk(4)) > 0. Using Lemma 2.2 and our assumption that
Rk(4) < Rk(2), we get Tk(2, Rk(2)) > 0. Again, this is a contradiction. �

We now culminate our work with a final definition and theorem.
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Definition 2.3. Let η1 be the unique real number in the interval (1, 2) that
satisfies

(

1 +
1

2η1

)2

=
ζ(η1)

ζ(2η1)
.

For each integer k > 1, let ηk be the unique real number in the interval (1, 2)
that satisfies





k
∑

j=0

1

2ηk









k
∑

j=0

1

3ηk





(

1 +
1

3ηk

)

=
ζ(ηk)

ζ((k + 1)ηk)
.

Remark 2.3. Using Definition 2.1 to manipulate the equation
fk(Mk, Rk(Mk)) = log(Gk(Rk(Mk))) and using the fact that

Mk =

{

1, if k = 1;

2, if k ∈ N\{1},

one can see that ηk is simply Rk(Mk). Furthermore, Lemma 2.2 tells us that,
for each positive integer k, the value of ηk is, in fact, unique.

Theorem 2.3. Let k be a positive integer. If r > 1, then the range of the

function σ−r,k is dense in the interval

[

1,
ζ(r)

ζ((k + 1)r)

)

if and only if r ≤ ηk.

P r o o f. Let k be a positive integer, and let r ∈
(

1,
7

3

)

. Suppose r ≤ ηk. Then,

by the definition of Mk and the fact that ηk = Rk(Mk), we see that r ≤ Rk(m)
for all m ∈ {1, 2, 4}. Lemma 2.2 then guarantees that Tk(m, r) ≤ 0 for all m ∈
{1, 2, 4}, which means that fk(m, r) ≤ log(Gk(r)) for all m ∈ {1, 2, 4}. Theorem
2.2 then tells us that the range of log σ−r,k is dense in the interval [0, log(Gk(r))),
which implies that the range of σ−r,k is dense in [1, Gk(r)). Now, suppose that
r > ηk. Then Tk(Mk, r) > Tk(Mk, Rk(Mk)) = 0, so, fk(Mk, r) > log(Gk(r)).
This means that the range of log σ−r,k is not dense in [0, log(Gk(r))), which is
equivalent to the statement that the range of σ−r,k is not dense in [1, Gk(r)).

We now need to show that, for any k ∈ N, the range of σ−r,k is not dense

in [0, log(Gk(r))) for all r >
7

3
. To do so, it suffices to show that fk(1, r) >

log(Gk(r)) for all r >
7

3
, which means that we only need to show that

(

1 +
1

2r

) k
∑

j=0

1

2jr
> Gk(r) for r >

7

3
. Now, because Gk(r) < ζ(r), we see that
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it suffices to show that

(

1 +
1

2r

)2

> ζ(r) for r >
7

3
. One may easily verify that

this inequality holds for
7

3
< r ≤ 3. For r > 3, we have

(

1 +
1

2r

)2

> 1 +
1

2r
+

1

2

(

1

2r−1

)

> 1 +
1

2r
+

1

(r − 1)2r−1

= 1 +
1

2r
+

∫ ∞

2

1

xr
dx > ζ(r).

�

3. An Open Problem

As the author has done for a density problem related to generalizations divi-
sor functions without restricted domains [1], we pose a question related to the
number of “gaps” in the range of σ−r,k for various k and r. That is, given posi-
tive integers k and L, what are the values of r > 1 such that the closure of the

range of σ−r,k is a union of exactly L disjoint subintervals of

[

1,
ζ(r)

ζ((k + 1)r)

]

?
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