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ON THE DISTRIBUTION OF THE VALUES

OF MULTIVARIATE RATIONAL FUNCTIONS

Norbert Hegyvári — François Hennecart

ABSTRACT. We investigate the distribution of the values taken by multivari-
ate rational functions with integral coefficients in different directions. Firstly we
consider the problem of estimating the maximum of a nonnegative multivariate
polynomial on the n-dimensional hypercube [0, 1]n in terms of the arithmetical

properties of the exponents of their constituting monomials. Secondly we are in-
terested by the distribution of the values of expander polynomials in prime fields.
And finally we focus on some multivariate covering rational functions on prime
fields.

Communicated by Ilya Shkredov

1. Introduction

In the present paper we investigate the distribution of values of multivariate
rational functions.

Firstly we consider n-variables polynomials f ∈ Z[x1, x2, . . . , xn] with integral
coefficients. Consider the simplest case: let f ∈ Z[x], and assume that f(x) is
nonnegative on [0, 1] and not identically the zero polynomial. It is expected
that f could not be too ‘flat’ depending on the degree of f . More precisely
there exists a positive bound β(d) such that for any such polynomial f ∈ Z[x]
with degree d, we have maxx∈[0,1] f(x) ≥ β(d). In the next section we give
a bound for the multivariate case, showing that it depends both on the degree
of the multivariate polynomial and on the arithmetical structure of the sequence
of exponents occurring in each monomial of f .

In the third and fourth sections we will consider multivariate functions on
prime fields. As a first task, we shall concentrate our attention to 2-variable
polynomials called expanders. A polynomial f(x, y) is said to be expander,
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if for fixed 0 < α < 1, f : Fp × Fp → Fp, there exists a β = β(α) > α
such that for all A,B ⊆ Fp, |B| � |A| ∼ pα we have

|f(A,B)| > pβ .

Expander maps have a rather long story. In 2004, Barak, Implagliazzo,
Wigderson asked to find an ‘explicit’ (algebraic) expander polynomial (see [1]).
One year later Bourgain proved that f=f(x, y)=x2+xy is an expander (see [2]).

Theorem 1.1 (Bourgain). The polynomial f(x, y) = x2+xy is an expander: for
all 0 < α < 1, there exists a number δ = δ(α) > 0, such that if |B| � |A| ∼ pα

then

|f(A,B)| > pα+δ.

An expander map blows up its argument set, so one can expect that its values
are well-distributed on Fp. In section 3 we formally explicite this notion of well-
distribution.

In 2008 the authors gave a wide family of expanders (see [6] and [7] and see
also [16] and [15], and details in the third section). We will consider distribution
in two different meanings as well (cf. section 3).

The converse problem arises as a natural question: if the images of all suf-
ficiently big ‘bricks’ A × B by a given map F (x, y) are well-distributed, can
we conclude that the map F (x, y) is an expander? Surprisingly the answer is
negative. J. Bourgain showed in [2] the following

Theorem 1.2 (Bourgain). Let G(x, y) := x2y2 + xy, and A,B ⊆ Fp \ {0} with

|A| ∼ |B| ∼ p1/2. Then there exists a real number γ > 0, such that for all
r ∈ Fp \ {0} ∣∣∣ ∑

x∈A;y∈B

exp
(2πirG(x, y)

p

)∣∣∣ ≤ p1−γ .

So the image set of any brick A × B with prescribed size by the function
G(x, y) is well-distributed (see section 3 for the links between equidistribution
and the size of the Fourier coefficients). In the same time, we may write

x2y2 + xy =
(2xy + 1)2 − 1

4
,

hence by considering A and B both being geometric sequences with common
ratio and with length ∼ √

p, we plainly conclude that G(x, y) cannot be an
expander.
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2. On integral polynomials being nonnegative in the unit
hypercube

LetN,n be two positive integers. Let f = f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn]
and write f under the form

f(x1, . . . , xn) =
∑

k=(k1,...,kn)∈Nn

akx
k1
1 xk2

2 . . . xkn
n ,

where we assume that ak 
= 0 implies N ≥ k1+k2+ · · ·+kn+n, i.e., the degree
of f is at most N − n. Denote by

Af := {k ∈ N
n such that ak 
= 0},

and for each k ∈ Af , let

Kk :=

n∏
i=1

(ki + 1).

We define FN,n to be the set of all n-variable non zero integral polynomials f
satisfying {

deg f ≤ N − n and

∀(x1, x2, . . . , xn) ∈ [0, 1]n, f(x1, x2, . . . , xn) ≥ 0.

Let P ∗ be any subsequence of all primes with relative positive upper density α.
More precisely if we write π∗(x) := P ∗ ∩ [1, x], then we define

α := lim sup
x→∞

π∗(x)
π(x)

and we assume α > 0.

We thus make the assumption that f is nonnegative and is not identically
zero on the hypercube [0, 1]n, has degree less than or equal to N −n and is such
that all prime divisors of its exponents incremented by one belong to P ∗, i.e.,

P ∗ ⊇ {p prime such that p | Kk for some k ∈ Af}.
We denote the set of these polynomials by F∗

N,n. We are interested in how small
could be the maximum Mf of f in the unit hypercube. We prove

Theorem 2.1. We have

min
f∈F∗

N,n

max
x∈[0,1]n

f(x) ≥ e−(1+o(1))αNHn , as N → ∞,

where Hn =
∑n

�=1 1/� is the nth harmonic number.
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P r o o f. We let

I :=

∫ 1

0

∫ 1

0

. . .

∫ 1

0

f(x1, x2, . . . , xn) dx1dx2 . . . dxn.

Calculating this integral gives

I =

⎡⎣ ∑
k∈Af

akx
k1+1
1 xk2+1

2 · · ·xkn+1
n

(k1 + 1)(k2 + 1) . . . (kn + 1)

⎤⎦x1,...,xn=1

x1,...,xn=0

,

hence

I =
∑
k∈Af

ak

Kk
.

Since f is nonnegative (not identically zero), we know that I is positive, then
for some positive integer A we have

I =
A

lcm{Kk, k ∈ Af} ≥ 1

lcm{Kk, k ∈ Af} .

Let � ∈ {1, 2, . . . , n− 1} and p ∈ P ∗ a prime number in the interval

N

�+ 1
< p ≤ N

�
.

We first prove that if pβ | Kk for some k ∈ Af , then β ≤ �. Indeed

β ≤
n∑

i=1

vp(ki + 1) =

n∑
i=1

p≤ki+1

vp(ki + 1) =

n∑
i=1

N/(�+1)<ki+1

vp(ki + 1),

where we denote vp(k) to be the greater exponent β such that pβ | k. By taking
N large enough, namely N > n2, we cannot have vp(ki + 1) > 1, hence we infer

β ≤
n∑

i=1
N/(�+1)<ki+1

1 < �+ 1

by the condition
∑n

i=1(ki+1) ≤ N . We now consider the prime numbers p such

that p ≤ N/n. For any such prime p and any exponent β such that pβ | Kk

one has

β ≤
n∑

i=1

vp(ki + 1) ≤ 1

log p

n∑
i=1

log(ki + 1).

By investigating the maximum of the multivariate function

(x1, . . . , xn) �→
n∑

i=1

log xi
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subject to the condition x1 + · · ·+ xn ≤ N , one easily deduces that

β ≤ n log(N/n)

log p
.

It follows that pβ ≤ (N/n)n. By collecting the preceding bounds we obtain

L∗
f :=

∏
p∈P∗

pmaxk∈Af
vp(Kk) ≤

(N
n

)nπ∗(N/n)

×
n−1∏
�=1

∏
p∈P∗

N/(�+1)<p≤N/�

p�.

Taking the logarithm we get the bound

logL∗
f ≤ nπ∗(N/n) log(N/n) +

n−1∑
�=1

�
(
θ∗(N/�)− θ∗

(
N/(�+ 1)

))
where θ∗(x) =

∑
p∈P∗
p≤x

log p. Hence rearranging the summation we finally infer

logL∗
f ≤ (

1 + o(1)
) n∑
�=1

θ∗(N/�) ≤ (
1 + o(1)

)
αNHn.

since π∗(x) log x ≤ (1 + o(1))θ∗(x) ≤ (1 + o(1))αx. Clearly

lcm{Kk, k ∈ Af} ≤ L∗
f .

Comparing the deduced lower bound I ≥ e−(1+o(1))αNHn with the plain upper
bound I ≤ Mf we get the desired result. �

Remark. Our argument is related to a similar reasoning that Gelfond followed
in [5], the interesting being that it is used in the reverse direction.

3. The case: F = F (x, y) ∈ Fp[x, y]

The analogous question in prime fields would be the following: any function
from a given family of maps could not concentrated to some room of Fp.

In the present section we will focus expander polynomials with two variables.
Firstly we quote our result which gives an infinite family of expanders [6].

Theorem 3.1. Let k ≥ 1 be an integer and f , g be polynomials with integer
coefficients, and define for any prime number p, the map F from Z2 onto Z by

F (x, y) = f(x) + xkg(y)

Furthermore assume that f(x) is affinely independent to xk. Then F is an
expander.
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N. HEGYVÁRI — F. HENNECART

Moreover if δ > 1/2, then for any pair (A,B) of subsets of Fp such that
|A| � |B| � pδ, we have

|F (A,B)| � |A|1+min{2δ−1;2−2δ}
2δ .

Here two maps f(x) and h(x) are affinely independent if there is no (u, v) ∈ Z
2

such that f(x) = uh(x)+ v or h(x) = uf(x)+ v. Let us denote by H our infinite
family of expanders.

We will show that each map in H is well-distributed in two meanings as well.

3.1. Equidistribution for mutisubset in Fp

Let M be a multisubset of Fp. The usual meaning for equidistribution in
the arithmetic progression of Fp could be stated as follows. A subset I of Fp is
called an interval if it is an arithmetic progression {u + kv, k = 0, . . . , |I| − 1}
with u ∈ Fp and v ∈ Fp \ {0}. We denote by ‖M‖ the size of the multiset M.
The intersection M ∩ I is simply the multiset formed by the terms of M which
belongs to I, each of them counted according to its multiplicity in M.

Definition. Let ε > 0 be a real number. The multiset M is said to be
ε-equidistributed (in the arithmetic way) if for any interval I of Fp we have∣∣∣∣‖M ∩ I‖

‖M‖ − |I|
p

∣∣∣∣ < ε.

Observe that if M is ε-equidistributed, then M ∩ I 
= ∅ whenever |I| > εp.

We will use Fourier method. Recall some well-known facts: Let φ : Fp → C

and x ∈ Fp, let φ̂(x) :=
∑

y∈Fp
φ(y)e

(
yx
p

)
, where e(t) := exp(2iπt). Briefly we

write e
( ·
p

)
= ep(·). We also recall the Parseval identity∑

y∈Fp

|φ̂(y)|2 = p
∑
y∈Fp

|φ(y)|2.

It appears that the notion of equidistribution can be reduced to bounding the
associated Fourier coefficients

max
r∈Fp\{0}

∣∣∣ ∑
x∈M

ep(rx)
∣∣∣

by δ‖M‖ for some sufficiently small positive number δ(ε). It comes from the Weyl
approach for the famous eponymous criterion for equiditribution modulo 1.

Definition. Let δ > 0 be a real number. The multiset M is said to be
δ-trignonometrically-equidistributed (in the arithmetic way) if we have

max
r∈Fp\{0}

∣∣∣ ∑
x∈M

ep(rx)
∣∣∣ < δ‖M‖.
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In [4] the author verifies the effective equivalence of these two definitions: if M
is ε-equidistributed, then M is

√
ε-trigonometrically-equiditributed; conversely

if M is ε-trigonometrically-equidistributed, then M is O(
√
ε)-equidistributed.

3.2. First meaning

Definition. Let α and � be two real numbers in (0, 1). We say that the map
F (x, y) is arithmetically well-distributed (a.w.d.) in order (α, �), if for every
A ⊆ Fp with |A| ≥ pα and for every interval I = {u+kv, k = 0, . . . , |I|−1} ⊆ Fp

with |I| � p�, we have F (A,A) ∩ I 
= ∅.

We shall first prove

Proposition 3.2. Let F (x, y) ∈ H. Let 1/2 < α < 1 and let � such that
� ≥ 9/8− α/4. Then F (x, y) is arithmetically well-distributed in order (α, �).

In the next we will show

max
r∈Fp\{0}

∣∣∣ ∑
x,y∈A

ep
(
rF (x, y)

)∣∣∣ � p1/4

|A|1/2 |A|
2. (1)

It is clear from the preceding subsection that it is sufficient for the announced
result.

P r o o f. Let

Tr :=
∑

(x,y)∈A2

ep

(
r
(
f(x) + xkg(y)

))
. (2)

Using the triangle and the Cauchy-Schwarz inequalities,

|Tr| ≤
∑
x∈A

∣∣∣∑
y∈A

ep
(
rxkg(y)

)∣∣∣ ≤ |A|1/2 ·
(∑

x∈Fp

∑
y,y′∈A

ep

(
rxk

(
g(y)− g(y′)

)))1/2

.

Letting Sk(h) =
∑

x∈Fp
ep(hx

k) and intervenrting summations on x and y, y′,
we infer

|Tr| ≤ |A|1/2 ·
( ∑

y,y′∈A

Sk

(
r
(
g(y)− g(y′)

)))1/2

.

When g(y) 
= g(y′) the Gauss sum can be bounded by k
√
p. Otherwise it is

plainly equal to p. For a given z the number of solutions y in the equation
z = g(y) is bounded by some constant C(g). Thus

|Tr| ≤ |A|1/2 · (k|A|2√p+ C(g)p|A|)1/2 � p1/4

|A|1/2 |A|
2, (3)

as requested. �
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In fact we proved that if |A| � pα and |I| � p� with � ≥ 9/8− α/2, then

‖F (A,A) ∩ I‖ � |A|2|I|
p

(4)

where F (A,A) is considered as a multisubset of Fp which by a constant the best
possible expected result. This implies |F (A,A)∩ I| � |A||I|/p, nevertheless this
bound is possibly far from the average value |F (A,A)||I|/p.

Using the bound (1), we can provide a better result. We prove below that
under the weaker hypothesis

|A||I|2 � p5/2 log2 p,

the lower bound (4) remains valid: more precisely ‖F (A,A) ∩ I‖ is close to its
expected value |A|2|I|/p.

Denote
N :=

∣∣∣{(x, y) ∈ A2 : F (x, y) ∈ I}
∣∣∣.

Then

N =
1

p

∑
r∈Fp

∑
(x,y)∈A2

∑
t∈I

ep

(
r
(
f(x) + xkg(y)− t

))
.

Isolating the contribution from the term r = 0 we obtain

N ≥ |I||A|2
p

− 1

p

∑
0<r<p

∣∣∣∑
t∈I

ep(−rt)
∣∣∣∣∣∣ ∑

(x,y)∈A2

ep

((
f(x) + xkg(y)

))∣∣∣.
Since

∑
t∈I ep(−rt) is a geometric summation, we have∣∣∣∑

t∈I

ep(−rt)
∣∣∣ ≤ 1

| sin(πrv/p)| ,
thus∑

0<r<p

∣∣∣∑
t∈I

ep(−rt)
∣∣∣ ≤ ∑

0<r<p

1

| sin(πrv/p)| =∑
0<r<p

1

| sin(πr/p)| ≤
∑

0<|r|<p/2

p

2|r| ≤ p log p.

Hence

N ≥ |I||A|2
p

− (log p) · max
r∈Fp\{0}

Tr.

It follows by (3) that

N ≥ |I||A|2
p

−O
(
(log p)(|A|3/2p1/4 + |A|p1/2)),
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where the implied constant depends on F . Finally N is positive whenever

|A||I|2 � p5/2 log2 p and |A||I| � p3/2 log p.

The latter condition being weaker than the former, we deduce the following
result.

Proposition 3.3. Let F (x, y) ∈ H. Let 1/2 < α < 1 and set �0(α) = 5/4−α/2.
Then for any � > �0(α), if |I| � p� and |A| � pα, then

‖F (A,A) ∩ I‖ =
(
1 + o(1)

) |A|2|I|
p

, as p → ∞.

It implies that the function F (x, y) is arithmetically well-distributed in order (α, �).

For an interval I = {a, a + d, a + 2d, . . . , a + (k − 1)d} in Fp of size k,
we have I ⊃ J + J , where J = 2a + {0, d, 2d, . . . , �(k − 1)/2�d}, where
x denotes the multiplicative inverse of x ∈ F . We observe that F (A,A)∩ I 
= ∅

if F (A,A) ∩ (J + J) 
= ∅, namely by using Fourier analysis

M :=
∑
r

Tr(Ĵ(r))
2 =

∑
r∈Fp

∑
a,b∈A

∑
x,y∈J

ep

(
r
(
F (a, b)− x− y

))
> 0,

where Ĵ is the Fourier transform of the characteristic function of J . Clearly,

M ≥ |A|2|J |2 − pmax
r �=0

|Tr||J |.

From (1), it follows that M > 0 whenever |A|1/2|J | � p5/4. Since |J | � |I|,
we infer the next result.

Theorem 3.4. Under the notation of Proposition 3.3, for any � ≥ �0(α) and
p large enough, the function F (x, y) is arithmetically well-distributed in order
(α, �).

Remark. In the same way and by considering Weil’s bound for trigonometric
sums ∣∣∣ ∑

x∈Fp

ep
(
h(x)

)∣∣∣ ≤ (
deg(h)− 1

)√
p

which holds for any polynomial h, we could extend Theorem 3.4 to function
F (x, y) = f(x) + h(x)g(y) for non-constant polynomials f, g and h.

3.3. Second meaning

A geometric interval I is a subset of Fp \ {0} which can be written as
I = {uvk, k = 0, . . . , |I| − 1} ⊆ Fp \ {0} for some u, v ∈ Fp \ {0}.

111
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Definition. Let α and � be two real numbers in (0, 1). We say that the map
F (x, y) is geometrically well-distributed (g.w.d.) in order (α, �), if for every
A ⊆ Fp \{0} with |A| ≥ pα, and for every geometric interval I = {uvk, k = 0, . . .
. . . , |I| − 1} ⊆ Fp \ {0} with |I| � p�, we have F (A,A)∩ I 
= ∅ (or alternatively
‖F (A,A) ∩ I‖ � |A|2|I|/p).

We shall prove

Theorem 3.5. Let F (x, y) ∈ H. Let 1/2 < α < 1 and set �0(α) = 5/4− α/2.
Assume that A is a subset of Fp \ {0} of size pα and I is a geometric interval
of size p�. Then

(i) If � > �0(α), one has ‖F (A,A) ∩ I‖ =
(
1 + o(1)

)|A|2|I|/p as p → ∞.

(ii) If � ≥ �0(α) and p large enough, one has ‖F (A,A) ∩ I‖ � |A|2|I|/p,
namely F (x, y) is geometrically well-distributed in order (α, �).

P r o o f o f (i). Comparing to the proof of Proposition 3.3 we consider instead

Eχ =
∑

x,y∈A

χ
(
f(x) + xkg(y)

)
where χ is any non-trivial multiplicative characters modulo p. By the triangle
inequality

|Eχ| ≤
∑
x∈A

∣∣∣∑
y∈A

χ
(
x−kf(x) + g(y)

)∣∣∣
Let U (resp. V ) be the set u (resp. v) which can be written as u = x−kf(x) (resp.
v = g(x)) with x ∈ A. We also denote r(u) (resp. s(v)) the number of x ∈ A
such that u = x−kf(x) (resp. v = g(x)).

The summation on x can be written and bounded by the Cauchy-Schwarz
inequality as

|Eχ| ≤
∑
u

r(u)
∣∣∣ ∑
v∈V

s(v)χ(u+ v)
∣∣∣

≤
( ∑

u∈U

r(u)2
)1/2

⎛⎝ ∑
v,v′∈V

s(v)s(v′)
∣∣∣ ∑
u∈U

χ(u+ v)χ(u+ v′)
∣∣∣
⎞⎠1/2

.

We may observe here that both functions r(u) and s(v) are bounded by some
constant depending only on the given map F . When v 
= v′, the sum on u
is bounded by O(

√
p) by Johnsen’s Theorem (cf. [10]). Since |U |, |V | ≤ |A|

we finally obtain for any χ 
= χ0

|Eχ| � |A|3/2p1/4 + |A|p1/2, (5)
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where the implied constant depends only on the given function F. Now we deduce

‖F (A,A) ∩ I‖ =
1

p

∑
χ

∑
t∈I

∑
x,y∈A

χ
(
f(x) + xkg(y)

)
χ(t)

=
|A|2|I|
p− 1

−O
(
(log p)(|A|3/2p1/4 + |A|p1/2)),

where we isolated the contribution of the principal character χ0 and used the
bound ∑

χ �=χ0

∣∣∑
t∈I

χ(t)
∣∣ ≤ p log p (6)

which can be obtained in a straightforward way by expliciting the characters χ
as

χq(t) = exp
(2πiq indω(t)

p− 1

)
, q = 0, . . . , p− 2,

for some fixed primitive root ω modulo p and where t = ωindω(t). Then letting
� = indω(v), we get for each q = 1, . . . , p− 2,∣∣∣∑

t∈I

χq(t)
∣∣∣ = ∣∣∣ ∑

0≤k≤|I|−1

χq(uv
k)
∣∣∣ = ∣∣∣ |I|−1∑

k=0

exp
(2πiqk�

p− 1

)∣∣∣ ≤ 1

| sin(πq�/(p− 1))|
and the desired result (6) follows. �

P r o o f o f (i i). The proof is the mutiplicative analogue of that of Theorem 3.4.
For I = {uvj , j = 0, . . . , k − 1},
we write I ⊃ uJ ·J , where J = {vj, j = 0, �(k−1)/2�}. Clearly ‖F (A,A)∩I‖ �
‖F (A,A) ∩ (J + J)‖/|J | � |A|2|J |/p � |A|2|I|/p if∑

χ

Eχχ(u)
(∑

x∈J

χ(x)
)2

− |A|2|J |2 � max
χ �=χ0

|Eχ|
∑
χ

∣∣∣∑
x∈J

χ(x)
∣∣∣2.

By Parseval and (5), we conclude. �

Similarly to the ending remark of the preceding subsection, we could extend
Theorem 3.5 to functions F (x, y) = f(x) + h(x)g(y) with non-constant polyno-
mials f, g, h.

Both preceding results Theorems 3.4 and 3.5 on equidistribution concern func-
tions F (x, y) having the property that F (x, y)− f(x) is a product xkg(y) with
separate variables, and F (x, y)x−k = f(x)x−k+g(y) is a sum, where the variables
x, y are also separated. This is not the case of the function x2y+xy2. Neverthe-
less it could be proved that it is well-distributed in similar order according to
both meanings, even if it is not known that it is an expander (see details in [7]).
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Under some natural restrictive condition, the same could be proved with map
of the type u(x)v(y) + w(x)t(y). We focus here on the map x2y + xy2.

Proposition 3.6. Let 1/2 < α < 1 be a number. Then

(i) The function f(x, y) = x2y + xy2 is a.w.d and g.w.d. in order (α, �)
if � ≥ 5/4− α/2.

(ii) The function f(x, y) is a.w.d. in order in order (α, �) if � ≥ 11/8− 3α/4.

P r o o f. In view of the preceding proofs it is only needed to bound, in an efficient
way, both characters sums∑

x,y∈A

ep
(
r(x2y + xy2)

)
and

∑
x,y∈A

χ
(
(xy(x+ y)

)
when r 
= 0 and χ 
= χ0.

For the first, we only consider the case r = 1 and we have by Cauchy-Schwarz∣∣∣ ∑
x,y∈A

ep(x
2y + xy2)

∣∣∣ ≤ ∑
x∈A

∣∣∣∑
y∈A

ep(x
2y + xy2)

∣∣∣
≤ |A|1/2

(∑
x∈Fp

∑
y,y′∈A

ep

(
(y − y′)

(
x2 + (y + y′)x

)))1/2

.

We denote by x the multiplicative inverse of x ∈ Fp \ {0}. The inner summation
can be inverted and bounded by

p|A|+
∣∣∣ ∑
y �=y′∈A

ep
(− 2

2
(y − y′)(y + y′)2

)
S(y − y′, p)

∣∣∣,
where S(a, p) is the Gauss sum

∑
x∈Fp

ep(ax
2) =

∑
z∈Fp

χL(z)e(az), where χL

is the Legendre character, a 
= 0. It is well known that for odd prime numbers p

S(a, p) = χL(a)εp
√
p, (7)

where εp = 1 or i according to p ≡ 1 or 3 (mod 4). Hence we get∣∣∣ ∑
x,y∈A

ep(x
2y + xy2)

∣∣∣ ≤ p1/2|A| + p1/4|A|3/2.

We can do slightly sharper: for this we need to bound

Q :=
∑

y �=y′∈A

χL(y − y′)ep
(− 2

2
(y − y′)(y + y′)2

)
.

By the triangle and the Cauchy-Schwarz inequalities we have

|Q|2 ≤ |A|
( ∑

y′,y′′∈A

∑
y∈Fp

χL(y − y′)χL(y − y′′)ep
(
2
2
(y′′ − y′)

(
y2 − (y′ + y′′)y

)))
,

114



VALUES OF MULTIVARIATE RATIONAL FUNCTIONS

hence

|Q|2≤ |A|
(
p|A|+

∑
y′ �=y′′∈A

∣∣∣∑
y∈Fp

χL(y−y′)χL(y−y′′)ep
(
2
2
(y′′−y′)

(
y−2(y′+y′′)

)2)∣∣∣).
Letting z = y − 2(y′ + y′′), z′ = 2y′ and z′′ = 2y′′ the inner sum can be written
as ∑

z∈Fp

χL(z + z′′ − z′)χL(z + z′ − z′′)ep
(
2(z′′ − z′)z2

)
.

We shall use the following lemma.

Lemma 3.7. Let a, b ∈ Fp \ {0}. One has∣∣∣ ∑
z∈Fp

χL(z
2 − b)ep(az

2)
∣∣∣ ≤ 3

√
p.

P r o o f. Denote by T the sum considered in the statement. Then

T =
∑
w∈Fp

(
χL(w) + 1

)
χL(w − b)ep(aw)

=
∑
w∈Fp

χL

(
w(w − b)

)
ep(aw) +

∑
w∈Fp

χL(w − b)ep(aw).

In view of (7) the last sum is∑
v∈Fp

χL(v)ep
(
a(v + b)

)
= ep(ab)S(a, p) = ep(ab)χL(a)εp

√
p.

Hence

T − ep(ab)χL(a)εp
√
p =

∑
w∈Fp

(
χL

(
w(w − b)

)
+ 1

)
ep(aw).

Since the expression χL(w(w − b)) + 1 = 2, 1 or 0 detects if w(w − b) is a non
zero square modulo p, zero or a non square modulo p respectively, one has

T − ep(ab)χL(a)εp
√
p =

∑
w,t∈Fp

w(w−b)=t2

ep(aw).

Letting u = 2b(w− 2b+ t) and v = 2b(w− 2b− t), one infers w = 2
2
b(u+ v+2)

and

T − ep(ab)χL(a)εp
√
p = ep(2ab)

∑
u,v∈Fp

uv=1

ep
(
2
2
ab(u+ v)

)
yielding a Kloosterman sum that can be classically bounded by 2

√
p (see [18]).

We conclude that |T | ≤ 3
√
p. �
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Returning to our problem we get |Q|2 ≤ p|A|2 + 3|A|3√p and finally∣∣∣ ∑
x,y∈A

ep(x
2y + xy2)

∣∣∣ ≤ |A|1/2(p|A|+ p1/2|Q|)1/2 � p1/2|A|+ p3/8|A|5/4

giving the statement (ii) in Proposition 3.6, arguing as in the proof of Theo-
rem 3.4.

Concerning the multiplicative distribution, when χ 
= χ0 we have∣∣∣ ∑
x,y∈A

χ
(
xy(x+ y)

)∣∣∣ ≤ ∑
x∈A

∣∣∣∑
y∈A

χ(y)χ(x+ y)
∣∣∣

≤ |A|1/2
(
p|A| +

∑
y,y′∈A
y �=y′

∑
x∈Fp

χ(x+ y)χ(x+ y′)
)1/2

.

By Johnsen’s bound on the inner character sum, we finally get∣∣∣ ∑
x,y∈A

χ
(
xy(x+ y)

)∣∣∣ � p1/2|A|+ p1/4|A|3/2.

The rest of the proof is clear by mimicking Theorem 3.5. �

4. Covering rational functions in Fp \ {0}

One can expect that an expander F (x, y) which blows up the size of its argu-
ment set, will cover many elements with respect with the size of A and B. Indeed
in [13] Shkredov showed that for the Bourgain’s function G(x, y) = x2 + xy,

|G(A,B)| ≥ (p − 1) − 40p5/2

|A||B| , thus if |A||B| > p3/2+ε, ε > 0, then G(A,B)

covers almost all Fp \ {0}. This also shows that the equation G(x, y) = z,

(x, y, z) ∈ A×B × C has always a solution whenever |A||B||C| � p5/2, namely
both 3-variable covering functions G(x, y) − z and G(x, y)z are covering Fp as
soon as the variables range in sufficiently big sets A,B,C.

In [12] Sárközy proved the following assertion. For A,B,C,D ⊆ Fp, the equa-
tion a + b = cd, (a, b, c, d) ∈ A × B × C × D has at least a solution, provided
|A||B||C||D| > p3. This immediately implies that for the map F (x, y, z, w) =
x + y + zw, one has F (A,B,C,D) = Fp, for the indicated range of the sets
A,B,C,D (see also [14], [8]).

In [6] we proved the following statement.
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Theorem 4.1. There exist real numbers 0 < δ, δ′ < 1 such that for any p and
for any sets A,B,C,D ⊆ Fp with

|C| > p1/2−δ, |D| > p1/2−δ, |A||B| > p2−δ′ ,

there exist a ∈ A, b ∈ B, c ∈ C, d ∈ D solving the equation

a+ b = Fp,v(c, d)
and

a+ b = Gu(c, d),

where Gu(x, y) = x1+uy + x2−uh(y); u ∈ {0, 1}, h(y) ∈ Z[y] and Fp,v(x, y) =
x1+uy + x2−ugyp , gp generates F

×
p and v ∈ {0, 1} is fixed.

Equivalently the maps Fp,v(x, y) + z + w and Gu(x, y) + z + w are covering
polynomials on the indicated regions.

The aim of this section is to show that some ‘dilatations’ of an expander
polynomial also are covering rational functions on a given range.

More precisely

Theorem 4.2. Let F (x, y) = f(x) + xkg(y) be the map defined in Theorem 3.1
and let G(x, y, z, w) := F (x, y)(αz + βw)−1, where α, β ∈ Fp \ {0}. Then if

|A||B||C| � p5/2, then G(A,A,B,C) covers Fp \ {0}.
P r o o f. Changing B and C into αB and −βC respectively we may assume that
α = −β = 1.

Let h be any element of Fp \ {0}. Denote by NG(h) the cardinality of the set{
(x, y, z, w) ∈ A×A×B × C :

(
f(x) + xkg(y)

)
(z − w)−1 = h

}
.

We again use Fourier analysis: we have

NG(h) =
1

p

∑
r∈Fp

∑
(x,y)∈A2

∑
z∈B;w∈C

z �=w

ep

(
r
(
f(x) + xkg(y)− h(z − w)

))
. (8)

Separating the contribution due to r = 0, we get

NG(h) ≥ |A|2|B||C|
p

−

− 1

p

∑
r∈Fp\{0}

∣∣∣ ∑
z∈B;w∈C

z �=w

ep
(
rh(z − w)

)∣∣∣ · ∣∣∣ ∑
(x,y)∈A2

ep

(
r
(
f(x) + xkg(y)

))∣∣∣
≥ |A|2|B||C|

p
−
(

max
r∈Fp\{0}

|Tr|
)
× 1

p

∑
r∈Fp

∣∣∣ ∑
z∈B;w∈C

z �=w

ep
(
rh(z − w)

)∣∣∣.
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In view of the bound (1) it remains to bound the sum on r. We have∑
r∈Fp

∣∣∣ ∑
z∈B;w∈C

z �=w

ep
(
rh(z − w)

)∣∣∣ = ∑
r∈Fp

∣∣∣ ∑
z∈B;w∈C

ep
(
rh(z − w)

)∣∣∣+ p|B ∩ C|

≤
( ∑

r∈Fp

|B̂(rh)|2
)1/2( ∑

r∈Fp

|Ĉ(rh)|2
)1/2

+ pmin(|B|, |C|)

≤ 2p
√
|B||C|

by Cauchy-Schwarz inequality and Parseval identity. We thus infer from (1)

NG(h) ≥ |A|2|B||C|
p

−O(|A|3/2p1/4|B|1/2|C|1/2).
Hence the result. �
Remark. Shkredov conjectured in [13] that his method could provide a solution
to the equation z = F (x, y) for (x, y, z) ∈ X×Y ×Z whenever |X||Y ||Z| � p5/2.
The above result, as the next one, gives a weak version of Shkredov’s conjecture:
we stress the fact that our results need an additional variable.

Theorem 4.3. Let F (x, y) be the map defined in Theorem 3.1 and let

H(x, y, z, w) := F (x, y)zw.

Then if |A||B||C| � p5/2, then H(A,A,B,C) covers Fp \ {0}.
P r o o f. The proof is similar to the preceding. For any h ∈ Fp \ {0}, we de-
note NH(h) the number of quadruples (x, y, z, w) ∈ A × A × B × C such that
h = F (x, y)zw. We have

NH(h) =
1

p− 1

∑
χ

∑
(x,y)∈A2

χ
(
F (x, y)

)∑
z∈B

χ(z)
∑
w∈C

χ(w)χ(h),

where the sum is extended over all multiplicative characters χ of Fp \ {0}.
The number of pairs (x, y) ∈ A2 such that F (x, y) = 0 is a O(|A|) hence

NH(h) ≥ (|A|2 −O(|A|)|B||C|
p− 1

− 1

p− 1

(
max
χ �=χ0

∣∣∣ ∑
(x,y)∈A2

χ
(
F (x, y)

)∣∣∣)∑
χ

∣∣∣∑
z∈B

χ(z)
∣∣∣∣∣∣ ∑

w∈C

χ(w)
∣∣∣.

By (5), Cauchy-Schwarz inequality and Parseval identity, we get

NH(h) ≥ (|A|2 − O(|A|)|B||C|
p− 1

−O
(|A|3/2p1/4|B|1/2|C|1/2),

which is positive whenever |A||B||C| � p5/2, as asserted. �
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We now consider the question of covering Fp \ {0} by a sufficiently large
number of copies of the expander F (x, y).

Theorem 4.4. Let F (x, y) = f(x) + xkg(y) be the map defined in Theorem 3.1
and let J(x, y, z, w, u, v) := F (x, y)F (z, w)F (u, v). Then if |A| � p0.7,
then J(A,A,A,A,A,A) covers Fp \ {0}.
P r o o f. Let h ∈ Fp \ {0}. The number NJ(h) of 6-tuples (x, y, z, w, u, v) ∈ A6

such that h = F (x, y)F (z, w)F (u, v) is at least

NJ(h) ≥ |A|6
p− 1

− 1

p− 1

(
max
χ �=χ0

|Eχ|
)∑

χ

|Eχ|2,

where Eχ has been defined in the proof of Theorem 3.5. We use (5) for bound-
ing maxχ �=χ0

|Eχ|. We now deal with the sum
∑

χ |Eχ|2. A direct approach

would lead to the bound
∑

χ |Eχ|2 = O(|A|3) yielding the condition |A| � p5/6.
By a more thorough study we shall obtain a better result.

One first has
1

p− 1

∑
χ

|Eχ|2 ≤ ∣∣{(x1, x2, y1, y2) ∈ A4 : f(x1) + xk
1g(y1) = f(x2) + xk

2g(y2)
}∣∣.

At this point we may use an incidence theorem given by the Bourgain-Katz-
-Tao bound (see [3] or [9] or [11] for an effective version). Under the assumption
|A| < p1−ε we shall obtain a positive number η = η(ε) such that there are at
most O(|A|3−η) quadruples (x1, x2, y1, y2) ∈ A4 satisfying f(x1) + xk

1g(y1) =
f(x2) + xk

2g(y2). By [11], η = 1/403 + o(1) is admissible when |A| <
√
p.

For bigger A, namely |A| = pδ >
√
p, we may use Vinh’s result implying that

the choice η = min(δ−1/2,1−δ)
δ is possible (cf. [17]): written in a different way the

number of incidences is O(|A|4p−1 + |A|2p1/2).
Here follows the appropriate application of the above quoted incidence results.

Lemma 4.5. Let u(x), v(x), w(x) ∈ Fp[x] be non constant polynomials and let
A ⊂ Fp. We assume that the number of couples (α, β) such that gcd(u(x2) −
αu(x1), w(x1)− w(x2)− βu(x1)) 
= 1 is less than M ≥ 1. Then the number N ′

of quadruples (x1, x2, y1, y2) ∈ A4 such that u(x1)v(y1)− u(x2)v(y2) = w(x1)−
w(x2) is O(|A|3−η), where the constant implied in the O depends only on the
maximum D of the degrees of the polynomials u, v, w and on M .

P r o o f. For each Y ∈ Fp, denote by |v−1(Y )| the number of y ∈ A such that

Y = v(y). Then clearly |v−1(Y )| ≤ deg(v) ≤ D. Let �(x1, x2) be the line in Fp
2

defined by the equation in variables Y1, Y2: u(x1)Y1 − u(x2)Y2 = w(x1)−w(x2).
We first investigate incidences with u(x1) = 0. There are at most deg u such
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elements x1 ∈ A. For u(x2) = 0 this gives less than |A|2 points on each
such line �(x1, x2). For u(x2) 
= 0, we then get only the points (Y1,−(w(x1) −
w(x2))/u(x2)) on the line �(x1, x2). Hence the number of incidences with
u(x1) = 0 is less than (D2+D)|A|2. We denote by L the set of all lines �(x1, x2)
such that u(x1) 
= 0. One thus has

N ′ ≤
∑
Y1,Y2

|v−1(Y1)||v−1(Y2)|
∑
α,β

R(α, β)1Y1−αY2=β + (D2 +D)|A|2,

where R(α, β) is the number of couples (x1, x2) ∈ A2 such that u(x2) = αu(x1)
and w(x1)−w(x2) = βu(x1) with u(x1) 
= 0, and 1C = 0 or 1 according to the va-
lidity of the condition C. The above equations define together the intersection of
two curves in Fp

2. In the case where the polynomials Pα(x1, x2) = u(x2)−αu(x1)
and Qβ(x1, x2) = w(x1)−w(x2)−βu(x1) are coprime then it is well known that
the intersection of the corresponding curves has at most degPα × degQβ ≤ D2

pairs (x1, x2) giving R(α, β) ≤ D2. Now let α, β such that Pα and Qβ are not co-
prime, we get at most D|A| pairs (x1, x2) such that Pα(x1, x2) = Qβ(x1, x2) = 0
and at most |A| incidences (αY2 + β, Y2) ∈ �(x1, x2). By assumption there are
at most M such pairs (α, β), thus we infer

N ′ ≤ D4
∑
�∈L

∑
(Y1,Y2)∈�∩v(A)2

1 + (MD3 +D2 +D)|A|2.

Since |L| ≤ |A|2 and |v(A)| ≤ |A|, we obtain the desired result by the Bourgain-
-Katz-Tao theorem. �

We now finish the proof of Theorem 4.4 keeping the notation for Pα and Qβ .
We see that with the choice u(x) = xk and w(x) not being on the form λxk +μ,
the hypotheses of Lemma 4.5 are satisfied. Indeed xk

2 = αxk
1 is possible only if α

is k-th power. Fixing K any algebraic closure of Fp, there exists ω ∈ K such that

ωk = α and consequently Pα(x1, x2) =
∏k−1

j=0 (x2− ζjωx1) where ζ is a primitive

k-th root of the unity in K \{0}. But gcd(Pα, Qβ) 
= 1 implies Qβ(X, ζjwX) = 0
for some j, yielding the polynomial identity

w(ζjωX)− w(X) = βXk. (9)

Write w(X) =
∑d

i=0wiX
i. Clearly we must have β = (α− 1)wk by identifying

the coefficients. Moreover, since w(x) is not affinely dependent to xk, there exists
i 
= k such that wi 
= 0. Hence ζiωi = 1 by (9), and taking the k-th power,
αi = 1. It follows that α is a root of unity in K of degree less than than or equal
to d = degw. We thus have proved that the number of pairs (α, β) for which Pα

and Qβ are not coprime is less than d2.
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We may thus apply Lemma 4.5 with M = d2. We obtain

NJ (h) ≥ |A|6
p

− O
(
|A|9/2−ηp1/4

)
,

which is positive whenever

|A|3/2+η � p5/4, (10)

where for |A| = pδ ≥ p1/2, we have η = min(δ − 1/2, 1 − δ)/δ. A sufficient
condition for (10) is min(5δ/2−1/2, δ/2+1) ≥ 5/4, namely δ ≥ 7/10. This ends
the proof of Theorem 4.4. �

Considering Theorem 4.2, we may ask a similar result of covering with the
function (z − w)F (x, y). We would need a good bound for∑

x,y∈A
F (x,y)�=0

ep
(
rF (x, y)−1

)
, r 
= 0,

which is seemingly out of reach. Instead we shall prove the following:

Theorem 4.6. Let F (x, y) be the map defined in Theorem 3.1 and let

K(x, y, z, w, u, v) := (z − w)
(
F (x, y)− F (u, v)

)
.

Then if |A| � p2/3, then K(A,A,A,A,A,A) covers Fp \ {0}.

P r o o f. We start by bounding the sum

Sr :=
∑

x,y,u,v∈A
F (x,y)�=F (u,v)

ep

(
r
(
F (x, y)− F (u, v)

)−1
)
, r 
= 0.

We have by orthogonality and using the notation (2)

Sr =
∑

x,y,u,v∈A

1

p

p∑
h=1

∑
t�=0

ep
(
h(F (x, y)− F (u, v)− t)

)
ep(rt

−1)

=
1

p

p∑
h=1

(∑
t�=0

ep(rt
−1 − ht)

)
|Th|2.

Then

|Sr | ≤ |A|4
p

+
1

p

∑
h �=0

∣∣∣∑
t�=0

ep(rt
−1 − ht)

∣∣∣|Th|2.
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The inner sum is a Kloosterman sum that can be bounded by 2
√
p (cf.[18]).

Moreover we have
1

p

∑
h

|Th|2 =
∣∣{(x1, x2, y1, y2) ∈ A4 : f(x1) + xk

1g(y1) = f(x2) + xk
2g(y2)

}∣∣
� |A|4

p
+ |A|2√p

as it was shown in the proof of Theorem 4.4. We deduce

|Sr| � |A|4
p

+
( |A|4

p
+ |A|2√p

)√
p � |A|4√

p
+ |A|2p.

Using the Parseval identity and the above bound, we obtain that the number
of representations of h under the form h = (F (x, y) − F (u, v))(w − z), with
x, y, u, v, z, w ∈ A, is at least

|A|6
p

−O
( |A|4√

p
+ |A|2p

)
|A|,

which is positive whenever |A| � p2/3. �
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