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NORMAL NUMBERS AND CANTOR EXPANSIONS

Ferdinánd Filip — Jan Šustek

ABSTRACT. A real number is called normal if every block of digits in its ex-
pansion occurs with the same frequency. A famous result of Borel is that almost
every number is normal. We extend the definition of normal numbers to the case
of Cantor series. The main result of this paper is that under some condition almost

every number is normal in the new sense.

Communicated by Vladimı́r Baláž

1. Introduction

The concept of normal number was introduced by Borel. A number is called
normal if in its base b expansion every block of digits occurs with the same
frequency. In other words,

���������� 1� A real number x ∈ (0, 1) is called simply normal to base b ≥ 2
if its base b expansion is 0.d1(x)d2(x)d3(x) . . . and

lim
N→∞

#{n ≤ N | dn(x) = A}
N

=
1

b
for every A ∈ {0, . . . , b− 1} . (1)

A number is called normal to base b if for every block of digits A1 . . . AL, L ≥ 1,

lim
N→∞

#{n ≤ N − L | dn+1(x) = A1, . . . , dn+L(x) = AL}
N

=
1

bL
.

A number is called absolutely normal if it is normal to every base b ≥ 2.

A famous result of Borel [1] is

	
����� 1� Almost every real number is absolutely normal.
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FERDINÁND FILIP — JAN ŠUSTEK

There are many ways to prove this theorem (see discussions in [3], [4] or [10]).

For the sake of brevity we will use Iverson bracket defined for a predicate P by

[P ] =

{
1 if P is true,

0 if P is false.

Using this notation, one can rewrite condition (1) by

lim
N→∞

N∑
n=1

[dn(x) = A]

N∑
n=1

1

=
1

b
for every A ∈ {0, . . . , b− 1} . (2)

Notice that 1
b is the expected value of the function

lim
N→∞

N∑
n=1

[dn = A]

N∑
n=1

1

,

where {dn}∞n=1 is a sequence of independent uniformly distributed random vari-
ables dn ∼ U({0, . . . , b− 1}).

In this paper, we first extend the definition of normal numbers to the case
of Cantor series.

For a given sequence b = {bn}∞n=1, bn ≥ 2, we will use the Cantor expansion
of a real number x

x = �x�+
∞∑

n=1

dn(x)
n∏

k=1

bk

, (3)

where dn(x) ∈ {0, . . . , bn − 1}. For almost every x, the digits dn(x) are uniquely
determined by (3). Put d(x) := {dn(x)}∞n=1.

Formula (2) does not seem to be good for Cantor expansions. For instance,
if bn = 8 and bp = bq = br = 2, then the events dn(x) = 0 and dp(x) = dq(x) =
dr(x) = 0 occur with the same probability. Therefore it is good to add suitable
weights depending on bn. It seems that the most logical weights are wn = log bn.

Denote by hb(d, A,N) the weighted “frequency” of a digit A in a finite
sequence d = {dn}Nn=1,

hb(d, A,N) :=

N∑
n=1

[dn = A]wn

N∑
n=1

wn

=

log
N∏

n=1
b
[dn=A]
n

log
N∏

n=1
bn

.
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Let d be a sequence of independent uniformly distributed random variables

dn ∼ U({0, . . . , bn − 1}) .

Then the expected value Rb(A,N) of the function hb(d, A,N) is

Rb(A,N) := Ehb(d, A,N)

=

E

N∑
n=1

[dn = A] log bn

N∑
n=1

log bn

=

N∑
n=1

(
E[dn = A]

)
log bn

N∑
n=1

log bn

=

N∑
n=1

[A<bn]
bn

log bn

N∑
n=1

log bn

=

log
N∏

n=1
b

[A<bn]
bn

n

log
N∏

n=1
bn

.

According to the previous text we introduce

���������� 2� A number (3) is called b-normal if for every possible digit A

lim inf
N→∞

hb(d(x), A,N) = lim inf
N→∞

Rb(A,N) ,

and

lim sup
N→∞

hb(d(x), A,N) = lim sup
N→∞

Rb(A,N) .

Our main result is

	
����� 2� Let b = {bn}∞n=1 be a sequence of integers with bn ≥ 2 for every n
and with

B := lim sup
n→∞

bn < ∞ . (4)

Then almost every real number (3) is b-normal.

For results concerning unweighted frequencies of digits in Cantor expansions
see, for instance, [2], [5], [6], [7], [8] or [9].
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2. Preliminary results

The following lemma is Corollary 1 from [3].


���� 1� Let {bn}∞n=1 be a sequence of integers with bn ≥ 2 and let for every n
numbers Θn(d) > 0 satisfy bn−1∑

d=0

Θn(d) = bn . (5)

Then for almost every x (with respect to Lebesgue measure) with Cantor expan-
sion (3) the following product exists and is finite (possibly equal to zero)

∞∏
n=1

Θn(dn(x)) < ∞ . (6)


���� 2� The set of all b-normal numbers is equal to{
x ∈ R

∣∣∣∣∣
lim inf
N→∞

hb(d(x), A,N) = lim inf
N→∞

Rb(A,N)

lim sup
N→∞

hb(d(x), A,N) = lim sup
N→∞

Rb(A,N)
for every A < lim sup

n→∞
bn

}
.

Denote the set mentioned in Lemma 2 by Zb.

P r o o f. According to the definition it is sufficient to prove that

lim
N→∞

hb(d(x), A,N) = lim
N→∞

Rb(A,N) for all A ≥ lim sup
n→∞

bn.

For such A there are only finitely many n with A < bn and hence there are only
finitely many n with dn(x) = A. Thus, in the products in numerators in (7)
below there are only finitely many terms different from 1. On the other hand,
the denominators in (7) diverge. Hence,

lim
N→∞

log
N∏

n=1
b
[dn(x)=A]
n

log
N∏

n=1
bn

= lim
N→∞

log
N∏

n=1
b

[A<bn]
bn

n

log
N∏

n=1
bn

= 0 . (7)

�


���� 3� Consider the set

Jb :=

{
x ∈ R

∣∣∣∣ lim
N→∞

log
N∏

n=1
b
[dn(x)=A]
n

log
N∏

n=1
b

[A<bn]
bn

n

= 1 for all A < lim sup
n→∞

bn

}
.

Then Jb ⊆ Zb.
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P r o o f. For every x ∈ Jb and every A < lim sup
n→∞

bn we have

lim
N→∞

hb(d(x), A,N)

Rb(A,N)
= lim

N→∞

log
N∏

n=1
b
[dn(x)=A]
n

log
N∏

n=1
bn

log
N∏

n=1
b

[A<bn]
bn

n

log
N∏

n=1
bn

= lim
N→∞

log
N∏

n=1
b
[dn(x)=A]
n

log
N∏

n=1
b

[A<bn]
bn

n

= 1 .

Hence, x ∈ Zb. �

3. Proof of Theorem 2

Firstly, consider the function f defined for real numbers b ≥ 2, C ∈ R and
V > 0 by

f(b, C, V ) := CV +
b log b

bC+b−1

log b
.

The function f is continuous (as a function of C) and has derivative

∂f

∂C
(b, C, V ) = V − bC+1

bC + b− 1
.

It follows that

f(b, 0, V ) = 0 and
∂f

∂C
(b, 0, V ) = V − 1 .

P r o o f. (of Theorem 2) Lemma 2 and Lemma 3 imply that if we put

P (A, V ) :=

{
x ∈ R

∣∣∣∣ lim inf
N→∞

log
N∏

n=1
b
[dn(x)=A]
n

log
N∏

n=1
b

[A<bn]
bn

n

< V

}
, (8)

Q(A, V ) :=

{
x ∈ R

∣∣∣∣ lim sup
N→∞

log
N∏

n=1
b
[dn(x)=A]
n

log
N∏

n=1
b

[A<bn]
bn

n

> V

}
, (9)
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then the set of all non-normal numbers is a subset of

R \ Jb =

B−1⋃
A=0

⋃
V ∈(0,1)∩Q

P (A, V ) ∪
B−1⋃
A=0

⋃
V ∈(1,∞)∩Q

Q(A, V ) .

Thus, it is sufficient to prove that every set P (A, V ) (for A < B and V ∈ (0, 1))
and every set Q(A, V ) (for A < B and V ∈ (1,∞)) has zero Lebesgue measure.

1. We prove that for every A < B and V ∈ (0, 1) the set P (A, V ) has zero

Lebesgue measure. Since f(b, 0, V ) = 0 and ∂f
∂C (b, 0, V ) < 0, we obtain that

for every b = 2, . . . , B there exists a number S(b, V ) < 0 such that for every
C ∈ (S(b, V ), 0) we have f(b, C, V ) > 0. Set

E :=
1

2
max

b=2,...,B
S(b, V ) < 0

and for this number E put

H := min
b=2,...,B

f(b, E, V )> 0 .

For every n and d we define numbers Θn(d) > 0 by

Θn(d) :=

⎧⎪⎪⎨
⎪⎪⎩
1 if A ≥ bn ,

bE+1
n

bEn+bn−1
if A < bn and d = A ,

bn
bEn+bn−1

if A < bn and d �= A .

(10)

One can easily check that condition (5) is satisfied. Thus, Lemma 1 implies (6)
for almost every x.

Now consider two cases.

1a. First we assume that A < min
n∈N

bn. Then [A < bn] = 1 for every n.

Let x ∈ P (A, V ). Equation (8) implies that there are infinitely many inte-
gers N such that

log
N∏

n=1
b
[dn(x)=A]
n

log
N∏

n=1
b

[A<bn]
bn

n

< V . (11)
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For every such number N we have

N∏
n=1

Θn(dn(x)) =

N∏
n=1

(
bE+1
n

bEn + bn − 1

)[dn(x)=A](
bn

bEn + bn − 1

)1−[dn(x)=A]

=

N∏
n=1

bE[dn(x)=A]
n ·

N∏
n=1

bn
bEn + bn − 1

>
N∏

n=1

(
b

1
bn
n

)EV

·
N∏

n=1

bn
bEn + bn − 1

=

N∏
n=1

(
b

1
bn
n

)EV

·
N∏

n=1

(
b

1
bn
n

) bn log
bn

bEn +bn−1

log bn

=

N∏
n=1

(
b

1
bn
n

)f(bn,E,V )

≥
( N∏

n=1

b
1
bn
n

)H

.

The above inequality is true for every x ∈ P (A, V ). However, for large N this

inequality contradicts (6) since H > 0 and
∞∏

n=1
b

1
bn
n = ∞. Hence, in case 1a the

set P (A, V ) has zero Lebesgue measure.

1b. Now we assume that A ≥ min
n∈N

bn. For every number N letMN be the number

of positive integers n ≤ N such that A < bn. Note that the condition A < B
implies lim

N→∞
MN = ∞. Let {φ(m)}∞m=1 be the increasing infinite sequence of all

indices with A < bφ(m). Then [A < bφ(m)] = 1 for every m.

Let x ∈ P (A, V ). For every n with A ≥ bn we have

Θn(dn(x)) = b[dn(x)=A]
n = b

[A<bn]
bn

n = 1 .

Equation (8) implies that there are infinitely many integers N such that

log
MN∏
m=1

b
[dφ(m)(x)=A]

φ(m)

log
MN∏
m=1

b

[A<bφ(m)]

bφ(m)

φ(m)

=

log
N∏

n=1
b
[dn(x)=A]
n

log
N∏

n=1
b

[A<bn]
bn

n

< V . (12)
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Then (10) and (12) imply

N∏
n=1

Θn(dn(x)) =

MN∏
m=1

Θφ(m)(dφ(m)(x))

=

MN∏
m=1

(
bE+1
φ(m)

bEφ(m)+bφ(m)−1

)[dφ(m)(x)=A]( bφ(m)

bEφ(m)+bφ(m)−1

)1−[dφ(m)(x)=A]

=

MN∏
m=1

b
E[dφ(m)(x)=A]

φ(m) ·
MN∏
m=1

bφ(m)

bEφ(m) + bφ(m) − 1

>

MN∏
m=1

(
b

1
bφ(m)

φ(m)

)EV

·
MN∏
m=1

bφ(m)

bEφ(m) + bφ(m) − 1

=

MN∏
m=1

(
b

1
bφ(m)

φ(m)

)EV

·
MN∏
m=1

(
b

1
bφ(m)

φ(m)

) bφ(m) log
bφ(m)

bE
φ(m)

+bφ(m)−1

log bφ(m)

=

MN∏
m=1

(
b

1
bφ(m)

φ(m)

)f(bφ(m),E,V )

≥
(MN∏

m=1

b
1

bφ(m)

φ(m)

)H

.

The above inequality is true for every x ∈ P (A, V ). However, for large N this

inequality contradicts (6) since H > 0 and lim
N→∞

MN∏
m=1

b
1

bφ(m)

φ(m) = ∞ by (4) and

MN → ∞. Hence, in case 1b the set P (A, V ) has zero Lebesgue measure.

2. Now we prove that for every A < B and V > 1 the set Q(A, V ) has zero

Lebesgue measure. From the facts that f(b, 0, V ) = 0 and ∂f
∂C (b, 0, V ) > 0 we

obtain that for every b there exists a number S(b, V ) > 0 such that for every
C ∈ (0, S(b, V )) we have f(b, C, V ) > 0. Set

E :=
1

2
min

b=2,...,B
S(b, V ) > 0

and for this number E put

H := min
b=2,...,B

f(b, E, V )> 0 .

The rest of proof in case 2 reads exactly the same lines as in case 1 with the only
exceptions that we write Q(A, V ) instead of P (A, V ) and that the inequalities
in (11) and (12) are opposite. �

���������������� The authors were supported by grant no. P201/12/2351
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