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ON THE ELLIPTIC CURVE POWER GENERATOR

László Mérai

ABSTRACT. For a given elliptic curve E we obtain an upper bound on a char-
acter sum formed by linear combination of f(kQ) where Q runs on the curve and
f arbitrary rational function.

We apply the result to study the elliptic curve analogue of the power generator.

Communicated by W.G. Nowak

1. Introduction

Let p > 3 be a prime number and γ ≥ 1 be a positive integer. Let Fq denote
the finite field of q = pγ elements.

Let e,m ≥ 2 and ϑ be positive integers such that (m,ϑ) = 1. The power
generator defines the sequence un by the rule

un ≡ uen−1 (mod m), 0 ≤ un < m, n = 1, 2, . . . (1)

with the initial value u0 = ϑ. The power generator has many application see [2].

Let E be an elliptic curve defined by the short Weierstrass equation

y2 = x3 +Ax+B, A,B ∈ Fq

with non-zero discriminant (see [7]). We recall that the Fq-rational points E(Fq)
of the curve E with the usual addition ⊕ form an Abelian group with the point in
infinity O as a neutral element. Let Fq(E) denote the function field of the curve
E over Fq, and let x(·) and y(·) be the coordinate functions. We denote by deg(f)
the degree of the pole divisor of f. In particular, deg(x) = 2 and deg(y) = 3.

Recall that the torsion group E [m] of the curve is isomorphic to Zm × Zm

if p � m. If m has the form m = prm′, where r ≥ 1 and p � m′, then E [m] is
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isomorphic to Zm × Zm′ or Zm′ × Zm′ . Specially, E [p] is isomorphic to Zp when
the curve is said to be ordinary or E [p] = {O} when the curve is supersingular.

In 2005, Lange and Shparlinski [6] defined the elliptic curve analogue of the
generator (1). Let P ∈ E(Fp) be a point of order T and e be an integer such that
(T, e) = 1. The elliptic curve power generator builds a sequence by the rule

Un = eUn−1 n = 1, 2, . . . (2)

with the initial value U0 = P . If the order of e is t modulo T , then clearly the
sequence Un is a purely periodic sequence with period length t.

An obvious way to compute the elements of the sequence is to compute e
which would be the solution of the discrete logarithm problem on this curve. On
the other hand to compute an element from the previous part of the sequence one
may need to solve the computational Diffie-Hellman problem. Since in general
both of these problems are assumed to be hard, the elliptic curve power generator
is thought to have good pseudorandom properties.

The distribution of the coordinate sequence
(
x(Un)

)
have been widely studied.

For example Lange and Shparlinski [6] showed that this sequence has large linear
complexity and is uniformly distributed (see also [1]). Their proof is based on
the following character sum estimate: if E is an ordinary curve, H ≤ E(Fq), ψ is
a non-principal additive character of Fq, then for integers 1 ≤ k1 < · · · < ks ≤ K
we have ∑

P∈H
ψ

(
s∑

i=1

cix(kiP )

)
� sK2q1/2

for all all integers c1, . . . , cs such that not all of them are zeros.

Using the character sum estimate a non-trivial upper bound was proved to

the discrepancy of
(
x(Un)

)t
n=1

.

As it was pointed out in [6] similar result can be proven for sums with y(kiP )
or linear combinations ax(kiP )+ by(kiP ). In this paper we prove a result about
sums with f(kiP ), where f ∈ Fq(E) is arbitrary non-constant function

∑
P∈H

ψ

(
s∑

i=1

cif(kiP )

)
. (3)

In Section 2 we prove a non-trivial bound to (3). When the curve is defined
over a prime field Fp, by using the same argument than [1], the result immedi-
ately gives a bound on the sum

N∑
n=1

ep
(
f(Un)

)
,

where ep(α) = exp(2πiα/p).
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In Section 3 we obtain a discrepancy bound of
(
f(Un)

)
by the Erdős-Turán-

-Koksma inequality. We state the result in a general form, namely we state
a result about the discrepancy of the s-tuples

(
f(Un), . . . , f(Un+s−1)

)
, however

the bound will only be non-trivial if s = 1 or e is small.

2. A character sum

We will need the following result about character sums over elliptic curves
proved by Kohel and Shparlinski [5].

����� 1� Let E be an ordinary elliptic curve defined over Fq. Let f ∈ Fq(E) be
a non-constant function and ψ a non-trivial additive character of Fq. Then the
bound ∣∣∣∣∣∣∣∣

∑
Q∈H

f(Q)�=∞

ψ
(
f(Q)

)
∣∣∣∣∣∣∣∣
≤ 2q1/2 deg f

holds, where H is an arbitrary subgroup of E(Fq).

����	�� 2� Let 1 ≤ k1 < · · · < ks ≤ K be fixed integers, c1, . . . , cs ∈ Fq

such that cs �= 0. Let E be an ordinary elliptic curve defined over Fq. Let
f ∈ Fq(E) be a non-constant function, and ψ a non-trivial additive character
of Fq. Then the bound

∑
Q∈H

f(Q)�=∞

ψ

(
s∑

i=1

cif(kiQ)

)
� q1/2sK2 deg f

holds, where H is a subgroup of E(Fq) such that (|H|, k1 · · · ks) = 1. The implied
constant does not depend on k1, . . . , ks.

P r o o f. First we show that the function F (P ) =
∑s

i=1 cif(kiP ) ∈ Fq(E) is not
a constant function. Let Q be a pole of f with maximal order d. Now we have
Q ∈ E [d] ⊂ E [dks]. Write d = pαd′ and ks = pβk′s with α, β ≥ 0 and p � d′, k′s.
Let Q1, Q2 be points of order dks and d′k′s which generate E [kds]:

E [kds] = {a1Q1 ⊕ a2Q2 : 0 ≤ a1 < dks, 0 ≤ a2 < d′k′s}.
Write Q = a1Q1 ⊕ a2Q2. Since

da1Q1 ⊕ da2Q2 = dQ = O,
we have

da1Q1 = da2Q2 = O
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thus

dks | da1, d′k′s | da2. (4)

From the first relation we have ks | a1. Let
a∗1 =

a1
ks

∈ N.

On the other hand from the second relation of (4) we have k′s | a2 which means
that the congruence

ksa
∗
2 ≡ a2 mod d′k′s

has a solution in a∗2. Let Q
∗ = a∗1Q1 ⊕ a∗2Q2, where now ksQ

∗ = Q.

Clearly, each elements of Q∗⊕E[ks] is a pole of f(ksP ) and there are elements
of order d · ks among them. By the maximality of d and ks these elements are
not poles of the other terms f(kiP ) (i < s).

Finally, we remark that a point P is a pole of f(kP ) iff P ∈ Q ⊕ E [k],
where kQ is a pole of f . Therefore deg f(kP ) ≤ k2 deg f(P ).

�

Using Theorem 2 we can prove the following bound of double exponential
sums in the same way as [1]:


�	����	� 3� Let E be an ordinary elliptic curve defined over Fp and
G ∈ E(Fp) be a point with order T . Let f ∈ Fp(E) be a non-constant function.
Then for all sets U ,V ⊂ ZT and all ε > 0 the following bound holds∑

u∈U

∑
v∈V

αuβvep
(
f(uvG)

)� ABT 5/6(|U||V|)1/2p1/12+ε deg f,

where
A = max

u∈U
|αu|, B = max

v∈V
|βv|

and the implied constant depends only on ε.

We use Corollary 3 to derive a bound for incomplete exponential sums for the
sequence (2).

����	�� 4� Let E be an ordinary elliptic curve defined over Fp and G ∈ E(Fp)
be a point with order T . Let f ∈ Fp(E) be a non-constant function. If e ≥ 2 is
an integer such that (e, T ) = 1, then for 1 ≤ N ≤ T and for all ε > 0 we have

N−1∑
n=0

ep

(
s−1∑
i=0

aif(e
n+iG)

)
� N1/3T 5/9p1/18+εse2(s−1) deg f.
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P r o o f. Let L = 
N1/3T 5/9p1/18 deg f�. Then
L−1∑
l=0

N−1∑
n=0

ep

(
s−1∑
i=0

aif(e
n+leiG)

)

=

L−2∑
m=0

(m+ 1)ep

(
s−1∑
i=0

aif(e
meiG)

)
+ L

N−1∑
m=L−1

ep

(
s−1∑
i=0

aif(e
meiG)

)

+

N+L−2∑
m=N

(N + L− 1−m)ep

(
s−1∑
i=0

aif(e
meiG)

)

= L

N−1∑
m=0

ep

(
s−1∑
i=0

aif(e
meiG)

)
+O(L2),

i.e.,

N−1∑
m=0

ep

(
s−1∑
i=0

aif(e
m+iG)

)
=

1

L

L−1∑
l=0

N−1∑
n=0

ep

(
s−1∑
i=0

aif(e
neleiG)

)
+O(L).

Since the degree of F (P ) =
∑s−1

i=0 aif(e
iG) is degF ≤ se2(s−1) deg f,

applying Corollary 3 we get

N−1∑
m=0

ep

(
s−1∑
i=0

aif(e
m+iG)

)
� 1

L
T 5/6(LN)1/2p1/12+εse2(s−1) deg f.

By the choice of L we get the result.

�

3. Discrepancy

Using the exponential sum estimate proved in Theorem 4, the Erdős-Turán-
-Koksma inequality gives a non-trivial bound on the discrepancy of the s-tuple(
f(Un), . . . , f(Un+s−1)

)
if s = 1 or e is small.

For a given sequence Γ of N points

Γ = {(γn,1, . . . , γn,s) : n = 1, . . . , N} (5)

in the s-dimensional unite cube [0, 1)r the discrepancy Δ(Γ) of Γ is defined by

Δ(Γ)
def
= sup

I

∣∣∣∣AΓ(I)

N
− |I|

∣∣∣∣ ,
63
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where I =
∏s

i=1[ui, vi) is a sub-interval of [0, 1)s and AΓ(I) is the number
of points of Γ belonging to I.

We use the Erdős-Turán-Koksma inequality in the following form (see [3,
Theorem 1.21]):

����� 5� For any integer H > 1 and any sequence Γ of N points the discrep-
ancy Δ(Γ) satisfies

Δ(Γ) ≤
(
3

2

)s
⎛
⎝ 2

H + 1
+

1

N

∑
h

s∏
j=1

1

max{|hj |, 1}

∣∣∣∣∣
N∑

n=1

e

(
s∑

l=1

hlγn,l

)∣∣∣∣∣
⎞
⎠ ,

where the outer sum is taken over all vectors h = (h1, . . . , hs) ∈ Zr \0 such that
|hj | ≤ H for all j = 1, . . . , s.

Theorem 4 and the Erdős-Turán-Koksma bound implies a bound of the
discrepancy of the sequence of points

Γ(N, s) =

{(
f(UnG)

p
, . . . ,

f(Un+s−1G)

p

)
: n = 1, . . . , N

}
. (6)


�	����	� 6� If f ∈ Fp(E) is a non-constant function and the sequence (Un)
is defined by (2), then

Δ
(
Γ(N, s)

)� N−2/3T 5/9p1/18+εs

(
3

2

)s

e2(s−1) deg f.

4. Remarks

As we have remarked above the discrepancy bound of the s-tuples (f(Un), . . .
. . . , f(Un+s−1)) is non-trivial in the case when s = 1 or when e is small. However
it is not known any non-trivial bound in this case even if the power generator
is defined over residue rings (see [4]), or if the power generator is defined over
elliptic curves but f is just a coordinate function (see [6]).
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