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DISCREPANCIES OF IRRATIONAL ROTATIONS

WITH ISOLATED LARGE PARTIAL QUOTIENTS

Takayoshi Setokuchi — Keizo Takashima

ABSTRACT. We give some refinements of results of Schoissengeier on the dis-
crepancies of irrational rotations. Using these refinements, we give an explanation
for the unusual behavior of the discrepancies of irrational rotations based on some

specific numbers having isolated large partial quotients in their continued fraction
expansion.

Communicated by István Berkes

1. Introduction

For a natural number a > 1 it is well-known that the leading digit of an is
distributed over {1, 2, . . . , 9} non-uniformly for large n and the limit distribution
(as n → ∞) of the digit k is equal to log10(k + 1)− log10 k (cf. [14]). In case of
some specific numbers a, however, the asymptotic behavior of the chi-square test
of goodness of fit of the empirical distribution shows highly unusual aspects. For
example, in case of a = 7, the values of chi-square tests for the leading digit of
7n show repetitions of “up” and “down” almost periodically with period about
2,500,000 (cf. [12, 13]). The problem of the leading digit of an is closely related
to the study of irrational rotations based on log10 a and we will show that the
unusual phenomena described above for a = 7 are caused by a single large digit
in the continued fraction expansion of 1− log10 7. We give discrepancy estimates
by using some refinements of formulae given by Schoissengeier (cf. [9, 10]). Us-
ing such refinements, we present a mathematical explanation for the quadratic
function-like shapes of the graph of values of discrepancies, given in Fig. 1. As
it turns out, the period between valleys in Fig. 1 is equal to the denominator
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2,455,069 of 6th-order convergent of continued fraction expansion of 1− log10 7:

1− log10 7 = 1

6 + 1
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6 + 1
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1 + 1
2 + · · ·

Similar phenomena occur for other irrational numbers with isolated large partial
quotients, for example, 2−log10 33 and 2−log10 54 (see Figs. 2 and 3 at the end of
our paper). An explanation of this behavior will be given by the general results
in Section 4 connecting the local behavior of D∗

N (nα) and the magnitude of
isolated large partial quotients in the continued fraction expansion of α.
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Figure 1. D∗
N (nα), α = 1 − log10 7, up to N = 10,000,000, every 1,000

points. q6 = 2,455,069, q7 = 2,455,579, q8 = 4,910,648, q8+q6 = 7,365,717,
q8 + q7 = 7,366,227, 2q8 = 9,821,296.

In the next section we prepare some basic notions and notations. In Section 3
we recall some results from [9, 10] about discrepancies of irrational rotations and
we prove our first main result. In Section 4 we discuss the strange phenomena
observed in Fig. 1 in more detail, and we formulate further results. In Section 5
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we prove some lemmas which we use later in Section 6. We give proofs for the
results of Section 4 in Section 6. Finally, in Section 7 we discuss other examples
numerically.

2. Preliminaries

In this section we provide some notions and notations according to Drmota
and Tichy [2], Kuipers and Niederreiter [5] and Schoissengeier [9].

For a real number x, let [x] denote the integral part of x, and let {x} = x− [x]
be the fractional part of x. A sequence (xn)n∈N of real numbers is said to be
uniformly distributed mod1 (u.d. mod1) if for every pair a, b of real numbers
with 0 ≤ a < b ≤ 1, we have

lim
N→∞

1

N

N∑
n=1

1[a,b)({xn}) = b− a,

where 1[a,b) denotes the indicator function of the interval [a, b).

To measure the speed of convergence of a sequence ω = (xn)n∈N to the uniform
distribution, we use the following two types of discrepancies DN and D∗

N :

DN (ω) = sup
0≤a<b≤1

∣∣∣∣∣ 1N
N∑

n=1

1[a,b)({xn})− (b− a)

∣∣∣∣∣ ,
D∗

N (ω) = sup
0<a≤1

∣∣∣∣∣ 1N
N∑

n=1

1[0,a)({xn})− a

∣∣∣∣∣ .
It is well-known that a sequence ω is u.d.mod 1 if and only if limN→∞ DN (ω) =
0, and also limN→∞ D∗

N (ω) = 0 because it holds D∗
N ≤ DN ≤ 2D∗

N . In this
paper we consider only D∗

N .

Let α be a positive irrational number. We consider an irrational rotation
(nα)n∈N based on α,

(nα)n∈N = {{nα} : n ∈ N},
and we denote the discrepancy of (nα)n∈N by D∗

N (nα). Since α �→ D∗
N (nα) is an

even and periodic function, that is, D∗
N (n(1 − α)) = D∗

N (nα), we restrict α to
0 < α < 1/2. It is well-known that an irrational rotation (nα)n∈N is u.d. mod 1,
in such a case limN→∞ D∗

N (nα) = 0 (cf. [14]).
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Let us recall some basic facts about continued fraction expansions. A simple
continued fraction expansion is an expression of the form

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

= [a0; a1, a2, a3, . . .]

where a0 is the integer part of α and a1, a2, . . . are positive integers, the so-
called partial quotients. Note that 0 < α < 1/2 implies a0 = 0 and a1 > 1.
For n ≥ 0, the nth-order convergent of the continued fraction α is defined as
rn = pn/qn = [a0; a1, a2, . . . , an]. Here note that rn’s are irreducible fractions,
and pn’s and qn’s are determined as follows:

p−1 = 1, p0 = a0, pn+1 = an+1pn + pn−1,

q−1 = 0, q0 = 1, qn+1 = an+1qn + qn−1.
(1)

It is well-known that the convergents of even order form an increasing sequence
and that those of odd order form a decreasing sequence. Also, the last convergent,
which is equal to α, is greater than any of its even-order convergents and is less
than any of its odd-order convergents. Furthermore, the sequences (pn)n∈N and
(qn)n∈N satisfy the following inequality:

1

qn + qn+1
< |qnα− pn| < 1

qn+1
(2)

for all n ≥ 0.

Next, we give Ostrowski representation of N to base α (cf. [2, 6, 8, 9]). For
any given natural number N there is an index m such that qm ≤ N < qm+1.
By the division algorithm, we have N = bmqm + Nm−1 with 0 ≤ Nm−1 < qm.
We note that (am+1 + 1)qm ≥ qm+1 > N , and so bm ≤ am+1. If m > 0, we
may write Nm−1 = bm−1qm−1 + Nm−2 with 0 ≤ Nm−2 < qm−1. Again we find
bm−1 ≤ am. Continuing in this manner, we arrive at a unique representation for
N of the form

N =

m∑
j=0

bjqj

with 0 ≤ bj ≤ aj+1 for 0 < j < m, 0 ≤ b0 < a1 (since N0 = b0q0 < q1
and q1 = a1q0) and 0 < bm ≤ am+1. Moreover, bj−1 = 0 if bj = aj+1, since

aj+1qj + qj−1 = qj+1. Observe that Nj =
∑j

t=0 btqt for 0 ≤ j ≤ m.

Let us define the numbers Aj by

Aj = Nj−1(α− rj) +

m∑
t=j

bt(qtα− pt)
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for 0 ≤ j ≤ m+2 and A−1 = 0, where N−1 = 0 and Nm = Nm+1 = N . We note
that the numbers Aj depend on N and α only. The determination of the sign
of Aj would be important for estimate of D∗

N (nα). The following lemma states
the properties of Aj that we use later.

����� 2.1� ([2, Lemma 1.62], [9, Section 3, Proposition 1])

(i) If bj �= 0, then (−1)jAj > 0 for 0 ≤ j ≤ m.

(ii) For 0 ≤ j ≤ m

−|qjα− pj | < (−1)j
m∑
t=j

bt(qtα− pt) < |qj−1α− pj−1|.

(iii) For 0 ≤ j ≤ m

− 1

qj+1
< (−1)jAj <

1

qj
.

Lemma 2.1 (iii) implies that −1 < A0 < 1, since q1 ≥ q0 = 1. The numbers
Aj also have the property that

(−1)jbj = aj+1qjAj − qj+1Aj+1 + qj−1Aj−1 (3)

for 0 ≤ j ≤ m (cf. [10, p.55]). Let P = {j : Aj > 0, 0 ≤ j ≤ m}. In case j /∈ P
is even, or in case j ∈ P is odd, Lemma 2.1 (i) shows that bj = 0. In such cases
from equation (3) we have

aj+1qjAj = qj+1Aj+1 − qj−1Aj−1 (4)

for 0 ≤ j ≤ m.

3. Discrepancies of irrational rotations

In this section we give some refinements of results of Schoissengeier [9, 10] on
ND∗

N (nα). Let iN = min{j ≥ 0 : bj �= 0} and let

s = min{j : j odd, Aj > 0, Aj+2 > 0, bj+1 < aj+2, 1 ≤ j ≤ m},
t = min{j : j odd, Aj−1 < 0 < Aj+1, Aj+2 > 0, bj+1 < aj+2 − 1, 1 ≤ j ≤ m},

where min ∅ = ∞. We define

u =

{
0 if iN is even and (b0 < a1 − 1 or A1 < 0),

min(s, t), otherwise,
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and furthermore sets S1, S2, S3:

S1 = {j : j even, Aj+1 < 0 < Aj−1, 0 ≤ j ≤ m},
S2 = {j : j even, Aj−1 ≤ 0 < Aj+1, 0 ≤ j ≤ m},
S3 = {j : j even, Aj < 0, 0 ≤ j ≤ m}.

Using these notations, Schoissengeier [9] gives the following strict formula for
ND∗

N (nα):

����	�� 
� [9, Section 8, Theorem 1] Let α be an irrational number,
0 < α < 1/2. Then

ND∗
N (nα) =

m∑
j=u
j even

bj(1− qjAj) +

m∑
j=u
j∈S1

qjAj −
m∑

j=u
j∈S2

qjAj −
m∑

j=u
j∈S3

aj+1qjAj

+ (δu,0 − 1)quAu +max

⎛
⎝0, A0 −

m∑
j=0

bj((−1)j − qjAj)

⎞
⎠ .

(5)

This result is the very exact formula for discrepancies of irrational rotations.
This is, however, not suitable for the estimation of the asymptotic behavior
of D∗

N (nα) because the definitions of s, t and u are quite complicated.

In [10], Schoissengeier gives the following formula for ND∗
N(nα) in the proof

of Corollary 1 of Theorem 1. His formula is suitable for our proof of Theorem 4.1
(will appear later) and we refer his formula as a separate theorem for convenient
reference.

����	�� �� [10, p.56] Let α be an irrational number, 0 < α < 1/2. Then

ND∗
N (nα) =

[m/2]∑
j=0

b2j(1− q2jA2j) +
∑
j odd
j∈P

aj+1qjAj −
∑
j even
j /∈P

aj+1qjAj

+max

⎛
⎝0, A0 −

m∑
j=0

bj
(
(−1)j − qjAj

)⎞⎠+ ε,

(6)

where the error term ε satisfies |ε| ≤ 1, and P = {j : Aj > 0, 0 ≤ j ≤ m}.
Note, here, that sets S1 and S2 are determined by signs of Aj−1’s and Aj+1’s,

while the set P is determined only by the signs of Aj ’s. Thus Theorem B makes
us to consider only the signs of Aj ’s. It is, however, difficult to determine the
signs of Aj ’s for general N ’s. Therefore we want to modify Theorem B so as
to do without P in summations, and we obtain the following result:
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����	�� 3.1� Let α be an irrational number, 0 < α < 1/2. Then

ND∗
N (nα)

= max

⎛
⎝[m/2]∑

j=0

b2j(1− q2jA2j),

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) +A0

⎞
⎠+ c,

(7)

where the error term c satisfies −1 ≤ c < [(m+ 1)/2] + 1.

Proof. As in the right-hand side of Theorem B, (6), the first sum combine with
the maximum term to form the maximum term of the right-hand side of (7).
Hence we prove this theorem by showing that

0 ≤
∑
j odd
j∈P

aj+1qjAj −
∑
j even
j /∈P

aj+1qjAj <

[
m+ 1

2

]
. (8)

If j /∈ P is even, then j− 1 /∈ P and j+1 /∈ P . If j ∈ P is odd, then j− 1 ∈ P
and j + 1 ∈ P (cf. [10, p.55]). Moreover, since bm �= 0, we have (−1)mAm > 0
by Lemma 2.1 (i). From the above it follows that

0 ≤ �{j : j �∈ P is even, 0 ≤ j ≤ m}
+ �{j : j ∈ P is odd, 1 ≤ j ≤ m} ≤ [(m+ 1)/2],

(9)

where �(A) denotes the number of elements of a set A.

Now we show that 0 < −aj+1qjAj < 1 under the condition j /∈ P is even and
that 0 < aj+1qjAj < 1 under the condition j ∈ P is odd. Let us assume first
that j /∈ P is even. Then it follows from (for even j) α− rj > 0 that

m∑
t=j

bt(qtα− pt) < Aj < 0.

As for the above left-hand side, it is greater than −|qjα− pj | by Lemma 2.1 (ii).
Hence we have 0 < −aj+1qjAj < aj+1qj |qjα − pj |. This, together with the fact
aj+1qj |qjα− pj | < 1 (cf. (1) and (2)), implies

0 < −aj+1qjAj < 1.

By a similar argument, we have 0 < aj+1qjAj < 1 under the condition j ∈ P
is odd. From these two estimates and (9), we obtain (8). This completes the
proof. �

Equation (7) of Theorem 3.1 seems less strict than those of Theorem A or
of Theorem B, but it is simpler because it does not include the set P , and
its usefulness will be proved in later discussions on “quadratic-function” like
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behaviors of ND∗
N (nα). As a by-product of Theorem 3.1, we have the following

formula:

��	��	� 3.2� Let α be an irrational number, 0 < α < 1/2. Then

ND∗
N (nα) = max

⎛
⎝[m/2]∑

j=0

b2j

(
1− b2j

a2j+1

)
,

[(m−1)/2]∑
j=0

b2j+1

(
1− b2j+1

a2j+2

)⎞⎠+ c′,

where −2[m/2]− 4 < c′ < 3[m/2] + [(m+ 1)/2] + 5.

By using Lemma 5.2, we prove this corollary later in Section 5. Schoissengeier
[9] gives the following simpler formula:

ND∗
N (nα)

= max

⎛
⎝[m/2]∑

j=0

b2j

(
1− b2j

a2j+1

)
,

[(m−1)/2]∑
j=0

b2j+1

(
1− b2j+1

a2j+2

)⎞⎠+O(m),

where O(m) is the Landau’s symbol. This formula is considerably simpler than
(5) of Theorem A. The error term of this formula, however, is described in the
form of Landau’s symbol and its magnitude is unclear. Our Corollary 3.2 gives
the strict estimate of the error term.

4. Main results

In this section we first give some upper estimates for ND∗
N (nα) with respect

to an irrational number α, 0 < α < 1/2, generally. In the latter part of this
section, we give some estimates for ND∗

N (nα) with respect to some specific
irrational numbers, each of which has an isolated large partial quotient in its
continued fraction expansion.

4.1. Upper estimates of valleys

We first give upper estimates for D∗
N (nα) with respect to some specific values

of N . Let α be an irrational number, 0 < α < 1/2. For the simplest N = bmqm,
with 1 ≤ bm ≤ am+1, it holds clearly that

A0 = A1 = · · · = Am = bmqm(α− rm)

because b0 = b1 = · · · = bm−1 = 0. Therefore we have Aj > 0 for 0 ≤ j ≤ m,
if and only if m is even. Thus we can easily see that S1 = {m}, S2 = {0} and
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S3 = ∅ if m is even and that S1 = S2 = ∅ and S3 = {j : j even, 0 ≤ j ≤ m} if
m is odd. Also, for odd m, we have

A0 −
m∑
j=0

bj((−1)j − qjAj) > 0.

By using these properties and Theorem A, Schoissengeier [9] gives the following
corollary:

��	��	� �� [9, Section 9, Corollary 1] Let α be an irrational number,
0 < α < 1/2. Then for N = bmqm, 1 ≤ bm ≤ am+1,

ND∗
N (nα) = bm − (bm − 1)bmqm|qmα− pm| − bm|qmα− pm|. (10)

This corollary works well, in case N = bmqm, with being combined with
Theorem A. It is difficult, however, to apply Corollary C and Theorem A to the
following cases:

N = bmqm + bm−2qm−2 for 1 ≤ bm ≤ am+1, 1 ≤ bm−2 ≤ am−1,

N = bmqm + bm−1qm−1 for 1 ≤ bm < am+1, 1 ≤ bm−1 ≤ am

because the sets S1, S2, S3 and the sign of the term A0−
∑m

j=0 bj((−1)j − qjAj)

in Theorem A, (5), depend not only on m, but also on α, bm, bm−1 and bm−2.
Thus we need to derive some formulae of ND∗

N (nα) for N , satisfying the above
conditions. By using Theorem B we obtain the following result:

����	�� 4.1� Let α be an irrational number, 0 < α < 1/2.
Put Kj = (−1)jqjAj .

(i) For N = bmqm + bm−2qm−2, 1 ≤ bm ≤ am+1, 1 ≤ bm−2 ≤ am−1,

ND∗
N (nα) =max (bm(1−Km) + bm−2(1−Km−2)− |A0|, 0)

+

{
Km−2 + ε if (−1)m−1Am−1 > 0,

Km + ε if (−1)m−1Am−1 < 0.

(11)

(ii) For N = bmqm + bm−1qm−1, 1 ≤ bm < am+1, 1 ≤ bm−1 ≤ am,

ND∗
N (nα) =max (bm(1−Km), bm−1(1−Km−1)− |A0|)

+Km−1 + ε.
(12)

In (11) and (12), the error term ε’s satisfy |ε| ≤ 1.

From Corollary C and Theorem 4.1, we can derive the following upper esti-
mates for D∗

N (nα) for some specific N ’s.

����	�� 4.2� Let α be an irrational number, 0 < α < 1/2. Then
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(i)

D∗
N (nα) <

1

qm
for N = bmqm, 1 ≤ bm ≤ am+1.

(ii)

D∗
N (nα) <

bm + bm−2 + 1

bmqm + bm−2qm−2

for N = bmqm + bm−2qm−2, 1 ≤ bm ≤ am+1, 1 ≤ bm−2 ≤ am−1.

(iii)

D∗
N (nα) <

max (bm + 1, bm−1) + 1

bmqm + bm−1qm−1

for N = bmqm + bm−1qm−1, 1 ≤ bm < am+1, 1 ≤ bm−1 ≤ am.

The shapes of graphs of discrepancies are slightly different between cases
where α equals 1 − log10 7, 2 − log10 33, or 2 − log10 54, and so on. First we
consider mainly the case where α = 1 − log10 7. α has an isolated large partial
quotient a6 = 4813. This isolated large partial quotient a6 plays very important
roles in our arguments. We denote the suffix 6 of a6 by η, that is, η = 6. Thus,
qη = q6 = 2455069, qη+1 = q7 = 2455579 and qη+2 = q8 = 4910648 (cf. Table 1).
This η may vary, of course, for different α.

Theorem 4.2 gives very good estimates for “valleys” in Fig. 1. Theorem 4.2
(i) shows that the first valley in Fig. 1, N = qη or qη+1, is very “deep”, that is,
D∗

N (nα) is very small, D∗
N (nα) < 1/qη or D∗

N (nα) < 1/qη+1.

Theorem 4.2 (i) also shows that the second valley, N = qη+2, and the fourth
valley, N = 2qη+2, are also very “deep”. In case N = qη+2 + qη, Theorem 4.2
(ii) shows that D∗

N (nα) < 3/(qη+2 + qη). In case N = qη+2 + qη+1, Theorem 4.2
(iii) shows that D∗

N (nα) < 3/(qη+2+ qη+1). These estimates show that the third
valley is also very “deep”.

Note that the first and the third valleys are a little “wider” than the second
and the fourth valleys. They have “width” 510. In case of α = 1− log10 7, we can
obtain the upper estimates for the “bottom” of the first and the third valleys.
For other α, which has an isolated large partial quotient, we can obtain similar
upper estimates for wider valleys. Let us now introduce the following notation:

M (N) = max

⎛
⎜⎜⎝

[m/2]∑
j=0

j �=(η−1)/2

a2j+1,

[(m+1)/2]∑
j=1

j �=η/2

a2j

⎞
⎟⎟⎠ .
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By using this M (N), we obtain the following upper estimate for D∗
N (nα) in

wider valleys.

����	�� 4.3� Let α be an irrational number, 0 < α < 1/2. If

M (N) ≥
[
m+ 1

2

]
+ 2, (13)

then we have

D∗
N (nα) <

2M (N)

N
(14)

for N ∈ I, where I denotes wider valley intervals, for example, in case of α =
1− log10 7 or 2 − log10 33, I = [qη, qη+1) or [qη+2 + qη, qη+2 + qη+1). In case of
α = 2− log10 54, I = [2qη, qη+1) or [qη+2 + 2qη, qη+2 + qη+1), and so on.

����	� 1� In case of α = 2− log10 33, we can obtain the upper estimate (14)
for the “bottom” of the first and the third valleys in Fig. 2, for η = 3. Also, in
case of α = 2− log10 54, we can obtain the upper estimate (14) for the “bottom”
of the second and the fifth valleys in Fig. 3, for η = 7.

4.2. Estimates for three large hills

In this subsection, we give some estimates for ND∗
N (nα) for “hills”, observed

in Fig. 1.

Recall, first, that α has very characteristic continued fraction expansion, given
in Section 1:

1− log10 7 = [0; 6, 2, 5, 6, 1, 4813, 1, 1, 2, 2, 2, 1, 1, 1, 6, 5, 1, 83, 7, 2, . . .].

Note that α has a rather large 6th partial quotient, 4813. The nth-order conver-
gents of α are given in Table 1.

Table 1. α = 1− log10 7 (0 ≤ n ≤ 9)

n 0 1 2 3 4 5 6 7 8 9
an 0 6 2 5 6 1 4813 1 1 2
pn 0 1 2 11 68 79 380295 380374 760669 1901712
qn 1 6 13 71 439 510 2455069 2455579 4910648 12276875

Let N be a natural number with Ostrowski representation N =
∑m

j=0 bjqj
to base α, α = 1− log10 7. Then the coefficients bj of N take values, as follows:

0 ≤ b0 < 6, 0 ≤ b1 ≤ 2, 0 ≤ b2 ≤ 5, 0 ≤ b3 ≤ 6, 0 ≤ b4 ≤ 1,

0 ≤ b5 ≤ 4813, 0 ≤ b6 ≤ 1, 0 ≤ b7 ≤ 1, 0 ≤ b8 ≤ 2, . . .
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Note, here, that only the coefficient b5 can vary very widely. By using this dis-
tinctive features of α = 1 − log10 7, we can obtain very strict estimates for
ND∗

N (nα).

For other α, which has an isolated large partial quotient, we can show similar
estimates. First, we give the following estimate.

����	�� 4.4� Let α be an irrational number, 0 < α < 1/2. Assume that α has
an isolated large partial quotient aη satisfying

aη > 12M (N). (15)

If

M (N) ≥ 5, (16)

then we have

−M (N) < ND∗
N (nα)− bη−1

(
1− bη−1

aη

)
< 3M (N) (17)

for N ∈ I, where I denotes hill intervals, for example, in case of α=1− log10 7
or 2 − log10 33, I = [qη+1, qη+2), [qη+2, qη+2 + qη) or [qη+2 + qη+1, 2qη+2).
In case of α = 2 − log10 54, I = [qη, 2qη), [qη+1, qη+2), [qη+2, qη+2 + qη),
[qη+2 + qη, qη+2 + 2qη) or [qη+2 + qη+1, 2qη+2), and so on.

����	� 2� This theorem gives numerical explanations for the unusual aspects,
shown in Fig. 1. Let f(x) be the quadratic function: f(x) = x(1−x), 0 ≤ x ≤ 1.
It is well-known that f(x) equals 0 at x = 0 and 1, and equals 1/4 at x = 1/2.

Then, the term bη−1

(
1− bη−1

aη

)
in Theorem 4.4 is described as follows:

bη−1

(
1− bη−1

aη

)
= aηf(x),

where x = bη−1/aη, 0 ≤ bη−1 ≤ aη. Thus the estimate in Theorem 4.4 can be
rewritten as follows:

−M (N) < ND∗
N (nα)− aηf(x

′) < 3M (N) for x′ =
N ′

aηqη−1
,

where N ′ = N − ∑m
j=0,j �=η−1 bjqj if N ∈ I. This gives an explanation of

“quadratic-function” like behavior of ND∗
N(nα), α = 1− log10 7, and it is easily

seen that the “peak” of each “hill” is estimated from below by

aηf

(
1

2

)
−M (N).

We now consider the condition (15),

aη > 12M (N).
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For α = 1 − log10 7, aη = 4813, the above condition aη > 12M (N) holds,
because M (N) = 13 if N ∈ [qη+1, qη+2), M (N) = 15 if N ∈ [qη+2, qη+2 + qη) or
if N ∈ [qη+2 + qη+1, 2qη+2). By using (17), we can explain “quadratic-function”
like behaviors observed not only for α = 1− log10 7, but also for α = 2− log10 33
and α = 2 − log10 54. Because for these α’s, the conditions (15) and (16) are
satisfied and it implies that the “peak” of each “hill” is much larger than the
fluctuation 2M (N) at the valley’s,

aηf

(
1

2

)
−M (N) � aη

4
−M (N) > 2M (N).

Since for general α, satisfying the condition (15), aηf(1/2) is sufficiently large,
we can see that each “peak” is strictly positive and sufficiently large.

Next, we consider the estimates for ND∗
N (nα), restricted to a specific irra-

tional number α, α = 1 − log10 7, and specific values of N , having coefficients
b0 = b1 = b2 = b3 = b4 = 0 and 0 ≤ bη−1 ≤ 4813.

����	�� 4.5� Let α = 1 − log10 7. Assume that N has coefficients b0 = b1 =
b2 = b3 = b4 = 0 and 0 ≤ bη−1 ≤ 4813. Then we have

− 4 < ND∗
N(nα)− bη−1

(
1− bη−1

aη

)
< 9 (18)

for N ∈ [qη+1, qη+2) and [qη+2+qη+1, 2qη+2). Note that 9 and −4 are the common
bounds over these two intervals. Moreover, we have (18) with 9 replaced by 8 for
N ∈ [qη+2, qη+2 + qη).

����	� 3� The estimate in Theorem 4.5 can be rewritten as follows:

−4 < ND∗
N (nα)− aηf(x

′) < 9 for x′ =
N ′

aηqη−1
,

where N ′ = N−qη+1 if N ∈ [qη+1, qη+2), N
′ = N−qη+2 if N ∈ [qη+2, qη+2+qη)

andN ′ = N−(qη+2+qη+1) ifN ∈ [qη+2+qη+1, 2qη+2). This estimate is not whole
estimate, but this gives a still more precise explanation of “quadratic-function”
like behavior of ND∗

N (nα), α = 1− log10 7.

5. Some lemmas and proof of Corollary 3.2

In this section we first prepare some lemmas for the proofs of Corollary 3.2,
Theorems 4.3, 4.4 and 4.5, and then we prove Corollary 3.2.

We first estimate the terms b2j(1 − q2jA2j) and b2j+1(1 + q2j+1A2j+1)
in Theorem 3.1, (7).

43



T. SETOKUCHI — K. TAKASHIMA

����� 5.1� Let α be a positive irrational number. Then for 0 ≤ j ≤ [m/2]
we have

0 ≤ b2j(1− q2jA2j) ≤ b2j , (19)

with equality if and only if b2j = 0. Moreover, for 0 ≤ j ≤ [(m− 1)/2] we have

0 ≤ b2j+1(1 + q2j+1A2j+1) ≤ b2j+1, (20)

with equality if and only if b2j+1 = 0.

Proof. In case b2j = 0, (19) is trivial. In case b2j �= 0, we have 0 < q2jA2j < 1
by Lemma 2.1 (i) and (iii). Hence we obtain (19). We can also prove (20) in the
same way as (19). �

The next lemma gives the estimates for terms b2j(1− q2jA2j) and b2j+1(1 +
q2j+1A2j+1) in Theorem 3.1, (7), by using terms b2j(1−b2j/a2j+1) and b2j+1(1−
b2j+1/a2j+2), respectively.

����� 5.2� Let α be a positive irrational number. Then for 0 ≤ j ≤ [m/2]
we have

b2j

(
1− b2j

a2j+1

)
− 2 < b2j(1− q2jA2j) < b2j

(
1− b2j

a2j+1

)
+ 3. (21)

Moreover, for 0 ≤ j ≤ [(m− 1)/2] we have

b2j+1

(
1− b2j+1

a2j+2

)
−2 < b2j+1(1+q2j+1A2j+1) < b2j+1

(
1− b2j+1

a2j+2

)
+3. (22)

Proof. We first prove (21). For the simplicity of the notation, we consider
bj(1− qjAj) for even j, 0 ≤ j ≤ m, instead of b2j(1− q2jA2j) for 0 ≤ j ≤ [m/2].
The case bj = 0 is trivial. Let us consider the case where 0 < bj ≤ aj+1.
By definition of Aj , we can write bj(1− qjAj) in the form

bj(1− qjAj) = bj(1− bjqj(qjα− pj))

− bjqjNj−1(α− rj)− bjqj

m∑
t=j+1

bt(qtα− pt).
(23)

First, we estimate the first term in the right-hand side of (23) by using
term bj(1− bj/aj+1). Let us denote ζn = [an; an+1, an+2, . . .]. Using basic facts
that qnα − pn = (−1)n/(qnζn+1 + qn−1) and qn−1/qn = [0; an, an−1, . . . , a1]
(cf. [8, pp.9-10]), we have

bjqj(qjα− pj) =
bj

[aj+1; aj+2, aj+3, . . .] + [0; aj , aj−1, . . . , a1]
.
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Since aj+1 < [aj+1; aj+2, aj+3, . . .] + [0; aj, aj−1, . . . , a1] < aj+1 + 2, we see that

bj
aj+1

> bjqj(qjα− pj) >
bj

aj+1 + 2
.

This right-hand side equals bj/aj+1−2bj/aj+1(aj+1+2), and 2b2j/aj+1(aj+1+2)
is less than 2. Hence we obtain

bj

(
1− bj

aj+1

)
< bj (1− bjqj(qjα− pj)) < bj

(
1− bj

aj+1

)
+ 2. (24)

Next, we estimate the second term in the right-hand side of (23). Since
0 ≤ Nj−1 < qj , and since α− rj > 0 for even j, we have

0 ≤ bjqjNj−1(α− rj) < bjqj |qjα− pj|
(recall that qj(α− rj) = qjα− pj). From (2) and bjqj ≤ aj+1qj ≤ qj+1, we find
bjqj |qjα− pj | < 1 and therefore

− 1 < −bjqjNj−1(α− rj) ≤ 0. (25)

Finally, we estimate the last term in the right-hand side of (23). Using Lemma
2.1 (ii) for t = j + 1, j + 2, . . . ,m instead of t = j, j + 1, . . . ,m, we have

−bjqj |qj+1α− pj+1| < (−1)j+1bjqj

m∑
t=j+1

bt(qtα− pt) < bjqj |qjα− pj |.

Since bjqj|qj+1α− pj+1| < 1, and using bjqj |qjα− pj | < 1 once more, we have

− 1 < −bjqj

m∑
t=j+1

bt(qtα− pt) < 1. (26)

Combining (24) - (26) with (23), we obtain (21). We can also prove (22) in the
same way as in the above. �

Now, we return back to the proof of Corollary 3.2. To derive Corollary 3.2
from Theorem 3.1, we use this Lemma 5.2.

Proof of Corollary 3.2. We first estimate ND∗
N (nα) from above. We estimate

the sums
∑

b2j(1 − q2jA2j) and
∑

b2j+1(1 + q2j+1A2j+1) in Theorem 3.1, (7).
Since b2j(1− q2jA2j) < b2j(1− b2j/a2j+1) + 3 (cf. Lemma 5.2, (21)), we have

[m/2]∑
j=0

b2j(1− q2jA2j) <

[m/2]∑
j=0

b2j

(
1− b2j

a2j+1

)
+ 3c1, where c1 = [m/2] + 1.

45



T. SETOKUCHI — K. TAKASHIMA

On the other hand, since b2j+1(1 + q2j+1A2j+1) < b2j+1(1 − b2j+1/a2j+2) + 3
(cf. Lemma 5.2, (22)), we also have

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) <

[(m−1)/2]∑
j=0

b2j+1

(
1− b2j+1

a2j+2

)
+ 3c2,

where c2 = [(m− 1)/2]+ 1. By using these two estimates and Theorem 3.1, (7),
we obtain

ND∗
N (nα)

< max

⎛
⎝[m/2]∑

j=0

b2j

(
1− b2j

a2j+1

)
,

[(m−1)/2]∑
j=0

b2j+1

(
1− b2j+1

a2j+2

)
+A0

⎞
⎠+ c+ 3c1.

Since A0 < 1 (cf. Lemma 2.1 (iii)) and the error term c in Theorem 3.1, (7),
satisfies c < [(m+ 1)/2] + 1, we obtain the upper estimate for ND∗

N (nα).

The lower estimate for ND∗
N (nα) can be shown by similar arguments. Since

b2j(1− q2jA2j) > b2j(1− b2j/a2j+1)− 2

and

b2j+1(1 + q2j+1A2j+1) > b2j+1(1− b2j+1/a2j+2)− 2

(cf. Lemma 5.2, (21) and (22)) we have

[m/2]∑
j=0

b2j(1− q2jA2j) >

[m/2]∑
j=0

b2j

(
1− b2j

a2j+1

)
− 2c1,

and
[(m−1)/2]∑

j=0

b2j+1(1 + q2j+1A2j+1) >

[(m−1)/2]∑
j=0

b2j+1

(
1− b2j+1

a2j+2

)
− 2c2,

where c1 = [m/2] + 1 and c2 = [(m − 1)/2] + 1. From these two estimates and
Theorem 3.1, (7), we obtain

ND∗
N (nα)

> max

⎛
⎝[m/2]∑

j=0

b2j

(
1− b2j

a2j+1

)
,

[(m−1)/2]∑
j=0

b2j+1

(
1− b2j+1

a2j+2

)
+A0

⎞
⎠+ c− 2c1.

Since A0 > −1 (cf. Lemma 2.1 (iii)) and c ≥ −1, we obtain the lower estimate
for ND∗

N (nα). �
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6. Proofs for results of Section 4

In this section we give the proofs for results of Section 4. We first begin with
the proof of Theorem 4.1.

Proof of Theorem 4.1. Throughout the proof, we prove only the case where
m is even. The proof for the case where m is odd, is done similarly. The proof
is based on Theorem B. As for the first sum and the maximum term in the
right-hand side of Theorem B, (6), we note that

[m/2]∑
j=0

b2j(1− q2jA2j)−
m∑
j=0

bj((−1)j − qjAj) =

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1).

(i) By the assumption N = bmqm + bm−2qm−2, 1 ≤ bm ≤ am+1, 1 ≤ bm−2 ≤
am−1, we have b0 = b1 = · · · = bm−3 = 0 and bm−1 = 0. From this, we have the
following:

[m/2]∑
j=0

b2j(1− q2jA2j) = bm−2(1− qm−2Am−2) + bm(1− qmAm),

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) = 0.

(27)

We now consider the summations, such as, the form
∑

aj+1qjAj in Theorem B,
(6). As for Aj , observe that A0 = A1 = · · · = Am−2 = bm−2qm−2(α − rm−2) +
bmqm(α − rm) > 0 and that Am = bm−2qm−2(α − rm) + bmqm(α − rm) > 0,
because α − rm−2 > 0 and α − rm > 0. Notice that, however, the sign of
Am−1 = bm−2qm−2(α− rm−1) + bmqm(α − rm) varies depending on α, bm and
bm−2, because α− rm−1 < 0. Thus we need to consider the cases Am−1 > 0 and
Am−1 < 0 separately.

Case 1. If Am−1 > 0, then the above results for Aj imply that Aj > 0 for
any j, 0 ≤ j ≤ m, and it suggests that {j : j ∈ P is odd, 1 ≤ j ≤ m} =
{1, 3, . . . ,m− 1}. Therefore we have∑

j odd
j∈P

aj+1qjAj = qmAm −A0,
(28)

where we used (4). On the other hand, we have {j :j /∈P is even, 0 ≤ j ≤ m} = ∅
and hence ∑

j even
j /∈P

aj+1qjAj = 0. (29)
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Combining (27)–(29) with Theorem B, (6), we obtain (put Kj = (−1)jqjAj)

ND∗
N (nα)

= max(bm−2(1− qm−2Am−2) + bm(1− qmAm), A0) + qmAm −A0 + ε

= max(bm−2(1− qm−2Am−2) + bm(1− qmAm)− |A0|, 0) + qmAm + ε

= max(bm−2(1−Km−2) + bm(1−Km)− |A0|, 0) +Km + ε.

Case 2. If Am−1 < 0, then we have {j : j ∈ P is odd, 1 ≤ j ≤ m} =
{1, 3, . . . ,m− 3} and hence∑

j odd
j∈P

aj+1qjAj = qm−2Am−2 −A0,

where we used (4). On the other hand, we again have (29), since {j : j /∈ P is
even, 0 ≤ j ≤ m} = ∅. By combining these with Theorem B, (6), we obtain

ND∗
N(nα)

= max(bm−2(1− qm−2Am−2) + bm(1− qmAm), A0) + qm−2Am−2 −A0 + ε

= max(bm−2(1− qm−2Am−2) + bm(1− qmAm)− |A0|, 0) + qm−2Am−2 + ε

= max(bm−2(1−Km−2) + bm(1−Km)− |A0|, 0) +Km−2 + ε.

(ii) By the assumption

N = bmqm + bm−1qm−1, 1 ≤ bm < am+1, 1 ≤ bm−1 ≤ am,

we have b0 = b1 = · · · = bm−2 = 0. From this, we have the following:

[m/2]∑
j=0

b2j(1− q2jA2j) = bm(1− qmAm),

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) = bm−1(1 + qm−1Am−1).

(30)

In this case, we have

A0 = A1 = · · · = Am−1 = bm−1qm−1(α− rm−1) + bmqm(α− rm) < 0

because of Lemma 2.1 (i) and bm−1 �= 0. Similarly, Am = bm−1qm−1(α− rm) +
bmqm(α − rm) > 0, since bm �= 0. From these relations, we see that {j : j ∈
P is odd, 1 ≤ j ≤ m} = ∅, hence that∑

j odd
j∈P

aj+1qjAj = 0. (31)
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On the other hand, we have {j : j /∈ P is even, 0 ≤ j ≤ m} = {0, 2, . . . ,m− 2}
and therefore ∑

j even
j /∈P

aj+1qjAj = qm−1Am−1,
(32)

where we used (4). Combining (30) - (32) with Theorem B, (6), we obtain

ND∗
N (nα)

= max(bm(1− qmAm), bm−1(1 + qm−1Am−1) +A0)− qm−1Am−1 + ε

= max(bm(1− qmAm), bm−1(1 + qm−1Am−1)− |A0|)− qm−1Am−1 + ε

= max(bm(1−Km), bm−1(1−Km−1)− |A0|) +Km−1 + ε.

�

����	� 4� By Lemma 2.1 (i) and (iii), under the conditions of Theorem 4.1 (i),
we obtain 0 < (−1)mAm < 1/qm and 0 < (−1)m−2Am−2 < 1/qm−2. Therefore
we have 0 < Km < 1 and 0 < Km−2 < 1. Similarly, under the conditions of
Theorem 4.1 (ii), we have 0 < Km < 1 and 0 < Km−1 < 1.

Next, we prove Theorem 4.2 by using Corollary C and Theorem 4.1.

Proof of Theorem 4.2. (i) Assume thatN = bmqm, 1 ≤ bm ≤ am+1. Then it is
easy to see from bm ≥ 1 that (bm−1)bmqm|qmα−pm| ≥ 0 and bm|qmα−pm| > 0.
Therefore Corollary C, (10), implies that

ND∗
N(nα) < bm.

(ii) Assume that N = bmqm + bm−2qm−2, 1 ≤ bm ≤ am+1, 1 ≤ bm−2 ≤
am−1. Then we have 0 < Km < 1 and 0 < Km−2 < 1 (cf. Remark 4). Here
Kj=(−1)jqjAj . We discuss the cases (−1)m−1Am−1>0 and (−1)m−1Am−1 < 0
separately. If (−1)m−1Am−1 > 0, then we have by Theorem 4.1, (11),

ND∗
N (nα) < max (bm + bm−2 −Km−2 − |A0|, 0) +Km−2 + ε

= max (bm + bm−2 − |A0|, Km−2) + ε

< bm + bm−2 + 1,

where we used bm ≥ 1, bm−2≥1, |A0|<1 and |ε|≤1. In case (−1)m−1Am−1<0,
the upper bound can also be shown in the same way as in the above.

(iii) Assume that N = bmqm + bm−1qm−1, 1 ≤ bm < am+1, 1 ≤ bm−1 ≤ am.
Then we have 0 < Km < 1 and 0 < Km−1 < 1 (cf. Remark 4). Therefore,
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by Theorem 4.1, (12), we obtain

ND∗
N (nα) < max (bm −Km, bm−1 −Km−1 − |A0|) +Km−1 + ε

= max (bm −Km +Km−1, bm−1 − |A0|) + ε

< max(bm + 1, bm−1) + 1,

where we used bm ≥ 1, bm−1 ≥ 1, |A0| < 1 and |ε| ≤ 1. �

In the latter part of this section, we give the proofs of Theorems 4.3 and
4.4 only for the case α = 1 − log10 7. The proofs are valid for other irrational
numbers with an isolated large partial quotient, with slight modifications.

Before starting proofs, we first explain briefly how to prove these theorems.
The proofs are based on Theorem 3.1. For a special term bη−1(1+ qη−1Aη−1) in
Theorem 3.1, (7), 0 ≤ bη−1 ≤ 4813, we use the following estimate:

bη−1

(
1− bη−1

aη

)
− 2 < bη−1(1 + qη−1Aη−1) < bη−1

(
1− bη−1

aη

)
+ 3 (33)

by Lemma 5.2, (22). For the other terms b2j(1−q2jA2j) and b2j+1(1+q2j+1A2j+1)
in Theorem 3.1, (7), we apply Lemma 5.1, (19) and (20), respectively.

Proof of Theorem 4.3. Let α = 1 − log10 7. Assume that N ∈ [qη, qη+1).
Then we have m = η and bη = 1. Since bη = aη+1, we have bη−1 = 0 (recall that
bj−1 = 0 if bj = aj+1). Therefore bη−1(1+ qη−1Aη−1) = 0. The other coefficients
bj take values 0 ≤ bj ≤ aj+1. Using Lemma 5.1, (19) and (20), we can estimate
the sums

∑
b2j(1 − q2jA2j) and

∑
b2j+1(1 + q2j+1A2j+1) in Theorem 3.1, (7),

as follows:

[m/2]∑
j=0

b2j(1− q2jA2j) <

[m/2]∑
j=0

j �=(η−1)/2

b2j ≤
[m/2]∑
j=0

j �=(η−1)/2

a2j+1,

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) <

[(m−1)/2]∑
j=0

j �=(η−2)/2

b2j+1 ≤
[(m+1)/2]∑

j=1
j �=η/2

a2j .

By using these estimates and Theorem 3.1, (7), we obtain

ND∗
N (nα) < M (N) + |A0|+ c < M (N) +

[
m+ 1

2

]
+ 2,

where we used |A0| < 1 (cf. Lemma 2.1 (iii)) and c < [(m + 1)/2] + 1.
By the condition (13), M (N) ≥ [(m+1)/2]+ 2, we obtain upper bound 2M (N)
in Theorem 4.3.

50



DISCREPANCIES OF IRRATIONAL ROTATIONS

In case N ∈ [qη+2 + qη, qη+2 + qη+1), we can show the upper bound 2M (N)
by similar arguments. �

Proof of Theorem 4.4. Let α = 1 − log10 7. Assume that N ∈ [qη+1, qη+2).
Then we have m = η + 1 and bη+1 = 1. Since bη+1 = aη+2, we have bη = 0,
that is bη �= aη+1. The essential difference between this result and Theorem 4.3
is that the special coefficient bη−1 takes values 0 ≤ bη−1 ≤ 4813 (recall that the
value of the coefficient bη−1 is always 0 under the conditions of Theorem 4.3,
because bη = aη+1).

We begin by showing upper estimate for ND∗
N(nα). By Lemma 5.1, (19),

we can estimate the sum
∑

b2j(1− q2jA2j) in Theorem 3.1, (7), as follows:

[m/2]∑
j=0

b2j(1− q2jA2j) <

[m/2]∑
j=0

j �=(η−1)/2

a2j+1.

On the other hand, as for bη−1(1 + qη−1Aη−1), we use the upper bound of (33),
and we apply Lemma 5.1, (20), to the other terms b2j+1(1 + q2j+1A2j+1).
As a result, we have

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) <

[(m+1)/2]∑
j=1

j �=η/2

a2j + bη−1

(
1− bη−1

aη

)
+ 3.

By using these two estimates and Theorem 3.1, (7), we obtain

ND∗
N (nα) < bη−1

(
1− bη−1

aη

)
+ 3 +M (N) + |A0|+ c

< bη−1

(
1− bη−1

aη

)
+M (N) +

[
m+ 1

2

]
+ 5,

where we used |A0| < 1 (cf. Lemma 2.1 (iii)) and c < [(m+ 1)/2]+ 1 in the last
inequality. It is easy to see that M (N) ≥ [(m+1)/2] holds for general irrational
numbers, because aj > 0 for 1 ≤ j ≤ m. Moreover, in this case N ∈ [qη+1, qη+2),
the condition (16), M (N) ≥ 5, hold, because M (N) = 13. Therefore, we obtain
upper bound 3M (N) in Theorem 4.4.

The lower estimate for ND∗
N(nα) can be shown by similar arguments.

By using the lower bound of (33), and Lemma 5.1, (19) and (20), we have
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the following:

[m/2]∑
j=0

b2j(1− q2jA2j) ≥ 0,

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) > bη−1

(
1− bη−1

aη

)
− 2.

From these two estimates and Theorem 3.1, (7), we obtain

ND∗
N (nα) > bη−1

(
1− bη−1

aη

)
− 2− |A0|+ c > bη−1

(
1− bη−1

aη

)
− 4,

where we used |A0| < 1 (cf. Lemma 2.1 (iii)) and c ≥ −1 in the last inequal-
ity. The condition (16), M (N) ≥ 5, of course, mean that −M (N) < −4, and
consequently, we obtain lower bound −M (N) in Theorem 4.4.

In both cases N ∈ [qη+2, qη+2 + qη) and N ∈ [qη+2 + qη+1, 2qη+2), the coef-
ficient bη−1 takes values 0 ≤ bη−1 ≤ 4813, because bη �= aη+1. Moreover, since
M (N) = 15, the condition (16) is satisfied. Thus, for these two intervals, this
theorem can be shown in the same way as in the above. �

Proof of Theorem 4.5. The proof for the lower bound goes similarly as the
proof in Theorem 4.4, and we prove only the upper bound.

Assume first that N ∈ [qη+1, qη+2) and that N has coefficients b0 = b1 = b2 =
b3 = b4 = 0 and 0 ≤ bη−1 ≤ 4813. Then m = η+1, bη+1 = 1 and bη = 0 because
bη+1 = aη+2. Hence the sums

∑
b2j(1 − q2jA2j) and

∑
b2j+1(1 + q2j+1A2j+1)

in Theorem 3.1, (7), are the following:

[m/2]∑
j=0

b2j(1− q2jA2j) = 0,

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) = bη−1(1 + qη−1Aη−1) + bη+1(1 + qη+1Aη+1).

As for bη−1(1+ qη−1Aη−1), we use the upper bound of (33). On the other hand,
we have bη+1(1+ qη+1Aη+1) < 1 from Lemma 5.1, (20). Also, since α− rη−1 < 0
and α− rη+1 < 0, we have A0 = bη−1qη−1(α− rη−1) + bη+1qη+1(α− rη+1) < 0.
Thus by Theorem 3.1, (7), we obtain

ND∗
N (nα) < max

(
0, bη−1

(
1− bη−1

aη

)
+ 4 +A0

)
+ c < bη−1

(
1− bη−1

aη

)
+ 9.

The last inequality results from A0 < 0 and c < [(m+ 1)/2] + 1.
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Next, assume that N ∈ [qη+2, qη+2 + qη) and that N has coefficients b0 =
b1 = b2 = b3 = b4 = 0 and 0 ≤ bη−1 ≤ 4813. Then m = η + 2, bη+2 = 1 and
bη+1 = bη = 0. Therefore we have the following:

[m/2]∑
j=0

b2j(1− q2jA2j) = bη+2(1− qη+2Aη+2),

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) = bη−1(1 + qη−1Aη−1).

In case bη−1 = 0, Theorem 4.5 is trivial. We, therefore, consider only the case
where 0 < bη−1 ≤ 4813. By Lemma 5.1, (19), we have bη+2(1− qη+2Aη+2) < 1.
Observe that A0 = Aη−1 = bη−1qη−1(α − rη−1) + bη+2qη+2(α − rη+2). Hence
bη−1 �= 0 implies that A0 < 0 from Lemma 2.1 (i). By the same way as
N ∈ [qη+1, qη+2), we obtain

ND∗
N (nα) < max

(
1, bη−1

(
1− bη−1

aη

)
+ 3 +A0

)
+ c < bη−1

(
1− bη−1

aη

)
+ 8.

The last inequality results from A0 < 0 and c < [(m+ 1)/2] + 1.

Finally, assume that N ∈ [qη+2 + qη+1, 2qη+2) and that N has coefficients
b0 = b1 = b2 = b3 = b4 = 0 and 0 ≤ bη−1 ≤ 4813. Then m = η + 2, bη+2 =
bη+1 = 1 and bη = 0 because bη+1 = aη+2. Thus we have the following:

[m/2]∑
j=0

b2j(1− q2jA2j) = bη+2(1− qη+2Aη+2),

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) = bη−1(1 + qη−1Aη−1) + bη+1(1 + qη+1Aη+1).

By similar arguments to the proof of the cases N ∈ [qη+1, qη+2) and N ∈
[qη+2, qη+2 + qη), we can show that

bη+2(1− qη+2Aη+2) < 1, bη+1(1 + qη+1Aη+1) < 1 and A0 < 0.

Therefore we obtain

ND∗
N (nα) < max

(
1, bη−1

(
1− bη−1

aη

)
+ 4 +A0

)
+ c < bη−1

(
1− bη−1

aη

)
+ 9.

The last inequality results from A0 < 0 and c < [(m+ 1)/2] + 1. �

����	� 5� These proofs are valid for 2− log10 33 and 2− log10 54, with some
obvious modifications on η = 3 and η = 7, respectively, in the above.
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7. Other examples

In this section we first report the extraordinary behaviors, observed in cases
of 2− log10 33 and 2− log10 54. The continued fraction expansion of 2− log10 33
is given by

2− log10 33 = [0; 2, 13, 299, 1, 1, 10, . . .],

and 2 − log10 33 has a rather large isolated 3rd partial quotient, a3 = 299, and
the 3rd-order convergent, q3 = 8075. Since M (N) = 14 if m = η or if m = η+1,
and M (N) = 24 if m = η+2, 2− log10 33 satisfies the conditions (13), (15) and
(16).

The continued fraction expansion of 2− log10 54 is given by

2− log10 54 = [0; 3, 1, 2, 1, 3, 1, 326, 2, 1, 3, . . .],

and 2 − log10 54 also has a rather large isolated 7th partial quotient, a7 = 326,
and the 7th-order convergent, q7 = 23202. Since M (N) = 8 if m = η, and
M (N) = 9 if m = η+1 or if m = η+2, 2− log10 54 also satisfies the conditions
(13), (15) and (16).

Although these large partial quotients, 299 and 326, are not so large in com-
parison with the quotient 4813 in case of 1− log10 7, we can, again in each case,
observe extraordinary phenomena similar to the phenomenon, shown in case of
1− log10 7 (see Figs. 2 and 3).

Next, we consider the numerical estimation of ND∗
N (nα), in case of log10 2,

log10 3 and 1− log10 5, continued fraction expansions are given by

log10 2 = [0; 3, 3, 9, 2, 2, 4, 6, 2, 1, 1, 3, 1, 18, 1, 6, 1, 2, 1, 1, 4, . . .],

log10 3 = [0; 2, 10, 2, 2, 1, 13, 1, 7, 18, 2, 2, 1, 2, 3, 4, 1, 1, 14, 2, 44, . . .],

1− log10 5 = [0; 3, 3, 9, 2, 2, 4, 6, 2, 1, 1, 3, 1, 18, 1, 6, 1, 2, 1, 1, 4, . . .].

We do not find large partial quotients in continued fraction expansions within
20 partial quotients. In case of log10 2, the value of D∗

N (nα) converge to 0 very
quickly (cf. Fig. 4); when N = 3,000,000, the value of D∗

N (nα) equals a ex-
traordinarily small value, 2.7×10−6. In case of, similarly, log10 3 and 1− log10 5,
values ofD∗

N (nα) converge very quickly to 0. In contrast with Fig. 1, Fig. 4 shows
“very normal” decay of D∗

N (nα).


�������������� The authors would like to express their gratitude to Prof.
Dalibor Volny for fruitful discussions and helpful advice. Without his support,
this paper could not have been accomplished. The authors also would like to
thank an anonymous referee for his useful suggestions and comments, leading to
a substantial improvement of the presentation.
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Figure 2. D∗
N (nα), α = 2 − log10 33, up to N = 2q5, every 10 points.

q3 = 8,075, q4 = 8,102, q5 = 16,177, q5 + q3 = 24,252, q5 + q4 = 24,279,
2q5 = 32,354.
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Figure 3. D∗
N (nα), α = 2 − log10 54, up to N = 2q9, every 10 points.

q7 = 23,202, 2q7 = 46,404, q8 = 46,475, q9 = 69,677, q9 + q7 = 92,879,
q9 + 2q7 = 116,081, q9 + q8 = 116,152, 2q9 = 139,354.
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Figure 4. D∗
N (nα), α = log10 2, up to N = 3,000,000, every 100 points.
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