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QUANTITATIVE REARRANGEMENT THEOREMS

FOR SEQUENCES IN COMPACT SPACES

Gerhard Larcher

ABSTRACT. Every sequence which is dense in a compact metric space X can be
rearranged, such that the new sequence is uniformly distributed in X with respect

to a given non-negative Borel-measure on X. We give quantitative versions of this
result, in the sense that we give estimates for the growth-rate of the permutations
in question.

Communicated by Werner Georg Nowak

1. Introduction

Rearrangement theorems play an important role in the theory of uniform dis-
tribution. The classical result in that topic is that from John von Neumann, who
showed in 1925 [9] that every sequence (xn)n∈N which is dense in the unit-interval
can be rearranged such that the resulting sequence is uniformly distributed mod-
ulo one. That is: There always exists a permutation τ of N such that (xτ(n))n∈N

is uniformly distributed modulo one.

There were many generalisations of this theorem both of non-quantitative and
of quantitative form. See for example [1], [2], [3], [6], [8] and the monograph [4].
In 1987 Niederreiter [7] showed that all standard rearrangement results which
are not of a quantitative form are simple consequences of the following theorem
which we will state here in a little bit modified form:

Theorem A ([7]): Let (X, d) be a compact metric space without isolated points
and (xn)n∈N and (yn)n∈N two sequences dense in X. Then there exists a permu-
tation τ of N such that

lim
n→∞ d(xn, yτ(n)) = 0.
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In [5] the author gave a quantitative version of this theorem in the sense that
estimates for the speed of the convergence of d(xn, yτ(n)) were given and it was
shown that now also the quantitative standard results are simple corollaries
of the following variant:

Theorem B ([5]): Let (X, d) be a compact metric space without isolated points,
(xn)n∈N and (yn)n∈N two sequences dense in X and (ε(n))n∈N a sequence of pos-
itive reals. Then there exist permutations τ and σ of N such that

d(xτ(n), yσ(n)) < ε(n)

for all n ∈ N.

The main aim of this paper now is, to give a quantitative version of Niederre-

iter’s Theorem A in another direction: We will study the functionH(τ,N) := τ(N)
N

for the permutation τ used in Theorem A.
Of course we always have

Hinf := lim inf
N→∞

H(τ,N) ≤ 1 ≤ Hsup := lim sup
N→∞

H(τ,N).

It seems further to be intuitively obvious that τ can be chosen such that Hinf =
Hsup = 1 if and only if (xn)n∈N in some sense is “very near to” (yn)n∈N (for ex-
ample, of course, if limn→∞ d(xn, yn) = 0), and that Hinf = 0 and Hsup = ∞, if
the distribution properties of (xn)n∈N are “quite different” from the distribution
properties of (yn)n∈N.

In Theorem 1 we show that it is possible to give a non-trivial, in some sense
best possible general lower bound forH(τ,N), and we show that it is not possible
to give a general upper bound for H(τ,N).

It will become clear from Theorem 1 that upper bounds for H(τ,N) depend
heavily on the distribution properties of the sequence and on the topological
properties of the space (X, d) as well.

In Theorem 2, the main result of this paper, we give such upper bounds
for H(τ,N) in dependence on the distribution properties of the sequences and
on the topological properties of (X, d).

Further we will give several examples for illustrating the results.

In Chapter 2 we formulate and prove Theorem 1, in Chapter 3 we give several
definitions and prove some properties for the metric space (X, d) which are
necessary for the formulation and for the proof of Theorem 2 which will be
given in Chapter 4. In Chapter 5 we give some illustrating examples for the
results of Theorem 2.
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2. Formulation and Proof of Theorem 1

In everything what follows, X denotes a compact metric space without iso-
lated points with metric d and with a non-negative normed Borel-measure μ.
For simplicity we assume that the support of μ is equal to X. (This restriction
is not of importance because of Theorem 1.3, page 177 in [4].)

By Theorem 2.5, page 185 in [4] a sequence (xn)n∈N in X can be rearranged
to a μ−uniformly distributed sequence in X if and only if (xn)n∈N is dense in X.

Here a sequence (xn)n∈N is said to be μ−uniformly distributed (μ− u.d.) if

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
X

fdμ

for all real-valued continuous functions f on X.

By Theorem 1.2, page 175 in [4] this is equivalent to

lim
N→∞

A(N ;M )

N
= μ(M )

for all μ−continuity setsM ⊆ X. Here A(N ;M ) = |{n|xn ∈M,n = 1, 2, . . . , N}|
andM is called μ−continuity set if μ(δM ) = 0, where δM is the boundary ofM .

In the following (xn)n∈N, (yn)n∈N always are sequences dense in X and τ
always is a permutation of N.

As already announced in the introduction, in Theorem 1a we show that it

is not possible to give a non-trivial general upper bound for H(τ,N) = τ(N)
N ,

for permutations τ which rearrange dense sequences to μ−uniformly distributed
sequences. This is not a very surprising result. In Theorem 1b we show however
that it is possible to give a non-trivial general lower bound for H(τ,N) which,
as is shown in Theorem 1c, is essentially best possible.

������� 1� a) For all (arbitrarily fast growing) functions g : N → R
+ there

is a sequence (xn)n∈N dense in the one-dimensional torus such that for all
τ for which (xτ(n))n∈N is μ−u.d. in X, we have

lim sup
N→∞

H(τ,N)

g(N)
= +∞.

b) For all (arbitrarily slowly growing) functions h : N → R
+ with lim

N→∞
h(N)

= +∞, for all metric spaces X and all sequences (xn)n∈N dense in X,
there is a permutation τ of N for which (xτ(n))n∈N is μ−u.d. in X and
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such that
lim

N→∞
H(τ,N) · h(N) = +∞.

c) There is a sequence (xn)n∈N, dense in the one-dimensional torus such that
for all τ for which (xτ(n))n∈N is μ−u.d. in X we have

lim inf
N→∞

H(τ,N) = 0.

P r o o f. a) Let g̃(x) := x2 ·maxy≤3x(g(y)) (and note that g̃ is strictly increas-
ing).
Consider a sequence (xn)n∈N in the one-dimensional torus (with one-dimen-
sional Lebesgue-measure) X = T = [0, 1), dense and such that xn ∈ [0, 1

2
)

if and only if n = g̃(m) for an m ∈ N. Since (xτ(n))n∈N is uniformly dis-
tributed in T we have

lim
N→∞

1

N
· |{n ≤ N |τ(n) = g̃(m) for some m}| = 1

2
.

Therefore for all N given and large enough there is an m > N
3 and an

n ≤ N with τ(n) = g̃(m) ≥ g̃
(
N
3

) ≥ g̃
(
n
3

)
.

Since g̃ is strictly increasing hence there are infinitely many nk with τ(nk)
≥ g̃

(
nk

3

)
. Therefore

lim
k→∞

H(τ, nk)

g(nk)
= lim

k→∞
τ(nk)

nk g(nk)
≥

≥ lim
k→∞

g̃ (nk/3)

nk g(nk)
≥ lim

k→∞
nk
2

= ∞.

Hence lim supN→∞
H(τ,N)
g(N) = ∞.

b) This follows immediately from Theorem 2a and 2b (which is formulated
and proved in Section 4) by the fact that for (yn)n∈N μ−u.d. in X and
(xτ(n))n∈N with limn→∞ d(xτ(n), yn) = 0, we have that (xτ(n))n∈N is μ−u.d.
in X.

c) Let (xn)n∈N be dense in T with xn = 0 if n is odd. Since (xτ(n))n∈N is
uniformly distributed, for every ε > 0 we have for the sequence (xτ(n))n∈N

that

lim
N→∞

∣∣∣∣A(N ; [0, ε))

N
− ε

∣∣∣∣ = 0,

hence

lim sup
N→∞

1

N
· |{n ≤ N |τ(n) odd }| ≤ ε,

therefore lim infN→∞H(τ,N) ≤ 2ε, and the result follows.

�
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3. Some Definitions and Auxiliary Results for Metric
Spaces

From Theorem 1 we see that the question how regularH(τ,N) can be depends
heavily on the properties of (xn)n∈N and also on the properties of the metric
space X.

In order to be able to study this connection, we have to introduce a new
density measure for sequences in compact metric spaces. A well-known measure
for the density of a sequence is the dispersion of the sequence (see [5] and the
references cited there). But, for our purposes we need a quantity which takes
more care on the distribution of (xn)n∈N in X. This quantity will be called
“B−upper density function f” and will be defined in the following:

��	
�
�
�� 1� a) Let B be a family of subsets of X such that every element
of B is a μ−continuity set and such that a sequence (xn)n∈N is dense in X
if and only if for all M ∈ B we have xn ∈M for infinitely many n.
Then we call B a density determining set of X.

b) For a sequence (xn)n∈N in X and an M ⊆ X we denote by i(N ;M ) the
index of the N−th element of (xn)n∈N which is contained in M . We set
i(N ;M ) = ∞, if the number of xn in M is less than N .

c) Let B be a density determining set of X and (xn)n∈N be a sequence in X.
If there is a function f with f : R+

0 → R
+
0 such that

i(N ;M ) ≤ f

(
N

μ(M )

)
for all M ∈ B and for all N ≥ N(M ) then we call f a B-upper density
function for (xn)n∈N.


����� 1� a) Of course the class of μ−continuity sets with positive measure
always is a density determining set in X.

b) If, for example,X is the s−dimensional torus T s, then the family I of boxes
of the form

∏s
i=1[ai, bi) with 0 ≤ ai < bi ≤ 1 is a density determining set

in X.

c) If B is a density determining set and M ∈ B, then μ(M ) > 0 since the
support of μ is X.

d) Note that A(i(N ;M ),M ) = N if i(N ;M ) is finite. Therefore for any μ-
continuity set M with positive measure and for uniformly distributed se-
quences (xn)n∈N we have the relation limN→∞ N

i(N ;M) = μ(M ).
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����� 2� a) If f is an upper density function for (xn)n∈N with respect to
the class of μ−continuity sets with positive measure, then for all density-
determining sets B it is a B−upper density function for (xn)n∈N.

b) Since with f also f̃ := maxy≤x f(y) is an upper density function for
(xn)n∈N, in the following we always can and will assume that f is mono-
tonically increasing.

We have

������
�
�� 1� a) Let B be a density-determining set in X.
The sequence (xn)n∈N is dense inX if and only if there exists a B−upper

density function f for (xn)n∈N.

b) The sequence (xn)n∈N is μ−uniformly distributed in X, if and only if for
all ε > 0 the function f(x) := (1 + ε) · x is a B−upper density function.

P r o o f. a) We have μ(M ) > 0 for all M ∈ B. If (xn)n∈N is not dense in X,
then there is anM ∈ B with xn ∈M for at most finitely many, say N0−1
elements. So i(N0;M ) = ∞, and thus an upper density function f cannot
exist.
If (xn)n∈N is dense in X, then by Theorem 2.5, page 185 and
by Theorem 1.2, page 178 in [4], there is a permutation τ of N such
that for the sequence (xτ(n))n∈N and for all μ−continuity sets M we have

limN→∞
A(N ;M)

N = μ(M ). Hence for allN ≥ N1(M ) for (xτ(n))n∈N we have
A(N ;M)

N ≥ μ(M)
2 and therefore for (xn)n∈N and for all M with μ(M ) > 0:

i(N ;M ) ≤ max
m≤ 2N

µ(M)

τ(m) =: f

(
N

μ(M )

)

for all N ≥ N1(M ).
So this f is an upper density function with respect to the class of μ−contin-
uity sets with positive measure and therefore with respect to every density
determining set B.

b) If (xn)n∈N is μ−uniformly distributed, then obviously we can choose
f(x) = (1 + ε) · x for every ε > 0 as an upper density function for the
class of μ−continuity sets with positive measure and therefore with re-
spect to every density determining set B.
Let now for every ε > 0, f(x) = (1 + ε) · x be an upper density function
for the classMμ of μ−continuity sets with positive measure (and therefore
with respect to every density determining set B). LetM ∈Mμ and assume
that if μ(M ) < 1 then also M̄ := X\M is in Mμ.
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For (xn)n∈N we have for every ε > 0 and all N ≥ N(M, ε):

i(N ;M ) ≤ N

μ(M )
· (1 + ε)

and therefore for all N ≥ Ñ(M, ε):

μ(M )

1 + ε
≤ A(N ;M )

N
.

Applying this to the complement M̄ ∈Mμ of M we get

A(N ;M )

N
≤ ε+ μ(M )

1 + ε
.

Since in Theorem 1.2, page 175 in [4] we can restrict to the μ−continuity
sets with positive measure, the result that (xn)n∈N is μ−uniformly dis-
tributed follows.

�

To illustrate the idea of upper-density functions, we give an example:

������� 1� Let X = T = [0, 1) again be the one-dimensional torus with
d(x, y) := ‖x− y‖ (where ‖x‖ denotes the distance of x to the nearest integer)
and with μ the normalised Haar-measure.
We consider sequences in X with various upper or lower distribution functions
(compare with Chapter 1.7 in [4]).

a) For the sequence (xn)n∈N in T let

ψ(x, y) := lim inf
N→∞

A(N ; [x, y))

N

for 0 ≤ x < y < x+1 and x < 1, where for y > 1 we define A(N ; [x, y)) :=
A[N ; [x, 1)) + A(N ; [0, y)).

If infx∈T ψ(x, x + t) > 0 for all t (0 ≤ t < 1), then for all functions
h : R+

0 → R
+
0 with limx→∞ h(x) = +∞, the function f(x) := x · h(x) is an

I−upper density function of (xn)n∈N (see Remark 1b)).

b) If there is a constant b > 0 such that ψ(x, y) ≥ b · (y − x) for all x ≤ y,
then for all ε > 0 the function 1+ε

b · x is an I−upper density function for
(xn)n∈N.

c) Let z(x, y) be a distribution function of (xn)n∈N with respect to the se-
quence 0 = N0 < N1 < N2 < . . . of integers (compare with Definition 7.2,
page 53 in [4]) that is:

lim
i→∞

A(Ni; [x, y))

Ni
= z(x, y) for 0 ≤ x < y < x+ 1 and x < 1.
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Let Z(t) := infx∈T z(x, x+ t) > 0 for all t with 0 < t < 1, and for x > 0
let

L(x) := Nk+1 for Nk < x ≤ Nk+1.

Then for all functions h : R+
0 → R

+
0 with limx→∞ h(x) = +∞, the function

f(x) := L(x · h(x)) is an I−upper density function for (xn)n∈N.

d) If for a constant b > 0 we have z(x, y) ≥ b ·(y−x) for all x < y, then for all
ε > 0 the function L(1+ε

b · x) is an I−upper density function for (xn)n∈N.

P r o o f. a) Let 0 ≤ t < 1. Then for all x there is an N0(x, t) such that for all
N ≥ N0(x, t) we have:

A(N ; [x, x+ t))

N
≥ 1

2
· inf
x∈T

ψ(x, x+ t) =: φ(t) > 0,

and therefore for all N ≥ N0(x, t)

i(N ; [x, x+ t)) ≤ N

φ(t)
.

Let N1(t) be so large that N
φ(t) ≤ N

t · h(Nt ) for all N ≥ N1(t), then for all

N ≥ N(x, t) := max(N0(x, t), N1(t)) we have

i(N ; [x, x+ t)) ≤ N

t
· h

(
N

t

)
.

b) Let 0 ≤ t < 1. Then for all x and all ε > 0 there is an N0(x, t, ε) such that
for all N ≥ N0(x, t, ε) we have:

A(N ; [x, x+ t))

N
≥ 1

1 + ε
· inf
x∈T

ψ(x, x+ t) ≥ 1

1 + ε
· b · t,

and therefore for all N ≥ N0(x, t, ε)

i(N ; [x, x+ t)) ≤ 1 + ε

b
· N
t
.

The result follows.

c) Let t > 0 and k(M ) be such that Nk(M) ≤ M < Nk(M)+1. Then for all x
and all M > M0(t) we have

A(Nk(M)+1; [x, x+ t)) ≥ 1

2
·Nk(M)+1 · Z(t) > 1

2
·M · Z(t).
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For arbitrary N ≥ Z(t)
2 ·M0(t) := N0(t) let M := 2

Z(t) ·N. Then

A(Nk(M)+1; [x, x+ t)) ≥ 1

2
·M · Z(t) = N.

Hence

i(N ; [x, x+ t)) ≤ Nk(M)+1 = L

(
2

Z(t)
·N

)
.

Let N1(t) be so large that

2N

Z(t)
≤ N

t
· h

(
N

t

)

for all N > N1(t).
Then for all N ≥ max(N0(t), N1(t)) we have

i(N ; [x, x+ t)) ≤ L

(
N

t
· h

(
N

t

))

and the result follows.

d) Follows in analogy to c) and b).

�

Before we can state the main result in the next chapter, we need another
technical result and a further definition.

������
�
�� 2� Let (X, d) be a compact metric space with non-negative normed
Borel-measure μ. For A ⊆ X let D(A) := supx,y∈A d(x, y) be the diameter of A.
Then there is a sequence (Pk)k∈N of finite partitions Pk of X with the following
properties:

(i) For every A ∈ Pk, Pk+1 contains a partition of A.

(ii) μ(A) 	= 0 for all A ∈ Pk.

(iii) A is μ−continuous for all A ∈ Pk.

(iv) limk→∞(maxA∈Pk
D(A)) = 0.

For any such (Pk)k∈N the set B =
⋃∞

k=1 Pk is a density determining set in X.

P r o o f. Let P0 := {X} and assume that P1, P2, . . . , Pk already are defined.
Let A ∈ Pk be arbitrary and Dk := maxA∈Pk

D(A).
Note that each point of X has a basis of neighbourhoods consisting of μ-
-continuity sets. We choose for every x in the closure of A an open neighbour-
hood Ux with diameter at most Dk

3 that is a μ-continuity set. There exists a
finite subset {Uxi

i = 1, . . . , s} that forms a finite sub-covering of closure of A.
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We denote Ai := Uxi
. Next we consider the finite set A∗ of subsets of A which

is defined by

A∗ =

⎧⎨
⎩A ∩

⋂
i≤t

Ai ∩
⋂

t<i≤s

Āi | 1 ≤ t ≤ s

⎫⎬
⎭ \{φ},

where Āi is the complement of Ai in X.
A∗ forms a partition of A consisting of μ-continuity sets, and the diameter of each
of the elements of A∗ is less or equal Dk

3 .
Denote the elements of A∗ such that A∗ = {B1, . . . , Bu, C1, . . . , Cv} with
μ(Bi) > 0 and μ(Ci) = 0 for all i.
Since for C :=

⋃v
i=1Ci we have μ(C) = 0, and because the support of μ is X,

C cannot contain an inner point. So for x ∈ C let

ix := min{i | 1 ≤ i ≤ u, d(x,Bi) <
Dk

12
}, Vi := {x ∈ C | ix = i}

and B′
i := Bi ∪ Vi for 1 ≤ i ≤ u.

So we get a finite partition B′
1, . . . , B

′
u of A with D(B′

i) ≤ Dk

2 , with all the B′
i

μ− continuous, and with μ(B′
i) 	= 0.

Since we can do this for every A ∈ Pk, in this way we obtain a new partition
Pk+1 of X. The sequence of partitions generated in this way obviously satisfies
conditions i) to iv).

For the second part of the assertion we have to show that for every sequence
(xn)n∈N in X we have: For every ε > 0 and for every x ∈ X there are infinitely
many xn in B(x; ε), if and only if in every A ∈ B there are infinitely many xn.

For x ∈ X and ε > 0 given, let k be such that Dk < ε. Take A ∈ Pk such that
x ∈ A, then A ⊆ B(x; ε) and if in A there are infinitely many xn so there are
in B(x; ε).

Assume now that (xn)n∈N is dense inX. Every A ∈ Pk contains an inner point
x because μ(A) > 0 and A is μ−continuous. Let ε > 0 be such that B(x; ε) ⊆ A.
Then infinitely many xn are in B(x; ε) and hence in A. �

��	
�
�
�� 2� a) For a sequence of partitions like in Proposition 2 let

uk := max

{
μ(A1)

μ(A2)
|A1 ∈ Pk, A2 ∈ Pk+1, A2 ⊆ A1

}
.

If there is a constant c ≥ 2 and a sequence of partitions like above and
such that uk ≤ c for all k ∈ N, then we call the metric space X uniformly
divisible and c a splitting constant of X.
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b) If for a partition-sequence (Pk) like above the system B is a density de-
termining class of X with

⋃∞
k=1 Pk ⊆ B, then we say that B is a density

determining class over (Pk).

We give an example for the above defined concepts:

������� 2� a) Every compact measureable subset X of Rs is uniformly di-
visible with splitting constant c = 2 and with respect to Lebesgue-measure.

b) The s−dimensional torus T s is uniformly divisible with c = 2 and with all
Pk consisting only of intervals of the form I =

∏s
i=1[ai, bi) with 0 ≤ ai <

bi ≤ 1.

P r o o f. a) This is obvious, since for every μ−continuity set A of R
s and

every (a1, . . . , as) ∈ R
s\{0} there is at least one hyperplane with normal

vector (a1, . . . , as) ∈ R
s which divides A into two μ−continuous parts with

the same measure.

b) We can choose

Pk :=

{
l∏

i=1

[
ji

2m+1,

ji + 1

2m+1

)
×

s∏
i=l+1

[
hi
2m,

hi + 1

2m

)

∣∣∣ ji = 0, 1, . . . , 2m+1 − 1;hi = 0, 1, . . .2m − 1

}

when k = sm+ l with m, l non-negative integers.

�

4. Formulation and Proof of Theorem 2 (Main Result)

We are now ready to state and to prove the main result of the paper which
essentially answers the question raised in Chapter 1.

������� 2� In the following let (xn)n∈N be dense in X, (yn)n∈N be μ−uniformly
distributed in X and h : R+

0 → R
+
0 with limx→∞ h(x) = ∞ (arbitrarily slowly

growing).
Let (Pk)k∈N be a sequence of partitions dividing X, and let f be a (monotonically
increasing, see Remark 2b) upper density function for (xn)n∈N with respect to a
density determining class B over (Pk). Then:
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a) There always (even if X is not uniformly divisible) is a permutation τ of
N with

lim
N→∞

H(τ,N)h(N) = +∞ , lim sup
N→∞

H(τ,N)
N

f(h(N) ·N)
≤ 1

and
lim
n→∞ d(xτ(n), yn) = 0.

b) If X is uniformly divisible, and (Pk) divides X with a splitting constant
c0, then for all c > c0 there is a permutation τ of N with

lim
N→∞

H(τ,N) · h(N) = +∞ , lim sup
N→∞

H(τ,N) · N

f(c ·N)
≤ 1

and
lim
n→∞ d(xτ(n), yn) = 0.

c) If X is uniformly divisible, and (Pk) divides X with a splitting constant
c0, and if moreover (xn)n∈N is such that for some constants a1, a2 > 0 and
all A ∈ B we have

1

a1
μ(A) ≤ A(N ;A)

N
≤ a2μ(A)

for all N ≥ N(A),
then for all b1 > a1 and all b2 > a1 · c0 there is a permutation τ of N with

1

b1
< lim inf

N→∞
H(τ,N) ≤ lim sup

N→∞
H(τ,N) < b2

and

lim
n→∞ d(xτ(n), yn) = 0.

P r o o f. First we prove the upper bound for a) and b):
Let M1 < M2 < . . . be a sequence of integers such that for the sequence (xn)n∈N

we have
(*) i(N ;A) ≤ f

(
N

μ(A)

)
for all A ∈ Pk and all N ≥Mk,

(**) for an ε > 0, which will be chosen later, for the sequence (yn)n∈N we have

N

μ(A)
· 1

1 + ε
≤ i(N ;A) ≤ N

μ(A)
· 1

1− ε

for all A ∈ ⋃k
i=0 Pi and all N ≥Mk,

(***) for every A ∈ Pk there is an i with Mk < i ≤Mk+1 with yi ∈ A.
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Now we construct a permutation τ :
Assume that τ(1), . . . , τ(Mk) already are defined. Then we define τ(Mk+1), . . . ,
τ(Mk+1) step by step such that for all i with Mk + 1 ≤ i ≤Mk+1 we have:

(i) τ(i) 	= τ(j) for all j < i

(ii) xτ(i) lies in the same element A of Pk as yi
(This can be satisfied since A contains inner points.)

(iii) τ(i) is minimal with the above two properties.

By construction (and because of (***)) we have that τ indeed is a permutation
and that limi→∞ d(yi, xτ(i)) = 0.

Take now any A from Pk.
Because of (**), for every l = 1, 2, . . . ,Mk+1 −Mk there are at most

(1 + ε) · (Mk + l) · μ(A)− (1− ε) ·Mk · μ(A) = (1 + ε) · l · μ(A) + 2ε ·Mk · μ(A)
indices i with Mk + 1 ≤ i ≤Mk + l such that yi ∈ A.

Take now any Ã ∈ Pk−1 with A ⊆ Ã. Because of (**) there are at most

(1 + ε) ·Mk · μ(Ã)
indices i with i = 1, 2, . . .Mk such that yi ∈ Ã.
Therefore, by the definition of τ there are at most

(1 + ε) ·Mk · μ(Ã)
indices i with i = 1, 2, . . .Mk such that xτ(i) ∈ Ã and consequently at most as
many such that xτ(i) ∈ A.
Hence especially there are at most

(1 + ε) · (Mk + l) · μ(A)− (1− ε) ·Mk · μ(A) + (1 + ε) ·Mk · μ(Ã) =
(1 + ε) · l · μ(A) + 2ε ·Mk · μ(A) + (1 + ε) ·Mk · μ(Ã)

indices i with i = 1, 2, . . .Mk + l such that yi ∈ A.

Therefore, since f is monotonically increasing, because of (*) and because
of (ii) and (iii), we have for every l = 1, 2, . . . l = 1, 2, . . . ,Mk+1 − Mk the
following estimate for τ :

τ(Mk + l) ≤ f

(
(1 + ε) · l · μ(A) + 2ε ·Mk · μ(A) + (1 + ε) ·Mk · μ(Ã)

μ(A)

)

= f

(
(1 + ε)

μ(Ã)

μ(A)
Mk + 2εMk + (1 + ε) · l

)

≤ f

(
(1 + 3ε)

μ(Ã)

μ(A)
(Mk + l)

)
.
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Concerning part a) of the Theorem:
Let ε > 0 from above be arbitrary and impose on the sequence Mk the addi-
tional condition, that for all k the number Mk is so large that for the uk from
Definition 2a we have

min
y≥Mk

h(y) ≥ (1 + 3ε)uk.

Then we have τ(i) ≤ f(h(i) · i) for all i and the result follows.
Concerning part b) of the Theorem:

We have μ(Ã)
μ(A) ≤ c0. Choose the ε > 0 from above so small that (1 + 3ε) · c0 < c.

Then τ(i) ≤ f(c · i) for all i large enough, and the result follows.

Now we prove the lower bound for a) and b):
Let μk := minA∈Pk

μ(A). Then, by (**) in every A ∈ Pk there are at least
(1− ε)μk(Mk + l) of the elements y1, . . . , yMk+l.
For i with Mk < i < Mk+1 because of (iii) therefore we have τ(i) ≥ (1− ε)μk · i.
Let ε > 0 from above be arbitrary and impose on the sequenceMk the additional
condition that for all k the number Mk is so large that

(1− ε)μk ≥ (
min
y≥Mk

h(y)
)− 1

2 .

Then for all i with Mk < i ≤Mk+1 we have

τ(i) ≥ i · ( min
y≥Mk

h(y)
)− 1

2 ≥ i · (h(i))− 1
2 .

Hence for all N large enough

H(τ,N) · h(N) ≥ (
h(N)

) 1
2 ,

and the result follows.
Concerning part c) of the Theorem:
We take τ like above.
The upper estimate for τ follows immediately from b).

Concerning the lower bound, choose ε > 0 such that 1−2ε
a2+ε ≥ 1

b1
, and impose

four further conditions on the sequence (Mk), namely

α) For the sequence (xn)n∈N we have

A(N ;A)

N
≤ (a2 + ε) · μ(A)

for all A ∈ Pk and all N ≥Mk−1.
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β) For the sequence (yn)n∈N we have

A(N ;A)

N
≥ (1− ε) · μ(A)

for all A ∈ Pk and all N ≥Mk−1.

γ) For all k we have

Mk+1 >
Mk

εμk
,

which implies that for all l ≥Mk+1 we have

μ(A) · l · (1− ε)−Mk ≥ (1− 2ε) · l · μ(A).
δ)

[
Mk+1

1
b1

]
> Mk−1 which implies that for all l ≥Mk+1 we have[

(1− 2ε)l

a2 + ε

]
> Mk−1.

Then we have:

For k ≥ 1 let Mk+1 ≤ l < Mk+2. By β) in every A ∈ Pk there are at least
μ(A) · l · (1− ε) of the yn with n = 1, 2, . . . , l.
Further, by α) and δ), in A there are at most (1 − 2ε) · l · μ(A) of the xn with

n = 1, 2, . . . ,
[
(1−2ε)l
a2+ε

]
.

Therefore, and because of γ), we have that for all j <
[
(1−2ε)l
a2+ε

]
there is an i

with Mk < i ≤ l and with τ(i) = j.

Therefore we have τ(l) ≥ (1−2ε)l
a2+ε for all Mk+1 ≤ l < Mk+2, and the result

follows.

�

5. Some Examples

For the illustration of the results of Theorem 2 we give some examples.

������� 3� For all b1 >
e

e−1 and all b2 > 2e− 2 there is a permutation τ of N

with 1
b1
N < τ(N) ≤ b2N for all N , such that the sequence ({log τ(n)})n∈N is

uniformly distributed in [0, 1).

P r o o f. For the sequence ({log τ(n)})n∈N we have (see [4], pages 58 - 59):

lim inf
N→∞

A(N ; [x, y))

N
=

ey − ex

ex(e− 1)
≥ 1

e− 1
(y − x)
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and

lim sup
N→∞

A(N ; [x, y))

N
=
e(ey − ex)

ey(e− 1)
≤ e

e− 1
(y − x)

for all 0 ≤ x < y < x+ 1 ; 0 ≤ x < 1.
By Example 2b and Theorem 2c there is a permutation σ with 1

b1
N < σ(N) ≤

b2N for all N > N0 for some N0, and such that ({log σ(n)})n∈N is uniformly
distributed in [0, 1).
We will define now τ in the following way:

Let i1 < i2 < . . . ik ≤ N0 be the indices ≤ N0 for which σ(il) =: jl > N0 and
let N0 < r1 < r2 < . . . < rk be the indices ≥ N0 for which σ(rl) =: sl ≤ N0.
Then we define:

τ(i) := i for i ≤ N0

τ(rl) := jl for l = 1, 2, . . . , k

τ(i) := σ(i) otherwise.

Since we have changed only finitely many elements, the sequence ({log τ(n)})n∈N

remains uniformly distributed in [0, 1). Further:

1

b1
rl < σ(rl) = sl ≤ N0 ≤ τ(rl) = jl = σ(il) < b2il ≤ b2rl,

and therefore 1
b1
N < τ(N) ≤ b2N for all N . �

������� 4� Let (xn)n∈N and (yn)n∈N be dense in X with (strictly increasing)
upper density functions f respectively g.
Let h : R+

0 → R
+
0 with limx→∞ h(x) = +∞ (arbitrarily slowly growing).

Then there is a permutation τ of N with:

g−1(N)

h(N)
≤ τ(N) ≤ f(h(N) ·N)

for all N ≥ N0 and with

lim
n→∞ d(xτ(n), yn) = 0.

P r o o f. Without loss of generality we may assume that h is monotonically in-
creasing. Choose any strictly increasing function h∗ : R+

0 → R
+
0 with the follow-

ing properties:

(i) h∗ and x
h∗(x) are strictly increasing and tend to infinity.

(ii) Let the function h̃ be defined such that h̃(x) · x is the inverse of x
h∗(x) ,

then we demand that h∗
(⌈
h̃(x) · x

⌉)
·
⌈
h̃(x) · x

⌉
≤ h(x) · x for all x large

enough.
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(iii)

h(x) ≥ g−1(x)

g−1
([

x
h∗(x)

]) · h∗
(
g−1

([
x

h∗(x)

]))

for all x large enough.

Note that it indeed is no problem to choose h∗ in this way, since h̃ is

the ‘smaller’, the ‘smaller’ h∗ is, and (for (iii)) since h∗(x)
x is decreasing in x.

Let h̆(x) := min(h∗(x), h̃(x)). Note that h̃ is monotonically increasing to infinity

and so also h̆ is monotonically increasing with limN→∞ h̆(N) = ∞. Further let
(zn)n∈N be a sequence, uniformly distributed in X. Then by Theorem 2a there
are permutations σ and ρ such that (condition (*))

σ(N)

N
h̆(N) ≥ 1 and

σ(N)

f(h̆(N) ·N)
≤ 1

for all N ≥ N0 and limn→∞ d(xσ(n), zn) = 0 and (condition (**))

ρ(N)

N
h̆(N) ≥ 1 and

ρ(N)

g(h̆(N) ·N)
≤ 1

for all N ≥ N0 and limn→∞ d(yρ(n), zn) = 0.

Hence with τ := σ ◦ ρ−1 we have

lim
n→∞ d(xτ(n), yn) = 0.

Now, first we derive upper and lower estimates for ρ−1(N):
By (**) we have

ρ(N) ≥ N

h̆(N)
≥ N

h∗(N)

for all N ≥ N0. Let now M ≥ N0

h∗(N0)
be given and N ′ such that N ′

h∗(N ′) ≤ M <
N ′+1

h∗(N ′+1) . Then

ρ(N ′) ≥ N ′

h∗(N ′)

and hence (since ρ(N ′) ∈ N)

ρ(N ′) ≥ M.

For all N > N ′ we have

ρ(N) ≥ N

h∗(N)
≥ N ′ + 1

h∗(N ′ + 1)
and hence ρ(N) ≥

⌈
N

h∗(N)

⌉
> M.
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Consequently, ⌈
h̃(M ) ·M

⌉
≥ ρ−1(M ) for all M ≥ N0

h∗(N0)
.

On the other hand, by (**) we have

ρ(N) ≤ g
(
h̆(N) ·N) ≤ g

(
h̃(N) ·N)

for all N ≥ N0. Hence

N ≤ ρ−1
(⌈
g(h̃(N) ·N)

⌉)
for all N with h̃(N) ·N ≥ h̃(N0) ·N0. Like above from this we conclude that

g−1

([
M

h∗(M )

])
≤ ρ−1(M ) for all M ≥ g(h̃(N0)N0).

Altogether
(***)

g−1

([
M

h∗(M )

])
≤ ρ−1(M ) ≤

⌈
h̃(M ) ·M

⌉
for all M ≥M0.

Therefore for τ , on the one hand, by (*), (***) and by (ii), for N large enough
we have:

τ(N) = σ
(
ρ−1(N)

) ≤ f
(
h̆
(
ρ−1(N)

)
ρ−1(N)

)
≤

≤ f
(
h∗
(⌈
h̃(N) ·N

⌉)
·
⌈
h̃(N)N

⌉)
≤ f

(
h(N) ·N)

.

On the other hand, by (**), (***) and by (iii) we have

τ(N) = σ(ρ−1(N)) ≥ ρ−1(N)

h∗(ρ−1(N))
≥

g−1
([

N
h∗(N)

])
h∗

(
g−1

([
N

h∗(N)

])) ≥ g−1(N)

h(N)

for all N large enough, and the result follows. �

������� 5� Let X be uniformly divisible with a splitting constant c0 with
respect to (Pk) and let (xn)n∈N and (yn)n∈N be dense in X with

1

a1
μ(A) ≤ A(N ;A)

N
≤ a2 · μ(A)

for the sequence (xn)n∈N, and
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1

a3
μ(A) ≤ A(N ;A)

N
≤ a4 · μ(A)

for the sequence (yn)n∈N and for all A ∈ B (B a density determining class
over (Pk)), all N ≥ N(A) and constants a1, a2, a3, a4 > 0.
Then for all b1 > a2a3c0 and b2 > a1a4c0, there is a permutation τ of N with

1

b1
< lim inf

N→∞
H(τ,N) ≤ lim sup

N→∞
H(τ,N) < b2

and
lim
n→∞ d(xτ(n), yn) = 0.

P r o o f. This is an easy corollary of Theorem 2c. �

������� 6� Let (xn)n∈N and (yn)n∈N be dense in the one-dimensional torus
with asymptotic distribution functions F respectively G (compare with Chapter
1.7. in [4]), that is with:

lim
N→∞

A(N ; [x, y))

N
= F (x, y)

for the sequence (xn)n∈N, respectively with

lim
N→∞

A(N ; [x, y))

N
= G(x, y)

for the sequence (yn)n∈N, for all 0 ≤ x < y ≤ x+ 1 and x < 1.
Let a1, a2, a3, a4 > 0 be constants with

1

a1
(y − x) ≤ F (x, y) ≤ a2(y − x)

and
1

a3
(y − x) ≤ G(x, y) ≤ a4(y − x)

for all 0 ≤ x < y ≤ 1.
Then for all b1 > a2a3 and b2 > a1a4 there is a permutation τ of N with

1

2b1
< lim inf

N→∞
H(τ,N) ≤ lim sup

N→∞
H(τ,N) < 2b2

and such that (xτ(n))n∈N has G as asymptotic distribution function.

P r o o f. This is an easy corollary of Example 5. �

���������������� The author thanks very much the reviewer whose most
valuable remarks helped to make the paper better readable and to correct some
inaccuracies in some of the proofs.
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