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A CAUCHY-DAVENPORT THEOREM

FOR SEMIGROUPS

Salvatore Tringali

ABSTRACT. We generalize the Davenport transform and use it to prove that,
for a (possibly non-commutative) cancellative semigroup A = (A,+) and non-
empty subsets X,Y of A such that the subsemigroup generated by Y is commu-
tative, we have |X + Y | ≥ min(ω(Y ), |X|+ |Y | − 1), where

ω(Y ) := sup
y0∈Y∩A×

inf
y∈Y \{y0}

|〈y − y0〉|.

This carries over the Cauchy-Davenport theorem to the broader setting of semi-
groups, and it implies, on the one hand, a common extension of I. Chowla’s and
S.S. Pillai’s theorems for cyclic groups, and on the other a significant strength-
ening of another generalization of the same Cauchy-Davenport theorem (to com-
mutative groups), where ω(Y ) in the above is replaced by the infimum of |S| as S
ranges over the non-trivial subgroups of A.

Communicated by Georges Grekos

1. Introduction

The present paper deals with the structure theory of semigroups. We refer
to [B2], [B1, Chapter I, Sections 1-2, 4, and 6], and [Ho, Chapter 1] for all
necessary prerequisites as well as for notation and terminology used but not
defined here.

Semigroups are a natural framework for huge parts of theories traditionally
developed under more “favorable conditions”. Not only this can suggest new
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directions of research and shed light on questions primarily focused on groups,
but in principle it also makes methods and results otherwise restricted to “richer
settings” applicable to larger classes of problems.

Here, a semigroup is a pair A = (A,+) consisting of a (possibly empty) set A,
referred to as the carrier of A, and an associative binary operation + on A (unless
otherwise specified, all semigroups considered below are written additively, but
they are not necessarily commutative).

Given subsets X, Y of A, we define as usual the sumset, relative to A, of the
pair (X, Y ) as the set X+Y := {x+y : x ∈ X, y ∈ Y }, which is written as x+Y
(respectively, X+ y) if X = {x} (respectively, Y = {y}). Further, we extend the
notion of difference set from groups to semigroups by

X − Y := {z ∈ A : (z + Y ) ∩X �= ∅}
and

−X + Y := {z ∈ A : (X + z) ∩ Y �= ∅}.

Expressions of the form Z1 + · · ·+ Zn or
∑n

i=1 Zi, involving one or more sum-
mands, or of the form −x+Y or X− y for x, y ∈ A are defined in a similar way;
in particular, we use nZ for Z1 + · · ·+ Zn if the Zi are all equal to the same Z.

We say that A is unital, or a monoid, if there exists 0 ∈ A such that z + 0 =
0+ z = z for all z; when this is the case, 0 is unique and called the identity of A.
Then, we let A× be the set of units of A, in such a way that A× := ∅ if A is
not a monoid; this is simply denoted as A× if there is no likelihood of confusion.
If A is unital with identity 0, a unit of A is now an element z for which there exists
z̃, provably unique and called the inverse of z (in A), such that z+ z̃ = z̃+z = 0.
Moreover, if Z is a subset of A, we write 〈Z〉A for the smallest subsemigroup of A
containing Z, and given z ∈ A we use 〈z〉A for 〈{z}〉A and ordA(z) for the order
of z (in A); i.e., we set ordA(z) := |〈z〉A|, so generalizing the notion of order for
the elements of a group. Here and later, the subscript ‘A’ may be omitted if A
is clear from the context. Finally, we say that A is cancellative if for x, y, z ∈ A
it holds z + x = z + y or x + z = y + z only if x = y; of course, any group is
a cancellative monoid.

Sumsets in (mostly commutative) groups have been intensively investigated
for several years (see [Ru] for a recent survey), and interesting results have
been also obtained in the case of commutative cancellative monoids (see [G]
and references therein, where these structures are simply called “monoids”).
The present paper aims to extend aspects of the theory to the more general
setting of possibly non-commutative semigroups.
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Historically, one of the first significant achievements in the field is the Cauchy-
Davenport theorem, originally established by A.-L. Cauchy [C] in 1813, and
independently rediscovered by H. Davenport [D1, D2] more than a century later:

������� 1 (Cauchy-Davenport theorem)� Let (A,+) be a group of prime order
p and X, Y non-empty subsets of A. Then, |X + Y | ≥ min(p, |X|+ |Y | − 1).

The result has been the subject of numerous papers, and received many dif-
ferent proofs, each favoring alternative points of view and eventually leading
to progress on a number of other questions. In fact, the main contribution here
is an extension of Theorem 1 to cancellative semigroups (see Section 2).

The Cauchy-Davenport theorem applies especially to the additive group of the
integers modulo a prime. Extensions to composite moduli have been given by sev-
eral authors, and notably by I. Chowla [Ch] and S.S. Pillai [P]. These results,
reported below for the sake of exposition and used by Chowla and Pillai in re-
lation to Waring’s problem, are further strengthened, in Section 2, by Corol-
lary 15, which can be viewed as a common generalization of both of them, and
whose proof is sensibly shorter than each of the proofs appearing in [Ch] and [P]
(not to mention that it comes as a by-product of a deeper result).

In what follows, ifm is a positive integer, we write Z/mZ for the set of integers
modulo m, endowed with its standard additive and multiplicative structure.

������� 2 (Chowla’s theorem)� Let m be an integer ≥ 1. If X, Y are non-
empty subsets of Z/mZ such that 0 ∈ Y and gcd(m, y) = 1 for each y ∈ Y \ {0},
then |X + Y | ≥ min(m, |X|+ |Y | − 1).

������� 3 (Pillai’s theorem)� Given an integer m ≥ 1, pick non-empty subsets
X, Y of Z/mZ. Let δ be the maximum of gcd(m, y− y0) for distinct y, y0 ∈ Y if
|Y | ≥ 2, and set δ := 1 otherwise. Then, |X + Y | ≥ min(δ−1m, |X|+ |Y | − 1).

A partial account of further results in the same spirit can be found
in [N, Section 2.3], along with an entire chapter dedicated to Kneser’s theorem
[N, Chapter 4], which, among the other things, implies Theorem 2 (and hence
Theorem 1); see [N, Section 4.6, Exercises 5 and 6].

Generalizations of the Cauchy-Davenport theorem of a somewhat different
flavor have been furnished, still in recent years, by several authors, and a couple
of them are relevant to our aims.

Specifically, assume for the remainder of the paper that A = (A,+) is a fixed,
arbitrary semigroup (unless differently specified), and let 0 be the identity of the
unitization, A(0), of A (cf. [Ho, p. 2]): If A is unital, then A(0) := A; otherwise,
A(0) is the pair (A ∪ {A},+), where we abuse notation and continue writing
+ for the unique extension of + to a binary operation on A ∪ {A} for which
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A serves as an identity (note that A /∈ A, so loosely speaking we are just
adjoining a distinguished element to A and extending the structure of A in
such a way that the outcome is a monoid whose identity is the adjoined ele-
ment). We denote by p(A) the infimum of ordA(0)(z) as z ranges over the ele-
ments of A(0) \ {0}, with the convention that p(A) := |N| if A(0) = {0}, i.e.,
A(0) is trivial. Then we have:

������� 4 (folklore)� If A is a commutative group and X, Y are non-empty
subsets of A, then |X + Y | ≥ min(p(A), |X|+ |Y | − 1).

Theorem 4 is another (straightforward) consequence of Kneser’s theorem.
While it applies to both finite and infinite commutative groups, an analogous
result holds true for all groups:

������� 5 (Hamidoune-Károlyi theorem)� If A is a group and X, Y are non-
empty subsets of A, then |X + Y | ≥ min(p(A), |X|+ |Y | − 1).

This was first proved by Károlyi in the case of finite groups, relying on the
structure theory of group extensions, by reduction to finite solvable groups
in the light of the Feit-Thompson theorem, and then by Hamidoune in the gen-
eral case, based on the isoperimetric method; see [K] for details.

A further result from the literature that is significant in relation to the subject
matter is due to J.H.B. Kemperman [Ke], and reads as follows:

������� 6 (Kemperman’s inequality for torsion-free groups)� Let A be a group,
and let X, Y be non-empty subsets of A. Suppose that every non-zero element
of A has order ≥ |X|+ |Y | − 1. Then, |X + Y | ≥ |X|+ |Y | − 1.

In fact, [Ke] is focused on cancellative semigroups (there simply called semi-
groups), and it is precisely in this framework that Kemperman establishes a se-
ries of results, related to the number of different representations of an element
in a sumset, eventually leading to Theorem 6, a weak version of which will be
proved in Section 5 as a corollary of our main theorem (namely, Corollary 13).

For the rest, Hamidoune and coauthors, see [CHS, Theorem 3], have proved
a Cauchy-Davenport theorem for acyclic monoids (these are termed acyclic semi-
groups in [CHS], but they are, in fact,monoids in our terminology), and it would
be interesting to find a common pattern between their result and those in the
present work. Unluckily, the author has no clue on this for the moment (in par-
ticular, note that acyclic semigroups in [CHS] are not cancellative semigroups).

Organization.

In Section 2, we define the Cauchy-Davenport constant of a pair of sets
in a semigroup and state our main results. In Section3, we establish a few
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basic lemmas. Section 4 is devoted to generalized Davenport transforms and
their fundamental properties. We demonstrate the central theorem of the paper
(namely, Theorem 8) in Section 5, and we give a couple of applications in Sec-
tion 6.

2. The statement of the main results

Keeping all the above in mind, we can now proceed to the heart of the paper.

��	
�
�
�� 7� For a subset Z of A, we let

ωA(Z) := sup
z0∈Z∩A×

inf
z∈Z\{z0}

ord(z − z0). (1)

Then, given X, Y ⊆ A we define ΩA(X, Y ) := 0 if either of X and Y is empty;
ΩA(X, Y ) := max(|X|, |Y |) if X × Y �= ∅ and either of X and Y is infinite, and

ΩA(X, Y ) := min(ωA(X, Y ), |X|+ |Y | − 1)

otherwise, where ωA(X, Y ) := max(ωA(X), ωA(Y )). We refer to ΩA(X, Y ) as the
Cauchy-Davenport constant of (X, Y ) relative to A (again, the subscript ‘A’ may
be omitted from the notation if there is no danger of ambiguity).

Here and later, we assume that the supremum of the empty set is 0, while its
infimum is |N|, so any pair of subsets of A has a well-defined Cauchy-Davenport
constant (relative to A). In particular, ω(Z) is zero for Z ⊆ A if Z ∩ A× = ∅.
However, this is not the case, for instance, when Z �= ∅ and A is a group, which
is the “moral basis” for the following non-trivial bound:

������� 8� Suppose A is cancellative and let X, Y be subsets of A such that
〈Y 〉 is commutative. Then, |X +Y | ≥ min(ω(Y ), |X|+ |Y | − 1) if both of X and
Y are finite and non-empty, and |X + Y | ≥ Ω(X, Y ) otherwise.

Theorem 8 represents the central contribution of the paper. Not only it ex-
tends the Cauchy-Davenport theorem to the broader and more abstract setting
of semigroups, but it also provides a strengthening and a generalization of The-
orem 4 in view of the following:


���� 9� If Z is a subset of A such that Z ∩ A× �= ∅, then ω(Z) ≥ p(A).

P r o o f. Having Z ∩A× �= ∅, pick z0 ∈ Z ∩A×. If Z is a singleton, the assertion
is trivial since then infz∈Z\{z0} ord(z− z0) = |N|. Otherwise, taking z ∈ Z \ {z0}
gives ord(z − z0) ≥ p(A) by the definition of p(A). �
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Lemma 9 applies, on the level of groups, to any non-empty subset (see Corol-
lary 12 below), and the stated inequality is strict in significant cases: For a
concrete example, pick k, q ∈ N+ and set m := qk and X := {(1 + ik) mod m :
i = 1, . . . , q}. Then observe that |2X| = ΩZ/mZ(X,X) = q, while p(Z/mZ) is
the smallest prime, say p, dividing m, in such a way that p(Z/mZ) is “much”
smaller than ΩZ/mZ(X,X) if p is “much” smaller than q.

Theorem 8 can be “symmetrized” and further strengthened in the case where
each summand generates a commutative subsemigroup, leading to the following
corollaries, whose proofs are straightforward in the light of Definition 7:

��������� 10� Assume A is cancellative and let X, Y be subsets of A such
that 〈X〉 is commutative. Then, |X+Y | ≥ min(ω(X), |X|+ |Y |−1) if both of X
and Y are finite and non-empty, and |X + Y | ≥ Ω(X, Y ) otherwise.

��������� 11� If A is cancellative and X, Y are subsets of A such that both
of 〈X〉 and 〈Y 〉 are commutative, then |X + Y | ≥ Ω(X, Y ).

Moreover, the result specializes to groups as follows:

��������� 12� If A is a group and X, Y are non-empty subsets of A such that
〈Y 〉 is commutative. Then, |X + Y | ≥ min(ω(Y ), |X|+ |Y | − 1), where

ω(Y ) = sup
y0∈Y

inf
y∈Y \{y0}

ord(y − y0),

and in particular ω(Y ) = maxy0∈Y infy∈Y \{y0} ord(y − y0) if Y is finite.

P r o o f. Immediate by Theorem 8. For, on the one hand A being a group implies
Y = Y ∩A×, and on the other, a supremum over a finite set is a maximum. �

The next corollary is now a partial generalization of Theorem 6 to cancellative
semigroups: its proof is straightforward by Corollary 11 and Lemma 9. Here, we
say that A is torsion-free if p(A) is infinite (the analogous notion in group theory
is, in fact, a special case).

��������� 13� If A is cancellative, and if X, Y are non-empty subsets of A
such that every element of A \ {0} has order ≥ |X| + |Y | − 1 (this is especially
the case when A is torsion-free) and either of 〈X〉 and 〈Y 〉 is abelian, then
|X + Y | ≥ |X|+ |Y | − 1.

Theorem 8 is proved in Section 5. The argument is inspired by the transfor-
mation proof originally used for Theorem 1 by Davenport in [D1]. This leads
to the definition of what we call a generalized Davenport transform. The author
is not aware of an earlier use of the same technique in the literature, all the more
in relation to semigroups. With few exceptions, remarkably including [HR] and
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A.G. Vosper’s original proof of his famous theorem on critical pairs [V], even
the “classical” Davenport transform has not been greatly considered by practi-
tioners in the area, especially in comparison with similar “technology” such as
the Dyson transform [N, p. 42].

������ 14� A couple of things are worth mentioning before proceeding. While
every commutative cancellative semigroup embeds as a subsemigroup into a group
(as it follows from the standard construction of the group of fractions of a com-
mutative monoid; see [B1, Chapter I, Section 2.4]), nothing similar is true in the
non-commutative case.

This has to do with a well-known question in semigroup theory, first answered
by A.I. Mal’cev in [M], and serves as a fundamental motivation for the present
paper, in that it shows that the study of sumsets in cancellative semigroups
cannot be systematically reduced, in the absence of commutativity, to the case
of groups (at least, not in any obvious way). Incidentally, note that the semigroup
in Mal’cev’s example is finitely generated.

On another hand, it is true that every cancellative semigroup can be em-
bedded into a cancellative monoid (through the unitization process mentioned
in the comments preceding the statement of Theorem 4, in Section 1), so that,
for the specific purposes of the manuscript, we could have assumed in most of our
statements that the “ambient” is a monoid (rather than a semigroup), but we
did differently because the assumption is not really necessary. We will see, how-
ever, that certain parts take a simpler and more natural form when an identity
is made available somehow, this being especially the case with a few lemmas
in Section 3 and the proof of Theorem 8.

We provide two applications of Theorem 8 (others will be investigated in fu-
ture work): The first is a generalization of Theorem 2, the second is an im-
provement of a previous result by Ø.J. Rødseth [R, Section 6] based on Hall’s
“marriage theorem”. As for the former (which is stated below), we will use the
following specific notation: Given m ∈ N+ and a non-empty Z ⊆ Z/mZ, we let

δZ := min
z0∈Z

max
z∈Z\{z0}

gcd(m, z − z0) (2)

if |Z| ≥ 2, and δZ := 1 otherwise. Then we have:

��������� 15� For an integer m ≥ 1 let X and Y be non-empty subsets
of Z/mZ and define δ := min(δX , δY ). Then,

|X + Y | ≥ min(δ−1m, |X|+ |Y | − 1).

In particular, |X + Y | ≥ min(m, |X|+ |Y | − 1) if there exists y0 ∈ Y such that
m is prime with y − y0 for each y ∈ Y \ {y0} (or dually with X in place of Y ).
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Corollary 15 contains Chowla’s theorem (Theorem 2) as a special case: With
the same notation as above, it is enough to assume that the identity of Z/mZ

belongs to Y , and gcd(m, y) = 1 for each non-zero y ∈ Y . Moreover, it is clear
from (2) that the corollary is a strengthening of Pillai’s theorem (Theorem 3).

Many questions arise. Most notably: Is it possible to further extend Corollary
11 in such a way to get rid of the assumption that any of the summands gen-
erates a commutative subsemigroup? This sounds particularly significant, for a
positive answer would provide a comprehensive generalization of about all the
extensions of the Cauchy-Davenport theorem reviewed in Section 1, and remark-
ably of Theorems 5 and 6.

3. Preliminaries

This section collects basic results used later to introduce the generalized Dav-
enport transforms and prove Theorem 8. Some proofs are direct and standard
(and thus omitted without further explanation), but we have no reference to any-
thing similar in the context of semigroups, so we include the statements here for
completeness.


���� 16� Pick n ∈ N+ and subsets X1, Y1, . . . , Xn, Yn of A such that Xi ⊆ Yi

for each i. Then,
∑n

i=1Xi ⊆
∑n

i=1 Yi and
∣
∣∑n

i=1Xi

∣
∣ ≤ ∣

∣∑n
i=1 Yi

∣
∣.


���� 17� Assume A is cancellative and pick an integer n ≥ 2 and non-empty

X1, . . . , Xn ⊆ A. Then,
∣
∣∑n

i=2Xi

∣
∣ ≤ ∣

∣∑n
i=1Xi

∣
∣ and

∣
∣∑n−1

i=1 Xi

∣
∣ ≤ ∣

∣∑n
i=1Xi

∣
∣.

For the next lemma, whose proof is straightforward by a routine induction,
we assume that 0 · κ := κ · 0 := 0 for every cardinal κ.


���� 18� For n ∈ N+ and X1, . . . , Xn ⊆ A it holds
∣
∣∑n

i=1Xi

∣
∣ ≤ ∏n

i=1 |Xi|.
Let X, Y ⊆ A. No matter if A is cancellative, nothing similar to Lemmas 17

and 18 applies, in general, to the difference setX−Y , in the sense that this can be
infinite even if both of X and Y are finite. On another hand, we get by symmetry
and Lemma 17 that, in the presence of cancellativity, the cardinality of the
sumset X+Y is preserved under translation, namely |z+X+Y | = |X+Y +z| =
|X + Y | for every z ∈ A. This is a point in common with the case of groups,
save for the fact that we cannot profit from it, at least in general, to “normalize”
either of X and Y in such a way as to contain some distinguished element of A.


���� 19� Let X and Y be subsets of A. The following are equivalent:

(i) X + 2Y ⊆ X + Y .

(ii) X + nY ⊆ X + Y for all n ∈ N+.

(iii) X + 〈Y 〉 = X + Y .
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P r o o f. Points (ii) and (iii) are clearly equivalent, as X+〈Y 〉 = ⋃∞
n=1(X+nY ),

and (i) is obviously implied by (ii). Thus, we are left to prove that (ii) follows from
(i), which is immediate (by induction) using that, if X + nY ⊆ X + Y for some
n ∈ N+, thenX+(n+1)Y = (X+nY )+Y ⊆ (X+Y )+Y = X+2Y ⊆ X+Y . �

The above result is as elementary as central in the plan of the paper, in that
the properties of the generalized Davenport transform used later, in Section 5,
for the proof of Theorem 8 strongly depend on it.

On another hand, the following lemma shows that, in reference to Theorem 8,
there is no loss of generality in assuming that the ambient semigroup is unital,
for the fact that any semigroup embeds as a subsemigroup into its unitization.


���� 20� Let (B, �) be a semigroup, ϕ an injective function from A to B such
that ϕ(z1+z2) = ϕ(z1)�ϕ(z2) for all z1, z2 ∈ A, and X1, . . . , Xn ⊆ A (n ∈ N+).
Then, |X1 + · · ·+Xn| = |ϕ(X1) � · · · � ϕ(Xn)|.

We close the section with a few properties of units. Here and later, if X is a
subset of A, we use CA(X) for the set of all z ∈ A such that z + x = x + z for
every x ∈ X (this is called the centralizer of X in A).


���� 21� Let A be a monoid,X a subset of A, and z a unit of A with inverse z̃.
Then, the following conditions hold:

(i) X − z = X + z̃, −z +X = z̃ +X and | − z +X| = |X − z| = |X|.
(ii) If z ∈ CA(X), then z̃ ∈ CA(X); in addition to this, 〈X − z〉 and 〈−z +X〉

are commutative if 〈X〉 is commutative.

P r o o f. (i) By symmetry, it suffices to prove thatX−z =X+z̃ and |X− z| = |X|.
As for the first identity, notice that w ∈ X − z if and only if there exists x ∈ X
such that w + z = x, which is equivalent to x + z̃ = (w + z) + z̃ = w, namely
w ∈ X+ z̃. In order to conclude, it is then sufficient to observe that the function
A → A : ξ 
→ ξ + z̃ is a bijection.

(ii) Pick z ∈ CA(X) and x ∈ X. It is then seen that x + z̃ = z̃ + x if and
only if x = (x + z̃) + z = z̃ + x + z, and this is certainly true as our standing
assumptions imply z̃ + x+ z = z̃ + z + x = x. It follows that z̃ ∈ CA(X).

Suppose now that 〈X〉 is a commutative semigroup and let v, w ∈ 〈X − z〉.
By point (i) above, there exist k, � ∈ N+ and x1, . . . , xk, y1, . . . , y� ∈ X such that

v =
∑k

i=1(xi + z̃) and w =
∑�

i=1(yi + z̃), with the result that v+w = w+ v by
induction on k + � and the observation that for all u1, u2 ∈ X it holds

(u1 + z̃) + (u2 + z̃) = u1 + u2 + 2z̃ = u2 + u1 + 2z̃ = (u2 + z̃) + (u1 + z̃),

where we use that z̃ ∈ CA(X), as proved before, and 〈X〉 is commutative. Hence,
〈X − z〉 is commutative too, which completes the proof by symmetry. �
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������ 22� There is a subtleness in Definition 7 which we have so far inten-
tionally overlooked, but should be remarked. For, suppose that A is a monoid and
pick x, y ∈ A. In principle, x− y and −y+x are not elements of A: In fact, they
are (difference) sets, and no other meaningful interpretation is possible a priori.
However, if y is a unit of A and ỹ is the inverse of y, then x− y = {x+ ỹ} and
−y+x = {ỹ+x} by point (i) of Lemma 21, and we are allowed to identify x− y
with x+ ỹ and −y + x with ỹ + x, which is useful in many situations.

4. The Davenport transform revisited

As mentioned in Section 2, Davenport’s proof [D1, Statement A] of Theorem 1
is a transformation proof. For A a commutative group, the idea is to map a pair
(X, Y ) of non-empty subsets of A to a new pair (X, Y ′), which is smaller than
(X, Y ) in an appropriate sense, and specifically such that

|Y ′| < |Y |, |X + Y ′|+ |Y | ≤ |X + Y |+ |Y ′|.
We then refer to (X, Y ′) as a Davenport transform of (X, Y ); see, for instance,
[HR]. For this to be possible, the classical approach requires thatX+2Y �⊆ X+Y
and 0 ∈ Y , so that |Y | ≥ 2.

As expected, many difficulties arise when attempting to adapt the same ap-
proach to semigroups, all the more if these are non-commutative. Even the possi-
bility of embedding a semigroup into a monoid does not resolve anything, since
the fundamental problem is that, contrary to the case of groups, cardinality
is not preserved “under subtraction”. Namely, if A is an arbitrary monoid with
identity 0 (as intended for the remainder of the section, unless differently stated),
X is a subset of A, and z ∈ A, then |X|, |X − z| and |−z +X| can be greatly
different from each other, even supposing that A is cancellative; cf. point (i) of
Lemma 21. Thus, unless A is a group or, more generally, embeds as a submonoid
into a group, we are not allowed to assume, for instance, that 0 is in Y by pick-
ing an arbitrary element y0 ∈ Y and replacing (X, Y ) with the “shifted” pair
(X + y0,−y0 + Y ); cf. the comments following Lemma 18.

In fact, the primary goal of this section is to show that, in spite of these issues,
Davenport’s original ideas can be extended and used for a proof of Theorem 8.

To start with, let X and Y be subsets of A such that mX + 2Y �⊆ X + Y
for some positive integer m. For the sake of brevity, define

Z := (mX + 2Y ) \ (X + Y ).
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Our assumptions give Z �= ∅. So fix z ∈ Z, and take xz ∈ (m− 1)X and yz ∈ Y
for which z ∈ xz +X + Y + yz, where 0X := {0}. Finally, set

Ỹz := {y ∈ Y : z ∈ xz +X + Y + y}, Yz := Y \ Ỹz. (3)

We refer to (X, Yz) as a generalized Davenport transform of (X, Y ) (relative
to z), and based on this notation we have:

������
�
�� 23� If Yz �= ∅, then the triple (X, Yz, Ỹz) satisfies the following:

(i) Yz and Ỹz are non-empty disjoint proper subsets of Y , and Ỹz = Y \ Yz.

(ii) If A is cancellative, then (xz +X + Yz) ∪ (z − Ỹz) ⊆ xz +X + Y .

(iii) If 〈Y 〉 is commutative, then (xz +X + Yz) ∩ (z − Ỹz) = ∅.
(iv) If A is cancellative, then |z − Ỹz| ≥ |Ỹz|.
(v) |X+Y |+ |Yz| ≥ |X+Yz|+ |Y | if A is cancellative and 〈Y 〉 is commutative.

P r o o f. (i) Yz is non-empty by hypothesis, while Ỹz is non-empty since yz ∈ Ỹz

by construction. In addition to this, (3) gives Yz, Ỹz ⊆ Y and Yz∩ Ỹz = ∅, so that

Y \ Yz = Y \ (Y \ Ỹz) = Ỹz and Yz, Ỹz � Y .

(ii) Since Yz ⊆ Y by point (i) above, we have xz +X + Yz ⊆ xz +X + Y by

Lemma 16. On the other hand, if w ∈ z− Ỹz, then there exists y ∈ Ỹz such that
z = w + y. But y ∈ Ỹz implies by (3) that z = w̃ + y for some w̃ ∈ xz +X + Y ,
hence w = w̃ by cancellativity, namely w ∈ xz +X + Y .

(iii) Assume the contrary and let w ∈ (xz +X + Yz) ∩ (z − Ỹz). There then

exist x ∈ X, y1 ∈ Yz and y2 ∈ Ỹz such that w = xz + x + y1 and z = w + y2.
As 〈Y 〉 is commutative, it follows that z = xz + x+ y1 + y2 = xz + x+ y2 + y1,

which in turn implies y1 ∈ Ỹz by (3), since Yz, Ỹz ⊆ Y by point (i). This is,

however, absurd, because Yz ∩ Ỹz = ∅ by the same point (i).

(iv) We have from (3) that for each y ∈ Ỹz there exists w ∈ xz +X + Y such

that z = w + y, hence w ∈ z − Ỹz. On another hand, since A is cancellative, we
cannot have w + y1 = w + y2 for some w ∈ A and distinct y1, y2 ∈ Ỹz. Thus, Ỹz

embeds as a set into z − Ỹz, with the result that |z − Ỹz| ≥ |Ỹz|.
(v) As A is cancellative and X is non-empty (otherwise Z = ∅), we have

by symmetry and Lemma 17 that |X + Y | ≥ max(|X|, |Y |) . This implies the
claim if Y is infinite, since then either |X + Y | > |Y |, and hence

|X + Y |+ |Yz| = |X|= |X + Yz|+ |Y |, or |X + Y | = |Y |,
and accordingly

|X + Yz|+ |Yz| = |Y |= |X + Yz|+ |Y |.
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Notice here that we are using the axiom of choice (assumed in the background as
part of our foundations) to say that |X+Y | = max(|X|, |Y |) if both of X and Y
are infinite. So we are left with the case when Y is finite, for which the inclusion-
exclusion principle, points (ii)–(iv) and Lemmas 17 and 18 give, by symmetry,
that

|X + Y | = |xz +X + Y | ≥ |xz +X + Yz|+ |z − Ỹz| =
= |X + Yz|+ |z − Ỹz| ≥ |X + Yz|+ |Ỹz|.

But Ỹz = Y \Yz and Yz ⊆ Y by point (i) above, so at the end we have |X+Y | ≥
|X + Yz|+ |Y | − |Yz|, and the proof is thus complete. �

������ 24� To apply the generalized Davenport transform to Theorem 8, it
will be enough to consider the case where m = 1, for which it is easily seen that
0 ∈ Yz if 0 ∈ Y (we continue with the notation from above), as otherwise we
would have z ∈ X+Y , in contradiction to the fact that z ∈ (X+2Y )\ (X+Y ).
However, it seems intriguing that the same machinery can be used, at least in
principle, even if m ≥ 2 insofar as there is a way to prove that Yz is non-empty.

5. The proof of the main theorem

Proposition 23 is used here to establish the main contribution of the paper.

P r o o f o f T h e o r e m 8. Since every semigroup embeds as a subsemigroup
into its unitization, and the unitization of a cancellative semigroup is cancella-
tive in its own right, Lemma 20 and Definition 7 imply that there is no loss
of generality in assuming, as we do, that A is unital.

Thus, we let 0 denote the identity of A, and we suppose by contradiction that
the theorem is false. There then exists a pair (X, Y ) of subsets ofA for which 〈Y 〉
is abelian and |X + Y | < min(ω(Y ), |X|+ |Y | − 1). Then,

2 ≤ |X|, |Y | < |N|. (4)

In fact, if either ofX and Y is a singleton or infinite then |X+Y | = max(|X|, |Y |),
and Definition 7 gives |X + Y | = Ω(X, Y ), contradicting the standing assump-
tions. It follows from (1) and (4) that

|X + Y | < sup
y0∈Y ∩A×

inf
y∈Y \{y0}

ord(y − y0), |X + Y | ≤ |X|+ |Y | − 2. (5)

Again without loss of generality, we also take |X| + |Y | to be minimal over the
pairs of subsets of A for which, in particular, (4) and (5) are presumed to be true.
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Now, since |X+Y | is finite by (4) and Lemma 18, we get by (5) and the same
equation (4) that there exists ỹ0 ∈ Y ∩A× such that

|X + Y | < inf
y∈Y \{ỹ0}

ord(y − ỹ0) = min
y∈Y \{ỹ0}

ord(y − ỹ0). (6)

So letting W0 := Y − ỹ0 implies by (5) and (6) that

|X +W0| < min
w∈W0\{0}

ord(w), |X +W0| ≤ |X|+ |W0| − 2. (7)

In fact, on the one hand |Y − ỹ0| = |Y | and |X + Y − ỹ0| = |X + Y | by point (i)
of Lemma 21, and on the other, y ∈ Y \ {ỹ0} only if y − ỹ0 ∈ (Y − ỹ0) \ {0},
while w ∈ (Y − ỹ0) \ {0} only if w+ ỹ0 ∈ Y \ {ỹ0} (recall Remark 22). We claim
that

Z := (X + 2W0) \ (X +W0) �= ∅. (8)

For, suppose the contrary. Then, X +W0 = X + 〈W0〉 by Lemma 19, so that

|X +W0| = |X + 〈W0〉| ≥ |〈W0〉| ≥ max
w∈W0

ord(w) ≥ min
w∈W0\{0}

ord(w),

where we use, in particular, Lemma 17 for the first inequality and the fact that
|W0| ≥ 2 for the last one. However, this contradicts (7), so (8) is proved.

Pick z ∈ Z and let (X,W ′
0) be a generalized Davenport transform of (X,W0)

relative to z. As 〈Y 〉 is a commutative subsemigroup of A (by hypothesis), the
same is true for 〈W0〉, by point (ii) of Lemma 21. Further, 0 is in W0, and thus

0 ∈ W ′
0 �= ∅, W ′

0 � W0, (9)

when taking into account Remark 24 and point (i) of Proposition 23. Therefore,
point (v) of the same Proposition 23 yields, together with (7), that

|X +W ′
0|+ |W0| ≤ |X +W0|+ |W ′

0| ≤ |X|+ |W0| − 2 + |W ′
0|,

which means, since |W0| = |Y − ỹ0| = |Y | < |N| by (4) and the above, that

|X +W ′
0| ≤ |X|+ |W ′

0| − 2. (10)

It follows from (9) that 1 ≤ |W ′
0| < |W0|, and in fact |W ′

0| ≥ 2, as otherwise we
would have |X| = |X +W ′

0| ≤ |X| − 1 by (10), in contradiction to the fact that
|X| < |N| by (4). To summarize, we have found that

2 ≤ |W ′
0| < |W0| < |N|. (11)

Furthermore, (7) and (9) entail that

|X +W ′
0| ≤ |X +W0| < min

w∈W ′
0\{0}

ord(w), (12)
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where we use that min(C1) ≤ min(C2) if C1 and C2 are sets of cardinal numbers
with C2 ⊆ C1. Thus, since 0 ∈ W ′

0 ∩ A×, we get by (12) that

|X +W ′
0| < sup

w0∈W ′
0∩A×

min
w∈W ′

0\{w0}
ord(w), (13)

which however contradicts, by (4), (10) and (11), the minimality of |X| + |Y |,
for the fact that |W ′

0| < |W0| = |Y |, and hence |X|+ |W ′
0| < |X|+ |Y |. �

6. A couple of applications

First, we show how to use Theorem 8 to prove the extension of Chowla’s
theorem for composite moduli mentioned in Section 2.

P r o o f o f C o r o l l a r y 15. The claim is trivial if either of X and Y is a sin-
gleton. Otherwise, since Z/mZ is a commutative finite group and ord(z − z0) =
m/ gcd(m, z − z0) for all z, z0 ∈ Z/mZ, we get by Corollary 12 that |X + Y | ≥
min(ω(Y ), |X|+ |Y | − 1), where

ω(Y ) = max
y0∈Y

min
y∈Y \{y0}

ord(y − y0) = max
y0∈Y

min
y∈Y \{y0}

m

gcd(m, y − y0)
= δ−1

Y m.

In an entirely similar way, it is found, in view of Corollary 10, that

|X + Y | ≥ min(δ−1
X m, |X|+ |Y | − 1).

This concludes the proof, considering that δY = 1 if there exists y0 ∈ Y such
that gcd(m, y − y0) = 1 for every y ∈ Y \ {y0} (and dually with X). �

We now use P. Hall’s theorem on distinct representatives [H] to say something
on the “localization” of elements in a sumset.

������� 25 (Hall’s theorem)� Let S1, . . . , Sn be arbitrary sets, n ∈ N+. There
then exist (pairwise) distinct elements s1 ∈ S1, . . . , sn ∈ Sn if and only if for
each k = 1, . . . , n the union of any k of S1, . . . , Sn contains at least k elements.

More precisely, suppose A is a cancellative semigroup and let X, Y be non-
empty finite subsets of A such that

|X + Y | < ω(Y ).

Clearly, this implies Y ∩A× �= ∅. Define k := |X| and � := |Y |, and let x1, . . . , xk

be a numbering of X and y1, . . . , y� a numbering of Y . Then consider the k-by-�
matrix, say α(X, Y ), whose entry in the i-th row and j-th column is xi+yj. Any
element of X + Y appears in α(X, Y ), and viceversa any entry of α(X, Y ) is an
element of X+Y . Also, Theorem 8 and our hypotheses give |X+Y | ≥ k+ �−1.
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So it is natural to try to get some information about where in the matrix α(X, Y )
it is possible to find k + �− 1 distinct elements of X + Y .

In this respect we have the following proposition, whose proof is quite similar
to the one of a weaker result in [R, Section 6], which is, in turn, restricted
to the case of a group of prime order:

������
�
�� 26� Assume that 〈Y 〉 is commutative and let Z be any subset
of X + Y of size � − 1, for instance Z = x1 + {y1, . . . , y�−1}. Then, we can
choose one element from each row of α(X, Y ) in such a way that Z and these
elements form a subset of X + Y of size k + �− 1.

P r o o f. For i = 1, . . . , k let Zi := (xi + Y ) \ Z, and note that Zi is a subset
of the i-th row of α(X, Y ). So Zi1 ∪ · · · ∪ Zih = ({xi1 , . . . , xih}+ Y ) \ Z for any
positive integer h ≤ k and all distinct indexes i1, . . . , ih ∈ {1, . . . , k}. It follows
that

|Zi1 ∪ · · · ∪ Zih | ≥ |{xi1 , . . . , xih}+ Y | − |Z| ≥ h+ �− 1− (�− 1) = h,

where we combine Theorem 8 with the fact that

|{xi1 , . . . , xih}+ Y | ≤ |X + Y | < ω(Y ),

as is implied by Lemma 16 and the assumption that |X + Y | < ω(Y ).
Then, as a consequence of Hall’s theorem, we can find k distinct elements
z1 ∈ Z1, . . . , zk ∈ Zk, and these, together with the � − 1 elements of Z, pro-
vide a total of k+ �−1 distinct elements of X+Y , as Z ∩Z1 = · · · = Z ∩Zk = ∅
(by construction). �
����������������� The author is grateful to Andrea Gagna (Università

di Milano), Alain Plagne (Centre de mathématiques Laurent Schwartz, École
polytechnique), Carlo Sanna (Università di Torino), and an anonymous referee
for comments that helped to improve this paper significantly.
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