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CONVERGENCE AND MODULAR TYPE

PROPERTIES OF A TWISTED RIEMANN SERIES

T. Rivoal and J. Roques

ABSTRACT. We consider the series Φ(α) =
∑∞

m=1
1

m2 sin(2πm2α) cot(πmα),
a twist of the famous continuous but almost nowhere differentiable sine series
defined by Riemann. In a slightly different but equivalent form, this series ap-
peared in the first author’s paper [On the distribution of multiple of real numbers,

Monatsh. Math 164.3 (2011), 325–360]. We pursue here the study of Φ, which is
almost everywhere but not everywhere convergent. We first prove that Φ enjoys
a modular type property, in the following sense (with Φn the n-th partial sum of
Φ): For all α ∈ (0, 1], the sequence ΦN (α) − αΦ�αN�(−1/α) has a finite simple

limit Ω(α) as N → +∞. Using analytic properties of Ω, we then prove that Φ(α)

converges if and only if α is irrational and
∑

j log(qj+1)/qj converges (Brjuno’s

condition), where qj is the j-th denominator in the sequence of convergents to α.
This completes the results obtained in the above mentioned paper, where it was
proved that Φ(α) converges absolutely under Brjuno’s condition.

Communicated by Yann Bugeaud

1. Introduction

This paper deals with the series

Φ(α) =
∞∑

m=1

1

m2
sin(2πm2α) cot(πmα). (1.1)

(The summand is defined for any real number α because sin(2πm2z) cot(πmz)
is an entire function for any integer m ≥ 1.) It is a twist of Riemann series∑∞

m=1
1

m2 sin(2πm
2α). It appeared in a slightly different form in the diophantine

study in [13] concerning the behavior of the quantity 1
n

∑n
m=1 ||mnα||, where

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 11J70, 40A05, Secondary 11F03,
22A30.
Keywords: Twisted Riemann series, Brjuno’s condition, Modular type equations, Continued
fraction expansions.
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||x|| denotes the distance of x ∈ R to Z. Riemann series is continuous on R

and nowhere differentiable, except at the rational numbers of the form p/q with
p and q both odd and coprime (Hardy, Gerver, Itatsu; see [5, Chapitre VII]).
Duistermaat [6] showed that these facts are simple consequences of the following

modular type functional equation, where R(α) =
∑∞

m=1
e2iπm2α

m2 and α > 0:

R(α)− eiπ/4α3/2R(−1/α) =
π2

6
+ iπeiπ/4

√
α− i

π

2
α− 3

2
eiπ/4

∫ α

0

√
τR(−1/τ)dτ,

(1.2)
which itself can be deduced from the classical modular equation satisfied by the

theta series
∑

m∈Z
eiπm

2α. The latter was used by Jaffard [7] to compute the
multifractal spectrum of Riemann series. The important information in (1.2)
is that the right-hand side is much smoother (differentiable with continuous
derivative on (0,+∞)) than what is suggested by the left-hand side (continuous
but almost nowhere differentiable).

We address here two questions:

– When does the series Φ(α) converge?

– Does the series Φ(α) satisfy a modular type functional equation (like (1.2))
that provides some non-trivial analytic information?

Although both questions might seem unrelated, it turns out that our answer
to the second one is an important step to answer the first one.

We now make a couple of comments concerning the first question. On the one
hand, it is easy to prove that the series diverges for all rational number α = p/q
with (p, q) = 1. Indeed, in this case, for any integer J ≥ 1,

Jq−1∑
m=1

sin(2πm2α) cot(πmα)

m2

=

q−1∑
k=1

sin(2πk2p/q) cot(πkp/q)

J−1∑
j=1

1

(jq + k)2
+ 2

J−1∑
j=1

1

jq
,

whence a logarithmic divergence of Φ(p/q). On the other hand, it was proved
in [13] that Φ(α) converges absolutely for any irrational number α satisfying
Brjuno’s diophantine condition

∞∑
j=0

log(qj+1)

qj
< ∞, (1.3)
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Figure 1. Plot of Φ500 on [0,1]

where qj denotes the j-th denominator of the sequence of convergents to α. (1)

More precisely, the “absolute convergence” result proved in [13] concerns the
series of general term 1

m2

∑m
k=1 cos(2πkmα) but this does not change anything

since

1

m2

m∑
k=1

cos(2πkmα) =
cos(πm(m+ 1)α) sin(πm2α)

m2 sin(πmα)

=
sin(2πm2α) cot(πmα)

2m2
− sin(πm2α)2

m2
(1.4)

and the second fraction on the right of (1.4) is the term of an absolutely con-
vergent series for any α. The proof uses the fact that

∣∣sin(2πm2α) cot(πmα)
∣∣�

||m2α||
||mα|| and then estimates in terms of the continued fraction expansion of α

for the growth of the sums
∑N

m=1
||m2α||

m2||mα|| , inspired by the estimates found in

Kruse’s paper [9] for the sums
∑N

m=1
1

ms||mα|| . See also [14].

In the present paper, a modular type property of Φ(α) is established and used
in order to understand more precisely the convergence properties of Φ(α). For

1The results proved in [13] concerns the series
∑∞

n=1
cos(πn(n+1)α) sin(πn2α)

n2 sin(πnα)
and its simple

relation with Φ(α) is given by Eq. (1.4). Furthermore, Brjuno’s condition is replaced in [14]

by the more complicated condition
∑

j
log(max(qj+1/qj ,qj))

qj
< ∞. It was not stated in [14]

that both conditions are equivalent: indeed, we have qj+1/qj ≤ max(qj+1/qj , qj) ≤ 2qj+1 and
the series

∑
j log(qj)/qj is convergent for any irrational number α. It is well-known that only

Liouville numbers may fail to satisfy Brjuno’s condition, which thus holds almost surely.
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any integer N and any real number α, we denote by ΦN (α) the N -th partial
sum of Φ(α):

ΦN (α) =

N∑
m=1

sin(2πm2α) cot(πmα)

m2
.

We then consider
ΩN (α) = ΦN (α)− αΦ�αN�(−1/α)

where � · � denotes the floor function. We observe that the limit of ΩN (α) is a
priori defined almost everywhere on (0, 1] but not everywhere. The first part
of the paper is devoted to the proof of the following result, which in particular
shows that the limit of ΩN (α) exists and is defined everywhere on (0, 1]. For
other instances of such a phenomenon, see [1, 2, 3, 15, 18].

������� 1� The sequence of functions ΩN has a simple limit Ω on (0, 1] as
N → +∞. Moreover,

ΩN (α) =
1

πα

N∑
m=1

sin(2πm2α)

m3
+GN(α) (1.5)

where GN has a simple limit G on [0, 1] as N → +∞ and |GN(α)| is bounded
by an absolute constant for all α ∈ [0, 1] and all N ≥ 1.

In particular, the function

Ω(α)− 1

πα

∞∑
m=1

sin(2πm2α)

m3
(1.6)

is defined and bounded on [0, 1]. The Riemann-like sine series in (1.6) is continu-
ous and behaves like πα log(1/α) as α → 0+ (see Lemma 3). These facts will be
important for the proof of Theorem 2 stated below. We will provide explicit ex-
pressions for the limits G(α) and Ω(α) but they are not easy to study precisely.
Graphical experiments (see Figure 2) done with the computer algebra system
PARI/GP lead us to formulate the following conjecture:

��	
����� 1� The function G is continuous on [0, 1].

Fortunately, Theorem 1 provides us enough control on Ω and this conjecture
is not required for the proof of our next result.

������� 2� For any irrational number α ∈ (0, 1), the series Φ(α) converges if
and only if Brjuno’s condition (1.3) holds.

In case of convergence, we have

Φ(α) =

∞∑
j=0

αT (α) · · ·T j−1(α)Ω(T j(α)) (1.7)
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Figure 2. Plot of Ω500 on [0.07, 1]

where T k(α) denotes the k-th iterate of α by the Gauss map T (α) = {1/α}.
Remark. By the classical properties of continued fraction expansions (See Sec-
tion 3.1), we have T j(α) ≈ qj

qj+1
and αT (α) · · ·T j−1(α) = |qj−1α − pj−1| ≈ 1

qj
.

Hence, since Ω has a logarithmic behavior at the origin, Identity (1.7) can be
viewed as the quantitative version of the first (qualitative) part of Theorem 2.
Similar expansions can be found in [15, 16] for instance and implicitly in [17].

As mentioned above, it was proved in [13] that Φ(α) converges absolutely if
Brjuno’s condition holds. Together with Theorem 2, this leads to the following
result.

��������� 1� The series Φ(α) converges if and only if it converges absolutely.

We observe here that Φ could be related with “false” Lerch’ sums and “false”
theta functions (“false” means here that we replace summations over Z by sum-
mations over N∗ in the usual definitions of Lerch’ sums and theta functions).
For Lerch’ sums, we refer the reader to Mordell’s papers [11, 12] and Zwegers’
thesis [19] on mock theta functions. It would be interesting to know if an al-
ternative expression for Ω could be deduced from this relationship which would
prove Conjecture 1.

Beside Conjecture 1, let us conclude this introduction with a few other prob-
lems. Formally, the Fourier series expansion of Φ(α) is

S(Φ)(α) =
π2

12
+

∞∑
n=1

2φn

n2
cos(2πnα)
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where

φn =
∑
d|n

1≤d≤√
n

d2 − n

2
if n is a square, φn =

∑
d|n

1≤d≤√
n

d2 otherwise.

This is an easy consequence of (1.4). Two problems are to determine for which α’s
the Fourier series S(Φ)(α) converges (2) and for which ones we have S(Φ)(α) =
Φ(α). In the spirit of Davenport-like problems (see [4, 10]), the natural answers
would be “if and only if Brjuno’s condition holds” for both problems but we
don’t know what to expect here. It was proved in [13] that S(Φ)(α) = Φ(α) if∑∞

j=0 qj+1/q
2
j converges, which is an almost sure condition but stronger than

Brjuno’s condition. Another problem is the determination of the minima of Φ

on [0, 1], which seems to be at α =
√
5−1
2 and α = 3−√

5
2 . Finally, it would be

interesting to know if our method can be adapted to study the convergence of
the series

∞∑
m=1

sin(2πm2α) cot(πmα)

ms

for any given s ∈ (1, 2). (For obvious reasons, this series converges, respectively
diverges, for every α ∈ R if s > 2, respectively if s ≤ 1.)

We will frequently work with analytic functions h on an open subset Ω of C
defined as the quotient of analytic functions h = f/g on Ω. For any z ∈ Ω, the
quotient f(z)/g(z) (which is not well defined if g(z) = 0) will mean h(z). This
will be implicit in the whole paper. We will still denote by �·� a modified floor
function: on [0,+∞) it coincides with the usual floor function while on (−∞, 0)
it is set to zero. We will also often treat labels given to certain quantities as
mathematical expressions; for instance, if (10.1) and (10.2) are such labels, we
will freely write things like |(10.1)| ≤ 1 or (10.2) = 0 when the meaning is
obvious.

Acknowledgement. We warmly thank the referee for his careful reading
and his pertinent comments. Both authors are supported by the project ANR-
2010-JCJC-010501.

2Since Φ ∈ L2(0, 1), S(Φ) converges to Φ almost everywhere by Carleson’s theorem.
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2. Proof of Theorem 1

2.1. Strategy of the proof; a basic identity

Let f : R → C be a map. For all N ∈ N and all α ∈ R \Q, we set

ΨN (α) =

N∑
m=1

f(2πm2α) cot(πmα)

m2
.

(The value of an empty sum is set to 0.) Using the classical expansion

cot(πz) =
1

πz
+ 2z

∞∑
n=1

1

z2 − n2
,

which is valid and uniform on any compact subset of C \ Z, we get, for all
M,N ∈ N and all α ∈ (0,+∞) \Q,

ΨN (α)− αΨM (−1/α) =
1

πα

N∑
m=1

f(2πm2α)

m3
+

α2

π

M∑
m=1

f(−2πm2/α)

m3

+ 2α

N∑
m=1

M∑
n=1

(
f(2πm2α)

m
− α

f(−2πn2/α)

n

)
1

m2α2 − n2

+ 2α

N∑
m=1

1

m

+∞∑
n=M+1

f(2πm2α)

m2α2 − n2
− 2α2

M∑
n=1

1

n

+∞∑
m=N+1

f(−2πn2/α)

m2α2 − n2
.

If f is the restriction of an analytic function vanishing on 2πZ, then the above
equality is meaningful and valid on (0,+∞). Therefore, in the particular case
f = sin, we obtain, for all α > 0,

ΩN (α) =
1

πα

N∑
m=1

sin(2πm2α)

m3
− α2

π

�αN�∑
m=1

sin(2πm2/α)

m3
(2.1)

+ 2α

N∑
m=1

�αN�∑
n=1

(
sin(2πm2α)

m
+ α

sin(2πn2/α)

n

)
1

m2α2 − n2
(2.2)

+ 2α

N∑
m=1

1

m

+∞∑
n=�αN�+1

sin(2πm2α)

m2α2 − n2
(2.3)

+ 2α2

�αN�∑
n=1

1

n

+∞∑
m=N+1

sin(2πn2/α)

m2α2 − n2
. (2.4)
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In order to prove Theorem 1, it is sufficient to show that the three se-
quences (2.2), (2.3) and (2.4) converge as N tends to +∞ and that their moduli
are bounded by an absolute constant for all α ∈ [0, 1] and N ≥ 1. This will be
proved in Sections 2.2, 2.3 and 2.4 respectively.

2.2. Study of (2.2)

����������	 1� The double series

α
∑

m,n≥1

1

|m2α2 − n2|
∣∣∣∣sin(2πm2α)

m
+

α sin(2πn2/α)

n

∣∣∣∣ (2.5)

converges and defines a bounded function of α on [0, 1]. Therefore, (2.2) con-
verges as N → +∞ and its modulus is bounded by an absolute constant for all
α ∈ [0, 1] and all N ≥ 1.

P r o o f. For all integers m,n ≥ 1, for all α > 0, we have

1

m2α2 − n2

(
sin(2πm2α)

m
+

α sin(2πn2/α)

n

)

=

(
1

m
− α

n

)
sin(2πm2α)

(m2α2 − n2)
+ α

sin(2πn2/α) + sin(2πm2α)

(m2α2 − n2)n

=
n− αm

mn
· sin(2πm2α)

(m2α2 − n2)
+ 2α

cos
(
π(m2α− n2/α)

)
sin
(
π(m2α+ n2/α)

)
(m2α2 − n2)n

.

Therefore, for all α > 0,

(2.5) ≤ α
∑

m,n≥1

∣∣∣∣ n− αm

mn(m2α2 − n2)

∣∣∣∣ (2.6)

+ 2α2
∑

m,n≥1

∣∣∣∣∣ sin
(
π(m2α+ n2/α)

)
(m2α2 − n2)n

∣∣∣∣∣ . (2.7)

We first study (2.6). We have
∣∣∣ 1
mα+n

∣∣∣ ≤ 1
2
√
αmn

. So

α

∣∣∣∣ mα− n

mn(m2α2 − n2)

∣∣∣∣ ≤
√
α

2(mn)3/2
.

It follows that (2.6) is bounded in modulus by an absolute constant for all
α ∈ [0, 1].

In order to study (2.7), we use:

(2.7) ≤ 2α2
∑

m,n≥1
|mα−n|≤1/2

∣∣∣∣∣ sin
(
π(m2α+ n2/α)

)
(m2α2 − n2)n

∣∣∣∣∣ (2.8)
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+ 2α2
∑

m,n≥1
|mα−n|>1/2

∣∣∣∣ 1

(m2α2 − n2)n

∣∣∣∣ . (2.9)

Let us first consider the integers m,n ≥ 1 such that |mα − n| ≤ 1/2. Let us
assume that α is irrational. We set ε = α− n

m ; we have |ε| ≤ 1
2m . Note that

m2α+ n2/α− 2mn = (m
√
α− n/

√
α)2 = m2ε2/α.

Therefore,

α2

∣∣∣∣∣sin
(
π(m2α+ n2/α)

)
n(m2α2 − n2)

∣∣∣∣∣ = α2

∣∣∣∣∣ sin
(
πm2ε2/α

)
n(mα+ n)mε

∣∣∣∣∣
≤ α2

∣∣∣∣ πm2ε2/α

n(mα+ n)mε

∣∣∣∣ =
∣∣∣∣ απmε

n(mα+ n)

∣∣∣∣ ≤
∣∣∣∣ απ

2n(mα+ n)

∣∣∣∣
where we have used the inequalities | sin(x)| ≤ |x| valid for all real number x
and m|ε| ≤ 1/2. By continuity, this estimate remains valid if α is rational. We
now observe that∑

m,n≥1
|mα−n|≤1/2

1

n(mα+ n)
=
∑
n≥1

1

n

( ∑
m≥1

n−1/2
α ≤m≤n+1/2

α

1

mα+ n

)

and that

∑
m≥1

n−1/2
α ≤m≤n+1/2

α

1

mα+ n
≤ 1

2n− 1/2
+

∫ n+1/2
α

n−1/2
α

dt

tα+ n

=
1

2n− 1/2
+

1

α
log

(
2n+ 1/2

2n− 1/2

)
≤ 1 + 1

α

2n− 1/2
.

It follows that the right hand side of (2.8) is bounded by an absolute constant
for all α ∈ [0, 1]. Let us now study (2.9). We have

(2.9) = 2α2
∑
n≥1

1

n

( ∑
m≥1

m> 2n+1
2α

+
∑
m≥1

m< 2n−1
2α

) ∣∣∣∣ 1

m2α2 − n2

∣∣∣∣ .

On the one hand, for n ≥ 1,∑
m> 2n+1

2α

1

|m2α2 − n2| ≤
1

| (2n+1
2α

)2
α2 − n2|

+
∑

m> 2n+1
2α +1

1

m2α2 − n2
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≤ 4

4n+ 1
+

∫ +∞

2n+1
2α

dx

x2α2 − n2
=

4

4n+ 1
+

log (4n+ 1)

2nα
.

On the other hand, for n ≥ 2,∑
1≤m< 2n−1

2α

1

|m2α2 − n2| ≤
1

| (2n−1
2α

)2
α2 − n2|

+
∑

1≤m< 2n−1
2α −1

1

n2 − (mα)2

≤ 4

4n− 1
+

∫ 2n−1
2α

1

dx

n2 − x2α2

=
4

4n− 1
+

1

2nα

(
log(4n− 1)− log

(n+ α

n− α

))

≤ 4

4n− 1
+

log(4n− 1)

2nα
.

If n = 1 and α > 1/2 then
∑

1≤m< 2n−1
2α

1
|m2α2−n2| = 0. If n = 1 and α ≤ 1/2

then arguing as above we get∑
1≤m< 2n−1

2α

1

|m2α2 − n2| ≤
4

4n− 1
+

log(4n− 1)

2nα
.

These inequalities show that (2.9) is bounded in modulus by an absolute constant
for all α ∈ [0, 1]. �

2.3. Study of (2.3)

����� 1� The sequence (2.3) tends to 0 as N → +∞ for all α ∈]0, 1[. Its
modulus is bounded by an absolute constant for all α ∈ [0, 1] and all N ≥ 1.

P r o o f. We have

|(2.3)| ≤ 2α

�N− 1
α−2�∑

m=1

1

m

∞∑
n=�αN�+1

1

|n2 − α2m2| (2.10)

+ 2α

N∑
m=�N− 1

α−2�+1

1

m

∞∑
n=�αN�+3

1

|n2 − α2m2| (2.11)

+ 2α

N∑
m=�N− 1

α−2�+1

1

m

�αN�+2∑
n=�αN�+1

∣∣∣∣ sin(2πm2α)

n2 − α2m2

∣∣∣∣ . (2.12)

We now proceed to bound the three terms of the right hand side of this
inequality.

106



PROPERTIES OF A TWISTED RIEMANN SERIES

We first study (2.10). If N − 1/α − 2 < 1 then (2.10) = 0. We now assume
that N − 1

α − 2 ≥ 1. Consider 1 ≤ m ≤ ⌊N − 1
α − 2

⌋
. For x ≥ �αN�, x− αm ≥

�αN�−α(N − 1
α −2) = −{αN}+1+2α ≥ 2α and hence the map x �→ 1

x2−α2m2

is continuous, positive and decreasing on [�αN� ,+∞). Therefore,

∞∑
n=�αN�+1

1

|n2 − α2m2| ≤
∫ ∞

�αN�

dx

x2 − α2m2
=

1

2αm
log
(�αN�+ αm

�αN� − αm

)

≤ 1

2αm

2αm

�αN� − αm
=

1

�αN� − αm
.

Consequently,

(2.10) ≤
�N− 1

α−2�∑
m=1

2α

m(�αN� − αm)
=

2α2

�αN�
�N− 1

α−2�∑
m=1

(
1

αm
+

1

�αN� − αm

)

≤ 2α
1 + log

⌊
N − 1

α − 2
⌋

�αN� +
2α2

�αN�
�N− 1

α−2�∑
m=1

1

�αN� − αm
.

But, for y ≤ ⌊N − 1
α − 2

⌋
+1, �αN�−αy ≥ �αN�−α(N− 1

α−1) = −{αN}+1+

α ≥ α and hence the map y �→ 1
�αN�−αy is continuous, positive and increasing

on (−∞,
⌊
N − 1

α − 2
⌋
+ 1]. Hence,

�N− 1
α−2�∑

m=1

1

�αN� − αm
≤
∫ �N− 1

α−2�+1

1

dy

�αN� − αy

=
1

α
log

�αN� − α

�αN� − α
(⌊
N − 1

α − 2
⌋
+ 1
) ≤ 1

α
log
(�αN�

α
− 1
)
.

Therefore,

(2.10) ≤ 2α
1 + log

⌊
N − 1

α − 2
⌋

�αN� + 2α
log
( �αN�

α − 1
)

�αN� .

It follows that (2.10) tends to 0 as N → +∞ for any α ∈ [0, 1]. Moreover, we
deduce the inequality

(2.10) ≤ 2α

�αN� + 2
log(N − 1

α )

N − 1
α

+ 2α
log �αN�
�αN� + 2|α logα|.

Since N − 1
α ≥ 3 and �αN� ≥ 1, we get that (2.10) is bounded by an absolute

constant for all α ∈ [0, 1] and all N ≥ 1.
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We now study (2.11). We assume that
⌊
N − 1

α − 2
⌋
+ 1 ≤ m ≤ N . For

x ≥ �αN� + 2, x − αm ≥ �αN� + 2 − αN = −{αN} + 2 ≥ 1 and hence the
map x �→ 1

x2−α2m2 is continuous, positive and decreasing on [�αN� + 2,+∞).
Therefore,

+∞∑
n=�αN�+3

1

|n2 − α2m2| ≤
∫ +∞

�αN�+2

dx

x2 − α2m2
=

1

2αm
log
(�αN�+ 2 + αm

�αN�+ 2− αm

)

≤ 1

2αm

2αm

�αN�+ 2− αm
=

1

�αN�+ 2− αm
.

Hence,

(2.11) ≤ 2α

N∑
m=�N− 1

α−2�+1

1

m(�αN�+ 2− αm)

=
2α2

�αN�+ 2

N∑
m=�N− 1

α−2�+1

(
1

αm
+

1

�αN�+ 2− αm

)

≤ 2α

(
1⌊

N − 1
α
− 2
⌋
+ 1

+
log(N)− log(

⌊
N − 1

α
− 2
⌋
+ 1)

�αN�+ 2

)

+
2α2

�αN�+ 2

N∑
m=�N− 1

α−2�+1

1

�αN�+ 2− αm
.

But, for y ≤ N , �αN�+2−αy ≥ �αN�+2−αN = −{αN}+2 ≥ 1 and hence the
map y �→ 1

�αN�+2−αy is continuous, positive and increasing on (−∞, N ]. Hence,

N∑
m=�N− 1

α−2�+1

1

�αN�+ 2− αm

≤ 1

�αN�+ 2− αN
+

∫ N

�N− 1
α−2�+1

dy

�αN�+ 2− αy

≤ 1 +
1

α
log

�αN�+ 2− α
(⌊
N − 1

α − 2
⌋
+ 1
)

�αN�+ 2− αN

≤ 1 +
1

α
log(3 + 2α).
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Therefore,

(2.11) ≤ 2α⌊
N − 1

α − 2
⌋
+ 1

+ 2α
log(N)− log(

⌊
N − 1

α − 2
⌋
+ 1))

�αN�+ 2

+
2α(α+ log(3 + 2α))

�αN�+ 2

≤ 2α⌊
N − 1

α − 2
⌋
+ 1

+ 2
log(N + 1

α )

N + 1
α

+
2α(α+ log(3 + 2α))

�αN�+ 2
.

It follows that (2.11) tends to 0 as N → +∞ and that its modulus is bounded
by an absolute constant for all α ∈ [0, 1] and all N ≥ 1. Finally, for any integers
m,n, we have | sin(2πm2α)| = | sin(2πm(n− αm))| ≤ 2π|m(n− αm)|. Hence,

(2.12) ≤
N∑

m=�N− 1
α−2�+1

2α

m

�αN�+2∑
n=�αN�+1

∣∣∣∣2πm(n− αm)

n2 − α2m2

∣∣∣∣

= 4απ

N∑
m=�N− 1

α−2�+1

�αN�+2∑
n=�αN�+1

1

n+ αm

≤ 4απ
2(N − ⌊N − 1

α − 2
⌋
)

�αN�+ 1 + α

≤ 8απ
( 1α + 3)

�αN�+ 1 + α
. (2.13)

It follows that (2.12) tends to 0 as N → +∞ and that its modulus is bounded
by an absolute constant for all α ∈ [0, 1] and all N ≥ 1. �

2.4. Study of (2.4)

����� 2� The sequence (2.4) tends to zero as N → +∞ for any α ∈]0, 1]. Its
modulus is bounded by an absolute constant for all α ∈ [0, 1] and all N ≥ 1.

P r o o f. We obviously have

(2.4) ≤ 2α2

�αN�−3∑
n=1

1

n

+∞∑
m=N+1

1

|n2 − α2m2| (2.14)

+ 2α2

�αN�∑
n=�αN�−2

1

n

+∞∑
m=�N+1/α+1�+1

1

|n2 − α2m2| (2.15)
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+ 2α2

�αN�∑
n=�αN�−2

1

n

�N+1/α+1�∑
m=N+1

∣∣∣∣sin(2πn2/α)

n2 − α2m2

∣∣∣∣ . (2.16)

We now proceed to bound the three terms of the right hand side of this
inequality.

If αN < 4 then (2.14) is zero. Assume that αN ≥ 4 and consider 1 ≤ n ≤
�αN�−3. For y ≥ N , αy−n ≥ αN − (�αN�−3) = {αN}+3 > 1 and hence the
map y �→ 1

α2y2−n2 is continuous, positive and decreasing on [N,+∞). Therefore,

+∞∑
m=N+1

1

|α2m2 − n2| ≤
∫ +∞

N

dy

α2y2 − n2
=

1

2αn
log
(αN + n

αN − n

)
≤ 1

α(αN − n)
.

Hence,

(2.14) ≤ 2α

�αN�−3∑
n=1

1

n(αN − n)
=

2

N

�αN�−3∑
n=1

(
1

n
+

1

αN − n

)

≤ 2
1 + log(�αN� − 3)

�αN� +
2

N

�αN�−3∑
n=1

1

αN − n
.

But, for x ≤ �αN� − 2, αN − x ≥ αN − �αN�+ 2 = {αN} + 2 > 1 and hence
the map x �→ 1

αN−x is continuous, positive and increasing on (−∞, �αN� − 2].
Therefore,

�αN�−3∑
n=1

1

αN − n
≤
∫ �αN�−2

1

dx

αN − x
= log

( αN − 1

αN − �αN�+ 2

)
≤ log(αN − 1).

Consequently,

(2.14) ≤ 2
1 + log(�αN� − 3)

�αN� + 2
log(αN − 1)

N
(2.17)

≤ 2
1 + log(αN − 1)

αN − 1
+ 2

log(αN − 1)

N
(2.18)

It is now clear that (2.14) tends to 0 as N → +∞ and that its modulus is
bounded by an absolute constant for all α ∈ [0, 1] and all N ≥ 1.

If αN < 1 then (2.15) = 0. Assume that αN ≥ 1 and consider n ∈ N∗ such
that �αN� − 2 ≤ n ≤ �αN�. For y ≥ ⌊N + 1

α + 1
⌋
, αy − n ≥ αN + 1− �αN� =

{αN} + 1 ≥ 1 and hence the map y �→ 1
α2y2−n2 is continuous, positive and
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decreasing on [
⌊
N + 1

α + 1
⌋
,+∞). Therefore, we have

∞∑
m=�N+ 1

α+1�+1

1

α2m2 − n2
≤
∫ ∞

�N+ 1
α+1�

dy

α2y2 − n2

=
1

2αn
log
(α ⌊N + 1

α + 1
⌋
+ n

α
⌊
N + 1

α + 1
⌋− n

)

≤ 1

α
· 1

α �N + 1/α+ 1� − n
≤ 1

α
.

Hence,

(2.15) ≤ 2α

�αN�∑
n=�αN�−2

1

n
. (2.19)

It follows that (2.15) tends to 0 as N → +∞ and that is modulus is bounded
by an absolute constant for all α ∈ [0, 1] and all N ≥ 1.

Finally, for all integers m,n,

| sin(2πn2/α)| = | sin(2πn(m− n/α))| ≤ 2π|n(n/α−m)|.
Hence,

(2.16) ≤ 2α2

�αN�∑
n=�αN�−2

1

n

�N+ 1
α+1�∑

m=N+1

∣∣∣∣2πn(n/α−m)

n2 − α2m2

∣∣∣∣

= 4απ

�αN�∑
n=�αN�−2

�N+ 1
α+1�∑

m=N+1

1

n+ αm

≤ 12απ

⌊
N + 1

α + 1
⌋−N

1 + α(N + 1)
≤ 12απ

1
α + 1

1+ α(N + 1)

It follows that (2.16) tends to 0 as N → +∞ and that is modulus is bounded
by an absolute constant for all α ∈ [0, 1] and all N ≥ 1.

The expected result follows. �

3. Proof of Theorem 2

The proof of Theorem 2 will be decomposed in many steps. Before that, we
recall some facts about continued fraction expansions.
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3.1. Basics of continued fraction expansions

We refer to [8] for more details and proofs.

Let us consider an irrational number α ∈ (0, 1). We denote by [a0; a1, a2, . . .]
the regular continued fraction of α, where a0 = 0. For all k ≥ 1, we have
ak =

⌊
1/T k−1(α)

⌋ ≥ 1 where T (x) = {1/x} and {·} denotes the fractional part
function. For any k ≥ 0, we denote by [a0; a1, a2, . . . , ak] the k-th convergent to
α and by pk = pk(α) and qk = qk(α) its numerator and denominator respectively
(note that p0 = 0 and q0 = 1). It is convenient to set p−1 = 1 and q−1 = 0. For
all k ≥ 1, pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2.

In the following proposition, we list a number of basic properties of continued
fraction expansions which will be used freely in this paper.

����������	 2� (i) For all k ≥ 0, qk ≥ Fk ≥ 2k/2 where (Fk)k≥0 denotes the
Fibonacci sequence defined by F0 = 0, F1 = 1 and Fk+1 = Fk−1 + Fk.

(ii) Both sequences (pk)k≥0 and (qk)k≥0 are increasing.

(iii) For all k ≥ 0, T k(α) = qkα−pk

pk−1−qk−1α
= |qkα−pk|

|qk−1α−pk−1| and αT (α) · · ·T k(α) =

(−1)k(qkα− pk) = |qkα− pk|.
(iv) For all k ≥ 0, 1

2qk+1
< |qkα − pk| < 1

qk+1
, αT (α) · · ·T k(α)  1

qk+1
. and

T k(α)  qk
qk+1

(v) The series
∑∞

k=0 αT (α) · · ·T k(α) converges for all irrational number α.

3.2. An iterative procedure

Theorem 1 implies the following decomposition:

ΩN (α) = A(α) +BN (α) + CN (α) (3.1)

where A(α) = A1(α) +A2(α) with

A1(α) =
1

πα

+∞∑
m=1

sin(2πm2α)

m3
, A2(α) = G(α),

BN (α) = − 1

πα

+∞∑
m=N+1

sin(2πm2α)

m3
, CN (α) = GN(α)−G(α).

We observe that |CN (α)| is bounded by an absolute constant for all α ∈ [0, 1]
and all N ≥ 1, and that, for all α ∈ [0, 1], limN→∞ CN (α) = 0.

From now on, α is a fixed irrational number in [0, 1]. We define a sequence
(uj)j≥−1 (that also depends on α) by u−1 = N and uj = �uj−1(α)T

j(α)� for
j ≥ 0, so that

uj =
⌊· · · ��Nα�T (α)� · · ·T j(α)

⌋
.
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For any integer N , we define the integer �N (that depends on α) by

�N = min{j ∈ N | uj = 0}.
It is clear that �N → +∞ as N → +∞. Using (3.1), we get that, for all N ≥ 1,

ΦN (α) =

�N∑
j=0

αT (α) · · ·T j−1(α)A(T j(α)) (3.2)

+

�N∑
j=0

αT (α) · · ·T j−1(α)Buj−1
(T j(α)) (3.3)

+

�N∑
j=0

αT (α) · · ·T j−1(α)Cuj−1
(T j(α)) (3.4)

where, for j = 0, αT (α) · · ·T j−1(α) = 1 and uj−1 = N .

We first remark that (3.4) converges to 0 as N → +∞: this follows from
Lebesgue dominated convergence theorem. Indeed, the sequence of elements of
�1(N,C) defined by

j �→
{
αT (α) · · ·T j−1(α)Cuj−1

(T j(α)) if j ≤ �N

0 if j > �N

tends simply to 0 and its absolute value is dominated by an element of �1(N,C)
(because |CM (β)| is bounded by an absolute constant for all β ∈ [0, 1] and all
N ≥ 1).

Moreover, we have |BM (β)| � 1
β(M+1)2 for all β ∈ [0, 1] and all N ≥ 1, where

the implicit constant is absolute. Hence,∣∣Buj−1
(T j(α))

∣∣� 1

T j(α)(uj−1 + 1)2

uniformly for all N ≥ 1 and all j ∈ {0, ..., �N − 1}. Note that this implies that,
for all j ∈ N, Buj−1

(T j(α)) → 0 as N → +∞. Moreover, for all integer j < �N ,

T j(α)uj−1 ≥ 1

because uj > 0. Thus, ∣∣Buj−1
(T j(α))

∣∣� 1

uniformly with respect to N ∈ N∗ and j ∈ {0, ..., �N − 1}. Using Lebesgue
dominated convergence theorem as above, we get that

�N−1∑
j=0

αT (α) · · ·T j−1(α)Buj−1
(T j(α))

113



T. RIVOAL AND J. ROQUES

tends to 0 as N → +∞.

Consequently, we obtain that

φN (α) =

�N∑
j=0

αT (α) · · ·T j−1(α)A(T j(α))

+ αT (α) · · ·T �N−1(α)Bu�N−1
(T �N (α)) + o(1) (3.5)

as N tends to +∞.

3.3. Some intermediate results

We need to prove simple analytic results.

����� 3� We have
∞∑

n=1

∣∣∣∣sin(2πn2β)

n3

∣∣∣∣� β(1 + log(1/β)) (3.6)

for all β ∈ [0, 1] and for some absolute constant.

Moreover,

∞∑
n=1

sin(2πn2β)

n3
= πβ log(1/β) · (1 + o(1)

)
, β → 0+. (3.7)

P r o o f. We have

∞∑
n=1

∣∣∣∣ sin(n2β)

n3

∣∣∣∣ ≤ β

�β−1/2�∑
n=1

1

n
+

∞∑
n=�β−1/2�+1

1

n3

≤ β
(
log
⌊
β−1/2

⌋
+ 1
)
+

1(⌊
β−1/2

⌋
+ 1
)3 +

1

2
(⌊
β−1/2

⌋
+ 1
)2

≤ 1

2
β (log(1/β) + 1) + β3/2 + β (3.8)

and the first part of the lemma follows.

For any x ≥ 0, we have x − x3

6 ≤ sin(x), so that for any ε ∈ (0, 1), sin(x) ≥
(1− ε)x provided that 0 ≤ x ≤ √

ε. Therefore, for any ε ∈ (0, 1), we have

∞∑
n=1

sin(n2β)

n3
≥ (1− ε)β

∑
1≤n≤ε1/4/β1/2

1

n
−

∞∑
n>ε1/4/β1/2

1

n3

≥ (1− ε)β
(
log(ε1/4/β1/2) + 1

)
+O(β/ε1/2).
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Choosing ε = 1
log(1/β) , we get

∞∑
n=1

sin(n2β)

n3
≥ 1

2
β log(1/β)− 1

2
β + β ·

(
1− 1

log(1/β)

)
·
(
1− 1

4
log(log(1/β))

)
+O(β log(1/β)1/2

)
=

1

2
β log(1/β) +O(β log log(1/β)) (3.9)

as β → 0+. Combining (3.8) and (3.9) provides the second part of the lemma. �

����� 4� There exists η ∈ (0, 1) such that for all N ≥ 1 and all β ∈ (0, η], we
have A1(β) +BN (β) ≥ 0 and A1(β) ≥ 0.

P r o o f. Arguing as in Lemma 3, we see that, for any integer N ,

N∑
n=1

sin(n2β)

n3
≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− ε)β
∑

1≤n≤N

1

n
≥ 0 if N ≤ ε1/4/β1/2

(1− ε)β
∑

1≤n≤ε1/4/β1/2

1

n
−

∞∑
n>ε1/4/β1/2

1

n3
if N > ε1/4/β1/2

where ε = 1
log(1/β) . The result follows from the fact that

(1− ε)β
∑

1≤n≤ε1/4/β1/2

1

n
−

∞∑
n>ε1/4/β1/2

1

n3
=

1

2
β log(1/β) +O(β log log(1/β))

as β → 0+ and hence is positive for β close to 0. �

For the proof of following proposition, we fix η ∈ (0, 1) such that:

• for all β ∈ (0, η], A1(β) +BN (β) ≥ 0 and A1(β) ≥ 0;

• there exists c1, c2 > 0 such that, for all β ∈ (0, η],

c1 log(1/β) ≤ A1(β) ≤ c2 log(1/β). (3.10)

The existence of such an η is guaranteed by Lemmas 3 and 4.

����������	 3� Let (Nk)k≥0 be an increasing sequence of integers. The follow-
ing properties are equivalent:

(i)
∑Nk

j=0 αT (α) · · ·T j−1(α)A(T j(α)) converges as k → +∞;

(ii)
∑Nk

j=0 αT (α) · · ·T j−1(α)A1(T
j(α)) converges as k → +∞;

(iii)
∑

0≤j≤Nk
T j(α)≤η

αT (α) · · ·T j−1(α)A1(T
j(α)) converges as k → +∞;

(iv)
∑∞

j=0
log(qj+1(α))

qj(α)
< ∞.
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P r o o f. The equivalence of (i) and (ii) follows from the convergence of the series

∞∑
j=0

αT (α) · · ·T j−1(α)A2(T
j(α))

which itself follows from the fact that A2 is bounded.

The equivalence of (ii) and (iii) follows from the convergence of∑
0≤j≤Nk
T j(α)>η

αT (α) · · ·T j−1(α)A1(T
j(α))

as k → +∞, which itself follows from the fact that A1 is bounded on [η, 1].

Inequality (3.10) implies that∑
0≤j≤Nk
T j(α)≤η

αT (α) · · ·T j−1(α)A(T j(α))

converges as k → +∞ if and only if∑
0≤j≤Nk

T j (α)≤η

αT (α) · · ·T j−1(α) log(1/T j(α))

converges as k → +∞. This is equivalent to the convergence of∑
0≤j≤Nk
T j(α)≤η

1

qj
log(qj+1/qj)

(we use Proposition 2 here). This is also equivalent to the convergence of the

series
∑∞

j=0
log(qj+1)

qj
, as follows from the convergence of the series

∑
0≤j≤N
T j(α)>η

1

qj
log(qj+1/qj)

and
∑∞

j=0
log(qj)

qj
(again by Proposition 2). �

3.4. End of the proof of Theorem 2

We can now complete the proof. Let us first assume that
∑∞

j=0
log qj+1

qj
is

convergent. Proposition 3 ensures that the series
∞∑
j=0

αT (α) · · ·T j−1(α)A(T j(α))
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converges. Moreover, Lemma 3 implies that |BM (β)| � log(1/β) for all β ∈ (0, 12 ]

and M ≥ 1, and that |BM (β)| � 1 for all β ∈ (12 , 1] and M ≥ 1. (In both cases,
the implicit constants are absolute.) Therefore,

αT (α) · · ·T �N−1(α)
∣∣∣Bu�N−1

(T �N (α))
∣∣∣

�
{
αT (α) · · ·T �N−1(α) log

(
1/T �N (α)

)
if T �N (α) ≤ 1

2

αT (α) · · ·T �N−1(α) if T �N (α) > 1
2

�
{

1
q�N

log
( q�N+1

q�N

)
if T �N (α) ≤ 1

2

1
q�N

if T �N (α) > 1
2

(3.11)

which tends to 0 as N → +∞. Eq. (3.5) ensures that Φ(α) converges.

To prove the converse statement, we now assume that Φ(α) is convergent. We
separate two cases.

a) We first assume that there exists c > 0 such that, for all N large enough,

T �N (α) > c. Then
log(q�N+1)

q�N
→ 0 as N → +∞. So

αT (α) · · ·T �N−1(α)Bu�N−1
(T �N (α))

tends to 0 as N → +∞ (recall inequality (3.11)). Hence, (3.5) ensures that

�N∑
j=0

αT (α) · · ·T j−1(α)A(T j(α))

converges as N → +∞. This is equivalent to the convergence of
∑∞

j=0
log(qj+1)

qj

by Proposition 3.

b) We assume that a) does not hold, i.e. that there exists an increasing se-
quence of integers (Nk)k≥0 such that T �Nk (α) → 0 as k → +∞. Since

�N∑
j=0

αT (α) · · ·T j−1(α)A2(T
j(α)),

converges as N → +∞ (because A2 is bounded), (3.5) ensures that

�N−1∑
j=0

(
αT (α) · · ·T j−1(α)A1(T

j(α))

+ αT (α) · · ·T �N−1(α)
(
A1(T

�N (α)) +Bu�N−1
(T �N (α))

))
is convergent as N → +∞.
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But ∑
0≤j≤�N−1
T j(α)≥η

αT (α) · · ·T j−1(α)A1(T
j(α))

converges as N → +∞ (because A1 is bounded on [η, 1]). Hence, setting

xk =
∑

0≤j≤�Nk
−1

T j(α)<η

αT (α) · · ·T j−1(α)A1(T
j(α))

and

yk = αT (α) · · ·T �Nk
−1(α)

(
A1(T

�Nk (α)) +Bu�Nk
−1
(T �Nk (α))

)
,

we obtain that xk + yk converges as k → +∞. But for any integer j such that
T j(α) < η, we have A1(T

j(α)) ≥ 0 and, for all k large enough,

A1(T
�Nk (α)) +Bu�Nk

−1
(T �Nk (α)) ≥ 0.

Therefore (xk)k≥0 is an increasing sequence of positive numbers and yk is positive
for all large enough k. It follows that (xk)k≥0 is convergent, providing the desired
result by Proposition 3.

This completes the proof of Theorem 2.
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