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ON THE LIMIT DISTRIBUTION OF CONSECUTIVE

ELEMENTS OF THE VAN DER CORPUT

SEQUENCE
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ABSTRACT. Recently, Fialová and Strauch, Uniform Distribution Theory,
6(1):101-125, 2011, calculated the asymptotic distribution function (adf) of the
two-dimensional sequence (φb(n), φb(n + 1))n≥0, where (φb(n))n≥0 denotes the

van der Corput sequence in base b. In the present paper we solve the general
problem asking for the limit distribution of (φb(n), φb(n+1), . . . , φb(n+s−1))n≥0.
We use the fact that the van der Corput sequence can be seen as the orbit of the
origin under the ergodic von Neumann-Kakutani transformation.

Communicated by Oto Strauch

1. Introduction

In the open problem collection on the web site of Uniform distribution theory
the following problem is stated:

Let (φb(n))n≥0 denote the van der Corput sequence in base b. Find
the distribution of the sequence (φb(n), φb(n+1), . . . , φb(n+s−1))n≥0

in [0, 1)s.1

The case s = 2 has recently been solved by Fialová and Strauch [3]. They showed
that every point (φb(n), φb(n+ 1))n≥0 lies on the line segment

y = x− 1 +
1

bk
+

1

bk+1
, x ∈

[
1− 1

bk
, 1− 1

bk+1

]
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(http://www.boku.ac.at/MATH/udt/unsolvedproblems.pdf)
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for k ≥ 0. Furthermore they could give an explicit formula for the asymptotic
distribution function g(x, y) of (φb(n), φb(n+ 1))n≥0 to calculate the limit

lim
N→∞

1

N

N−1∑
n=0

|φb(n)− φb(n+ 1)| =
∫ 1

0

∫ 1

0

|x− y|dg(x, y) = 2(b− 1)

b2

previously demonstrated by Pillichshammer and Steinerberger [13]. They also
noted that the adf of (φb(n), φb(n+ 1))n≥0 is a copula.
In this article we solve the problem for the sequence (φb(n), φb(n+1), . . . , φb(n+
s − 1))n≥0 for s > 2. A multi-dimensional extension of the van der Corput se-
quence (φb(n))n≥0, is given by the so-called Halton sequence,
(φb1(n), φb2(n), . . . , φbs(n))n≥0 which is uniformly distributed if and if the bases
bi1 ≤ i ≤ s are co-prime (see [7]). These sequences are well-studied objects in
discrepancy theory, since they belong to the class of so-called low discrepancy
sequences. For classical results in discrepancy theory, on low discrepancy se-
quences and the van der Corput sequence see e.g. [1], [2] or [9].

Recently, several authors investigated the ergodic properties of low discrep-
ancy sequences, see e.g. [6] and [8]. In the case of van der Corput sequences this
can be done using the so-called von Neumann-Kakutani transformation, which
will be discussed in the second section.
The outline of this article is as follows: in the second section we define the van
der Corput sequence and the von Neumann-Kakutani transformation and re-
call their basic properties. In the third section we state our main results on the
distribution of (φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0.

2. van der Corput sequence and von Neumann-Kakutani
transformation

Let b ∈ N and N0 = N ∪ {0}. Then for every n ∈ N0, we can write

n =
∑
i≥0

nib
i

where ni ∈ {0, 1, . . . , b− 1}, i ≥ 0. The above sum is called b-adic representation
of n. The ni are uniquely determined and at most a finite number of ni are
non-zero. Furthermore, every real x ∈ [0, 1) has a b-adic representation of the
following form

x =
∑
i≥0

xib
−i−1 (1)
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where xi ∈ {0, 1, . . . , b− 1}, i ≥ 0. We call x a b-adic rational if x = ab−c, where
a and c are positive integers and 0 ≤ a < bc. For all b-adic integers there are
exactly two representations of the form (1), one where xi = 0, i ≥ i0 and one
where xi = b − 1, i ≥ i0 for sufficiently large i0 ∈ N. If we restrict ourselves to
representations with xi �= b − 1 for infinitely many i, then the coefficients xi in
(1) are uniquely determined for all x ∈ [0, 1).
For n ∈ N0 we define the so-called radical-inverse function or Monna map
φb(n) : N0 → [0, 1) by

φb(n) = φb

⎛
⎝∑

i≥0

nib
i

⎞
⎠ :=

∑
i≥0

nib
−i−1.

Note that φb(n) maps N0 to the set of b-adic rationals in [0, 1), and therefore
the image of N0 under φb(n) is dense in [0, 1).

���������� 2.1� The van der Corput sequence in base b is defined as (φb(n))n≥0.

It is a classical result that the van der Corput sequence is uniformly dis-
tributed in [0, 1), see e.g. [9]. Furthermore, its s-dimensional extension, the Hal-
ton sequence given by (φb1(n), . . . , φbs(n))n≥0 for co-prime bases bi, 1 ≤ i ≤ s, is
uniformly distributed on [0, 1)s. Properties of the van der Corput and the Hal-
ton sequence are very well-understood, since they are so-called low discrepancy
sequences, which are central objects in Quasi-Monte Carlo integration.
A second approach to define the van der Corput sequence is by using the von
Neumann-Kakutani transformation Tb : [0, 1) → [0, 1). For any integer b ≥ 2 the
inductive construction of Tb is as follows: at first [0, 1) is split into b intervals
I1i =

[
i
b ,

i+1
b

)
for i = 0, 1, . . . b − 1. Then the transformation T1,b :

[
0, b−1

b

) �→[
1
b , 1

)
is defined as translation of I1i into I1i+1 for i = 0, 1, . . . , b − 1. The next

step is to divide all intervals I1i into b subintervals of the form I2i =
[

i
b2 ,

i+1
b2

)
for

i = 0, 1, . . . b2 − 1. Transformation T2,b :
[
0, b

2−1
b2

)
�→ [

1
b2
, 1
)
is given as the ex-

tension of T1,b which translates I2b2−b+i into I2b2−b+i+1 for i = 0, 1, . . . , b−1. Such
a construction is called splitting-and-stacking-construction and is illustrated in
Figure 1 for b = 2. Finally we define the von Neumann-Kakutani transformation
as Tb = limn→∞ Tn,b. A plot of the transformation T2 is given in Figure 2. By
an observation of Lambert [10], [11] (see also Hellekalek [7]) the van der Corput
sequence in base b is exactly the orbit of the origin under Tb, which means that

(Tn
b 0)n≥0 = (φb(n))n≥0, b ≥ 2, (2)

where Tn
b x denotes the value of x under after n iterations of Tb.

For a proof of the ergodicity and measure-preserving properties of the von
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Figure 1. The first two steps of a splitting-and-stacking-construction in

base b = 2.

Figure 2. The von Neumann-Kakutani transformation in base b = 2.

Neumann-Kakutani transformation, see e.g. [4] or [5]. It follows from the ergod-
icity of the von Neumann-Kakutani transformation that (Tn

b x)n≥0 is uniformly
distributed for almost every x ∈ [0, 1). Furthermore, it can be shown that the
von Neumann-Kakutani transformation is uniquely ergodic, which implies that
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(Tn
b x)n≥0 is uniformly distributed for every x ∈ [0, 1), see e.g. [6]. Moreover,

Pagés [12] showed that the orbit of the von Neumann-Kakutani transformation
starting at an arbitrary point x ∈ [0, 1) is a low discrepancy sequence. Another
possible generalization of the van der Corput sequence is the so-called random-
ized van der Corput sequence (Tn

b X)n≥0 where X is uniformly distributed on
[0, 1), see [14].

Recently, Fialová and Strauch solved the problem of calculating the limit
distribution of the sequence (φb(n), φb(n+1))n≥0. They also concluded that the
limit distribution is a copula. We consider the multi-dimensional extension of
this problem. By (2)

(φb(n), φb(n+ 1))n≥0 = (Tn
b 0, T

n+1
b 0)n≥0 = (Tn

b 0, Tb(T
n
b 0))n≥0.

By the fact that (Tn
b 0)n≥0 is uniformly distributed on [0, 1) one can show that

(φb(n), φb(n+ 1))n≥0 is uniformly distributed on

Γ = {(x, y) : y = Tbx}.
Note that Γ coincides with the graph of the von Neumann-Kakutani transfor-
mation in Figure 2. In the next section we use this approach to find the limit
distribution of (φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0 for arbitrary s ≥ 2.

3. The limit distribution of consecutive elements of the
van der Corput sequence

In the sequel we assume that b, s are fixed. Let T denote the von Neumann-
Kakutani transformation in base b as described in Section 2. We define a map
γ(t) : [0, 1) → [0, 1)s by setting

γ(t) :=

⎛
⎜⎜⎜⎜⎜⎝

t
T t
T 2t
...

T s−1t

⎞
⎟⎟⎟⎟⎟⎠

and

Γ := {(x1, x2, . . . , xs) ∈ [0, 1]s : xi = T i−1x1, i = 2, . . . , s} = {γ(t) : t ∈ [0, 1)} .
The Lebesgue measure λ1 on [0, 1) induces a measure ν on Γ by setting

ν(A) = λ1({t : γ(t) ∈ A}), A ⊂ Γ.
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Figure 3. Function graphs of Tt, T 2t and T 5t. These curves appear as the
two-dimensional projections of Γ for large s.

Furthermore, ν induces a measure μ on [0, 1)s by embedding Γ into [0, 1)s. More
precisely for every measurable subset B ⊆ [0, 1)s we set

μ(B) = ν(B ∩ Γ).

	
����� 3.1� The limit measure of (φb(n), φb(n+1), . . . , φb(n+ s− 1))n≥0 is
μ.

P r o o f. As mentioned in Section 2, we can rewrite

(φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0 = (Tn0, Tn+10, . . . , Tn+s−10)n≥0

= (Tn0, T (Tn0), . . . , T s−1(Tn0))n≥0.

Since (Tn0)n≥0 is uniformly distributed on [0, 1) and T is a measure-preserving
transformation with respect to λ1, it follows immediately that (T i(Tn0))n≥0 is
uniformly distributed on [0, 1) for i = 1, . . . , s − 1. Moreover, by construction
(Tn0, T (Tn0), . . . , T s−1(Tn0))n≥0 ∈ Γ for all n ≥ 0.
Now consider a Jordan measurable set B ∈ [0, 1)s. We define the empirical
measure of the first N points of (Tn0, . . . , T s−1(Tn0))n≥0 as

μN(B) =
1

N
#{0 ≤ n ≤ N : (Tn0, T (Tn0), . . . , T s−1(Tn0)) ∈ B}.

We have

lim
N→∞

μN (B) = lim
N→∞

1

N
#{0 ≤ n ≤ N : (Tn0, T (Tn0), . . . , T s−1(Tn0)) ∈ B}

= lim
N→∞

1

N
#{0 ≤ n ≤ N : (Tn0, T (Tn0), . . . , T s−1(Tn0)) ∈ B ∩ Γ}

= lim
N→∞

1

N
#{0 ≤ n ≤ N : Tn0 ∈ Projectionx1

(B ∩ Γ)}
= λ1( Projectionx1

(B ∩ Γ))
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= ν(B ∩ Γ) = μ(B)

where the fourth equation holds since (Tn0)n≥0 is uniformly distributed on [0, 1)
and since the map t → Tt is a bijection, and where Projectionx1

(A) denotes the
projection of A onto its first coordinate. �


����� 3.1� Note that the measure μ is a copula on [0, 1]s for every s since
every distribution function of a multi-dimensional sequence (x1

n, . . . , x
s
n)n≥0 is a

copula if the sequences (x1
n)n≥0, . . . , (x

s
n)n≥0 are uniformly distributed on [0, 1].


����� 3.2� The set Γ is a collection of countably many line segments in
[0, 1)s, which are parallel to the diagonal. Informally speaking Theorem 3.1 means
that (φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0 is uniformly distributed on Γ.


����� 3.3� By the unique ergodicity of T , the conclusion of Theorem 3.1 holds
also for the sequence (Tnx, T (Tnx), . . . , T s−1(Tnx))n≥0 for arbitrary x ∈ [0, 1).


����� 3.4� Another class of uniformly distributed sequences which can be
seen as the orbits of certain points under an ergodic transformation are se-
quences of the form ({nα})n≥0, where {x} denotes the fractional part of x and

α is irrational. In this case the corresponding transformation T̂ is simply the

rotation T̂ : x �→ x+ α mod 1. It can easily be shown that the limit distribution
of consecutive elements ({nα}, {(n+1)α}, . . . , {(n+s−1)α})n≥0 is the uniform

distribution on the curve Γ̂ which is given by

Γ̂ :={(t, T̂ t, . . . , T̂ s−1t), t ∈ [0, 1)}.
However, since in this case the transformation T̂ has a particularly simple struc-
ture, the same result can also be easily obtained using analytic arguments.
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