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THE NEAREST INTEGER CONTINUED FRACTION

AND THE MOVING AVERAGE ERGODIC

THEOREM

Hailiza Haili-Kamarul — Radhakrishnan Nair

ABSTRACT. We use a moving average ergodic theorem to derive various re-

sults concerning moving averages of nearest integer continued fractions previously
known only for non-moving averages and then derived using the pointwise ergodic
theorem.

Communicated by S. Akiyama

1. Introduction

In this paper we apply the moving average theorem of A. Bellow, R. Jones
and J. Rosenblatt [BJR] which we state presently to derive some new results
about the metric theory of moving averages for the nearest integer continued
fractions. The corresponding results for non-moving averages are known and
some are classical. For a continued fraction expansion of a real number x there
are two standard presentations for it we can give. The first is

x = [c0; ε1c1, ε2c2, · · · ],
and the second

x = c0 +
ε1

c1 +
ε2

c2+...

.

Of course they say the same thing. Here (ci)
∞
n=1 is a sequence of integers and

εi ∈ {−1, 1}. The numbers ci (i = 1, 2, · · · ) are called the partial quotients of
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the expansion and for each natural number n the truncates

Pn

Qn
= [c0; ε1c1, · · · , εncn] = c0 +

ε1
c1+...+

εn

cn

,

are called the convergents of the expansion. The expansion is called semi-regular
if : (i) cn is a natural number, for positive n; (ii) εn+1 + cn+1 ≥ 1 and
(iii) εn+1 + cn+1 ≥ 2 for infinitely many n if the expansion is itself infinite.
Central to the class of semi-regular continued fraction expansions is the regular
continued fraction expansion which is also the most familiar and obtained when
cn is a natural number for natural numbers n and εi takes the value one for all i.
Here and henceforth for a real number y let �y� denote the the greatest integer
less than y and let {y} denote its fractional part, that is y − �y�. Notice that
for the regular continued fraction expansion c0 = �x�. It is thus convenient and
no real restriction to assume x is in [0, 1). If this is done we define the Gauss
map

Tx =

{
1

x

}
, x �= 0 ; T0 = 0.

on [0, 1). We have ci(x) = c1(T
i−1x) (i = 1, 2, · · · ) – the partial quotients

of the regular continued fraction expansion of x. The nearest integer continued
fraction expansion is defined by an analogous procedure. Here we set c0(x) to
be the integer nearest to x and we thus also implicitly define ε1(x). Given this
information set Ω to be (−1

2 ,
1
2 ) \Q and define the map S : Ω → Ω by

Sx =
ε1
x

−
⌊
|x|−1 +

1

2

⌋
.

Then we have ci(x) = ci−1(Sx) and εi(x) = εi−1(Sx) for i ≥ 1. Again in this
instance (ci(x))

∞
i=1 defines the partial quotients of the nearest integer continued

fraction expansion. For n ≥ 1 we always have that cn(x) ≥ 2 and that cn(x) +
εn+1(x) ≥ 1.

In section 2.1, using the ergodic theory of S and its natural extension we state
and prove some results concerning the moving average behaviour of the nearest
integer continued fraction expansion. These results extend certain earlier work
of G. J. Rieger [Ri]. The sequence

(
Pn

Qn

)∞
n=1

in the case of the nearest integer

continued fraction expansion is a subsequence of the corresponding sequence for
the regular continued fraction expansion [Pe p. 168-78]. Recall the inequality∣∣∣∣x − Pn

Qn

∣∣∣∣ ≤ 1

Q2
n

,
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which is classical, well known and due to L. J. Dirichlet [HW p.194-8] for regular
continued fractions and hence also for the nearest integer continued fractions,
their convergents being a subsequence of those of the regular continued fraction
expansion. Clearly if for each natural number n we set

φn(x) = Q2
n

∣∣∣∣x − Pn

Qn

∣∣∣∣
for the nearest integer continued fraction expansion, then for each x the sequence
of numbers (φn(x))

∞
n=1 lies in the interval [0, g] where g = 1

2 (
√
5 − 1) [Pe

p. 168-78]. In section 2.2, extending work of H. Jager [J] and C. Kraaikamp
[Kr1] we state and prove results concerning the distribution of the sequence
(φn(x))

∞
n=1 for almost all x with respect to Lebesgue measure. Section 2.3 studies

other arithmetic sequences attached to the nearest integer continued fraction
expansion. An analogous study of the regular continued fraction appears in [KN].

We now state the moving average ergodic theorem [BJR]. We begin by intro-
ducing some notation. Let Z be a collection of points in Z×N and let

Zh = {(n, k) : (n, k) ∈ Z and k ≥ h},
Zh
α = {(z, s) ∈ Z2 : |z − y| < α(s − r) for some (y, r) ∈ Zh}

and
Zh
α(λ) = {n : (n, λ) ∈ Zh

α}. (λ ∈ N)

Geometrically we can think of Z1
α as the lattice points contained in the union

of all solid cones with aperture α and vertex contained in Z1 = Z. We say a
sequence of pairs of natural numbers (nl, kl)

∞
l=1 is Stoltz if there exists a collection

of points Z in Z×N, and a function h = h(t) tending to infinity with t such
that (nl, kl)

∞
l=t ∈ Zh(t) and there exist h0, α0 and A > 0 such that for all

integers λ > 0 we have |Zh0
α0
(λ)| ≤ Aλ. Our main tool is the following theorem

[BJR].

������� �� Let (X, β, , μ, T ) denote a dynamical system, with set X, a σ-
algebra of its subsets β, a measure μ defined on the measurable space (X, β)
such that μ(X) = 1 and a measurable, measure preserving map T from X
to itself. Suppose f is in L1(X, β, μ) and that the sequence of pairs on natural
numbers (nl, kl)

∞
l=1 is Stoltz then if (X, β, μ, T ) is ergodic,

mf (x) = lim
l→∞

1

kl

kl∑
i=1

f(Tnl+ix),

exists almost everywhere with respect to Lebesgue measure.

Note that if ml,f (x) =
1
kl

∑kl

i=1 f(T
nl+ix) then

ml,f (Tx)−ml,f (x) = k−1
l (f(Tnl+kl+1)− f(Tnl+1x)).

75



H. HAILI-KAMARUL — R. NAIR

This means that mf (Tx) = mf (x) μ almost everywhere. A dynamical system
(X, β, μ, T ) is called ergodic if given any A ∈ β for which T−1A := {x ∈ X :
Tx ∈ A} = A, the set A has either full or null measure. A standard fact in ergodic
theory is that if (X, β, μ, T ) is ergodic and mf(Tx) = mf (x) almost everywhere,
then mf (x) =

∫
X
fdμ μ almost everywhere [CFS p.14]. The term Stoltz is used

here because the condition on (kl, nl)
∞
l=1 is analogous to the condition required in

the classical non-radial limit theorem for harmonic functions also called a Stoltz
condition, which suggested the above theorem to the authors of [BJR]. Averages
where kl = 1 for all l will be called non-moving. Moving averages satisfying

the above hypothesis can be constructed by taking for instance nl = 22
l

and

kl = 22
l−1

.

2. Applying ergodic theory to the nearest integer
continued fraction expansion

2.1. Average behaviour of convergents

Let G = 1
2 (1 +

√
5). Also let η denote the measure on (−1

2 ,
1
2 ) given for

arbitrary Lebesgue measurable sets E ⊂ (−1
2 ,

1
2 ) by

η(E) =
1

logG

∫
E

ρ(t)dt,

where

ρ(t) = 1
(G+t) if t ≥ 0 and ρ(t) = 1

G+t+1 if t < 0.

It was shown in [Ri] that η is preserved by the map S and that the dynamical
system (Ω, β, η, S), where β denotes the σ-algebra of Lebesgue measurable sets
is ergodic. This fact via Theorem 1 has a number of arithmetic consequences.
Our first theorem is the following

������� 2.1� Suppose we are given two integers c and ε with c ≥ 2, ε in
{−1, 1} and such that c + ε ≥ 2. Suppose also that (nl, kl)

∞
l=1 is Stoltz. Then if

L(c, ε) =
1

logG
log

(4c + ε − 3 + 2
√
5)(4c + ε − 5 + 2

√
5)

(4c + ε − 7 + 2
√
5)(4c + ε − 1 + 2

√
5)

,

lim
l→∞

1

kl
|{1 ≤ i ≤ kl : cnl+i(x) = c ; εnl+i = ε}| = L(c, ε),

almost everywhere with respect to Lebesgue measure.
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P r o o f. Note that x is in

B+
c,ε =

[
4

4c+ ε+ 1
,

4

4c+ ε− 1

]
if and only if

ε1(x) = min(1, c1(x)) = min(ε2(x), c) = ε ∈ {−1, 1},
and that x is in

B−
c,ε =

[ −4

4c+ ε+ 1
,

−4

4c+ ε− 1

]
if and only if

ε1(x) = min(−1, c1(x)) = min(ε2(x), c) = ε = {−1, 1}.
Applying Theorem 1 to the characteristic function of the set B+

c,ε ∪ B−
c,ε we see

that the required averages converge to

1

logG

∫
B+

c,ε∪B−
c,ε

ρ(t)dt =
1

logG
log

(4c+ ε− 3 + 2
√
5)(4c+ ε− 5 + 2

√
5)

(4c+ ε− 7 + 2
√
5)(4c+ ε− 1 + 2

√
5)

,

as required. �

We have the following general result concerning the average behaviour of
the convergents. See [KN] for an analogous result about the the convergents of
regular continued fraction expansion.

������� 2.2� Suppose the function F with domain the non-negative real num-
bers and range the real numbers is continuous and increasing. For each natural
number n and arbitrary non-negative real numbers a1, · · · , an we define

MF,n(a1, · · · , an) = F−1

⎡
⎣ 1

n

n∑
j=1

F (aj)

⎤
⎦ .

Then if the sequence of pairs of natural numbers (nl, kl)
∞
l=1 is Stoltz

lim
l→∞

MF,n(cnl+1(x), · · · , cnl+kl
(x)) = F−1

[
1

log g

∫ 1
2

− 1
2

F (c1(t))dρ(t)

]
,

almost every where with respect to Lebesgue measure.

P r o o f. If F in L1(η) the result follows immediately from Theorem 1. If however
F is not in L1(η), set

fM (x) := F (c1(x)) if F (c1(x)) ≤ M and fM (x) := M if F (c1(x)) > M.
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This means that for each M ≥ F (1) and almost all x with respect to Lebesgue
measure we have

lim sup
l→∞

1

kl

kl∑
i=1

F (cnl+i(x))

≥ lim
l→∞

1

kl

kl∑
i=1

fM (Snl+i(x))

=
1

logG

∫ 1
2

− 1
2

fM (t)dρ(t),

which tends to infinity with M , as required. �

Finally in this section we note the following result.

������� 2.3� If the sequence of pairs of natural numbers (nl, kl)
∞
l=1 is Stoltz,

then

lim
l→∞

1

kl

kl∑
i=1

εnl+i(x) =
1

logG
log

G3

4
,

almost everywhere with respect Lebesgue measure.

P r o o f. Note that εn−1(Sx) = εn(x) and application of Theorem 1 gives the
result. �

2.2. Average behaviour of the approximation constants (φn(x))
∞
n=1

In this section we prove a result relating to the distribution of the sequence of
pairs (φn−1(x), φn(x))

∞
n=1 for almost all x with respect to Lebesgue measure. Let

Γ1 be the interior of the quadrilateral; with vertices (0, 0), (g, 0), (2g3, g2) and

(0, 12 ) where g = 1
2 (
√
5 − 1). Also let Γ−1 be the interior of the quadrilateral

with vertices (0, 0), (g2, 0), (2g3, g) and (0, 12 ). Further put Γ = Γ1 ∪ Γ−1.
In [Kr] it is shown that for all irrational x the sequence is distributed over Γ.

Further where G = 1
2 (
√
5 + 1) set

f1(α, β) =
1

logG

1√
1 − 4αβ

if 1 − 4αβ > 0

and

f−1(α, β) =
1

logG

1√
1 + 4αβ

if 1 + 4αβ > 0.

Also set

Set f(α, β) := f1(α, β) if (α, β) ∈ Γ1 \ Γ−1; set f(α, β) := f1(α, β) +
f−1(α, β) if (α, β) ∈ Γ1∩Γ−1 and set f(α, β) := f−1(α, β) if (α, β) ∈ Γ−1 \Γ1.
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Then we have the following theorem.

������� 2.4� Suppose A is a Borel subset of the set Γ then if the sequence of
pairs of natural numbers (nl, kl)

∞
l=1 is Stoltz we have

lim
l→∞

1

kl

kl∑
l=1

χA(φnl+i−1(x), φnl+i(x)) =

∫
A

f(α, β)dα dβ,

almost everywhere with respect to Lebesgue measure.

The stationary variant of Theorem 2.4 appears in [Kr]. To prove Theorem 2.4
we need to use the ergodic properties of the map S associated to the nearest
integer continued fraction expansion or more accurately its natural extention.
In particular we need the following theorem to be found in either [Ri] or [INT].
See also [N].

������� 2.5� Let

D = {x ∈ Ω : x ≤ 0} × [0, g − 1) ∪ {x ∈ Ω : x ≥ 0} × [0, g).

Let β denote the σ-algebra of Borel sets in D and let μ be the measure defined on
the measurable space (D, β) with Radon - Nikodym derivative (logG)−1(1 + xy)2

relative to two dimensional Lebesgue measure on D. Also define the map N :
D → D by

N(x, y) = (Sx, (c1 + ε1y)
−1).

Then the dynamical system (D, β, μ,N) is ergodic.

The dynamical system (D, β, μ,N) is the natural extention of the nearest
integer continued fraction transformation (Ω, β, η, S), defined in the introduction
and [Ri]. See [CFS p. 239-41] for a formal discussion of the natural extension. In

[Pe p. 168-78] it is shown that if x is irrational then Qn−1

Qn
< g and if cn ≥ 3

then Qn−1

Qn
< g2. We readily see that (Snx, Qn−1

Qn
) is in D.

To prove Theorem 2.4 we need to prove the following theorem.

������� 2.6� Suppose A is a Borel subset of the set D. Then if the sequence
of pairs of natural numbers (nl, kl)

∞
l=1 is Stoltz we have

lim
l→∞

1

kl

kl∑
i=1

χA(S
nl+ix,

Qnl+i−1

Qnl+i
) =

1

logG

∫
A

dxdy

(1 + xy)2
,

almost everywhere with respect to Lebesgue measure.
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P r o o f. Note that εn(x) = ε1(S
n−1x) and so from the procedure for defin-

ing the nearest integer continued fraction expansion we observe the following
recurrence relations:

(2.1) P−1 = 1 ; P0 = 0; Pn = cnPn−1 + εnPn−2 (n = 1, 2, · · · )
and

(2.2) Q−1 = 1 ; Q0 = 0; Qn = cnQn−1 + εnQn−2. (n = 1, 2, · · · )
The analoguous recurrence relation for the regular continued fraction expansion
is well known and proved similarly. Using (2.1) and (2.2) and the definition of
the map S we readily see that for each natural number n

(2.3) Nn(x, 0) = (Snx,
Qn−1

Qn
).

Note that
Qn−1

Qn
= [0; cn, εncn−1, · · · , ε2c1].

We also easily check that for any y such that (x, y) ∈ D

lim
n→∞(Nn(x, 0) − Nn(x, y)) = 0.

Let B be the set of x for which the conclusion of Theorem 2.6 fails and let

C = {x ∈ B : x ≤ 0} × [0, g − 1) ∪ {x ∈ B : x ≥ 0} × [0, g).

Then for almost all (x, y) in C the sequence Nn(x, y) is not distributed with
respect to the measure having Radon - Nikodym derivative (logG)−1(1 + xy)2

relative to two dimensional Lebesgue measure on D. This is in contradiction to
Theorem 1 unless the measure of B is zero as required. �

We now complete the proof of Theorem 2.4. The following discussion also
appears in [Kr]. First we note by induction that

x − Pn

Qn
=

(−1)nε1(x) · · · εn(x)Snx

Qn(Qn + Qn−1Snx)
(n = 1, 2, · · · )

and from the fact εn+1S
nx > 0 we see that

φn(x) =
εn+1S

nx

1 + Qn−1

Qn
Snx

(n = 1, 2, · · · )

Also because
1

εn+1Snx
= cn+1 + Sn+1x
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and
Qn+1

Qn
= cn+1 + εn+1

Qn−1

Qn
,

we have

φn(x) =
Qn

Qn−1

1

1 + Qn

Qn+1
Sn−1x

.

Let

(α, β) = F (a, b) = (
b

1 + ab
,

a

1 + ab
)

for ab �= 1. Then F has derivative

F ′(a, b) =

( −b2

(1 +ab)2
1

(1 +ab)2

1
(1 + ab)2

−a2

(1 +ab)2

)

and Jacobian J = −(1 − ab)(1 + ab)−3. Then as a consequence of Theorem 2.6

for almost all x with respect to Lebesgue measure (F (Snx), Qn−1

Qn
))∞n=1, which

is just the sequence (φn(x), εn+1φn+1(x))
∞
n=1, is distributed over Γ1 ∪ Γ∗

1, with
density 1

|J | logG
1

(1 + xy)2 . Here Γ
∗
1 is the reflection of Γ1 in the α axis. Thus from

the definition of F we have

1

|J | logG
1

(1 + ab)2
=

1

|J | logG
1

(1 − 4αβ)
1
2

and the other details follow analoguously and so Theorem 2.4 is proved. �

Corollaries of Theorem 2.4

Apply Theorem 2.4 with

A = {(x, y) ∈ D : x < a and y < b}
we have the following moving average analogue of the Doeblin-Lenstra conjecture
proved in [BJW].

	���

��� 2.7� Let

G(z) =

{
z

logG if z ∈ [0, 1− g];
1

logG (z − z
1−g + log z

1−g + 1) if z ∈ [1− g, g].

Then if the pair of sequences of natural numbers (nl, kl)
∞
l=1 is Stoltz we have

lim
l→∞

1

kl
|{1 ≤ i ≤ kl : φnl+i(x) ≤ z}} = G(z)

for almost all x with respect to Lebesgue measure.
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To derive our next result we need the following Lemma [Kr].


���� 2.8� Let Δ(a) be the interior of the triangle in the (α, β) plane with
vertices (0, 0), (0, a) and (a, 0) with 0 < a ≤ 5g − 2. Set

H1(a) =
1

logG

∫ ∫
Δ(a)∩Γ1

f(x, y)dxdy =

∫ a

0

h1(t)dt

and

H−1(a) =
1

logG

∫ ∫
Δ(a)∩Γ−1

f(x, y)dxdy =

∫ a

0

h−1(t)dt.

Then for a in [0, 5g − 2]

h1(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 logG log 1+a

1−a if a ∈ [0, 12 ]
1

2 logG log 3 if a ∈ [12 , g]
1

2 logG log 1+(3g−1)
1−(3g−1) − log( 1+a

1−a ) if a ∈ (g, 3g − 1]

0 if a ∈ (3g − 1, 5g − 2]

and

h−1(a) =

⎧⎪⎨
⎪⎩

1
logG arctana if a ∈ [0, g2]
1

logG arctan g2 if a ∈ (g2, 12 ]
1

logG
(arctan(5g − 2)− arctana) if a ∈ (1

2
, 5g − 2].

We have the following result.

	���

��� 2.9� Let h = h1 + h−1. Then if the sequence of pairs of natural
numbers (nl, kl)

∞
l=1 is Stoltz

lim
l→∞

1

kl
|{1 ≤ i ≤ kl : φnl+i−1(x) + φnl+i(x) < a}| =

∫ a

0

h(t)dt,

almost everywhere with respect to Lebesgue measure.

P r o o f. If Δ(a) is as in the statement of Lemma 2.8 we have

lim
l→∞

1

kl
|{1 ≤ i ≤ kl : φnl+i−1(x) + φnl+i(x) < a : εn = 1}|

=
1

logG

∫ ∫
Δ(a)∩Γ1

f(x, y)dxdy,

and

lim
l→∞

1

kl
|{1 ≤ i ≤ kl : φnl+i−1(x) + φnl+i(x) < a : εn = −1}|

=
1

logG

∫ ∫
Δ(a)∩Γ−1

f(x, y)dxdy.
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Thus Corollary 2.9 follows from Lemma 2.8. �

In [Kr] it is shown that for irrational x −g < φn−1(x) − φn(x) < g for
all positive integers n. We have the following result proved in the same way to
Corollary 2.9.

	���

��� 2.10� Let k = k1 + k−1

k1(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 logG(log 3 + log 1+a

1−a ) if a ∈ [−1
2 , 3g − 2]

1
2 logG

1
2 log 5 if a ∈ (3g − 2, 0]

1
2 logG(12 log 5 − log 1+a

1−a ) if a ∈ (g, 3g − 1]

0 if a ∈ (g2, g]

and

k−1(a) =

⎧⎪⎨
⎪⎩

1
logG(arctan 1

2 + arctana) if a ∈ [−1
2 , 0]

1
logG arctan 1

2 if a ∈ (0, 5g − 3]
1

logG(arctan g − arctana) if a ∈ (5g − 3, g].

Then if the sequence of pairs of natural numbers (nl, kl)
∞
l=1 is Stoltz

lim
l→∞

1

kl
|{1 ≤ i ≤ kl : φnl+i−1(x) − φnl+i(x) < a}| =

∫ a

0

k(t)dt,

almost everywhere with respect to Lebesgue measure.

2.3. Other sequences attached to the nearest integer continued frac-
tion expansion

Theorem 1 has a number of other consequences for the nearest integer con-
tinued fraction expansion which we now describe. Let

L(z) =

{
1

logG(log(1 + z
2 ) − log(1 − z

2 )) if z ∈ [0, g2]
1

logG(log(1 + z
2 ) − log(1 − g2

2 )) if z ∈ (g2, g].

Note that L is monotonically increasing, continuous and such that L(0) = 0
with L(g) = 1. We have the following theorem

������� 2.11� If the sequence of pairs of natural numbers (nl, kl)
∞
l=1 is Stoltz

then

lim
l→∞

1

kl
|{1 ≤ i ≤ kl :

Qnl+i

Qnl+i−1
≤ z}| = L(z),

almost everywhere with respect to Lebesgue measure.
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P r o o f. Let

A(z) = {(x, y) : (x, y) ∈ D ; y ≤ z}.
We note that

Qn−1

Qn
= [0; cn, εncn−1, · · · , ε2c1].

As a consequence of this observation and (2.3) we see that for n > n0(ε) and
any (x, y) ∈ D if

Nn(x, y) ∈ A(z − ε)

then

Nn(x, y) ∈ A(z).

This is equivalent to Qn−1

Qn
≤ z and which in turn implies

Nn(x, y) ∈ A(z + ε).

Hence, for almost all x with respect to Lebesgue measure, using the argument
used to prove Theorem 2.6 we see that

lim
l→∞

1

kl
|{1 ≤ i ≤ kl :

Qnl+i

Qnl+i−1
≤ z}| = μ(A(z)).

Computation reveals that μ(A(z)) = L(z), as required. �

Taking first moments and evaluating
∫ g

0
zdL(z) we readily have the following

theorem.

������� 2.12� If the sequence of pairs of natural numbers (nl, kn)
∞
l=1 is Stoltz,

then

lim
l→∞

1

kl

kl∑
i=1

Qnl+i

Qnl+i−1
=

1

logG
(
√
5 − 2 + 4 log 2 + 2 log(

√
5 − 2)),

almost everywhere with respect to Lebesgue measure.

For z ∈ [0, g
2
] let

M1(z) =
1

logG

(
log(1 + z) − z

1 + z
log(2Gz)

)

and for z ∈ [0, g
2

2 ] let

M2(z) =
1

logG

(
− log(1 − z) − z

1− z
log(2Gz)

)
.

Next define M : [0, g2 ] → [0, 1] that is continuous and monotonically
increasing by
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M (z) =

{
M1(z) + M2(z) ifz ∈ [0, g

2

2 ]

M1(z) + M2(
g2

2 ) ifz ∈ (g
2

2 , g
2 ].

Further let

Rn =

∣∣∣x − Pn

Qn

∣∣∣∣∣∣x − Pn−1

Qn−1

∣∣∣ . (n = 1, 2, · · · )

In [Pe p. 168-78] it is shown that 0 ≤ Rn ≤ g
2 for irrational x. We have the

following theorem,

������� 2.13� If the sequence of pairs of natural numbers (nl, kn)
∞
l=1 is Stoltz

then

lim
l→∞

1

kl
|{1 ≤ i ≤ kl : Rnl+i ≤ z}| = M (z),

almost everywhere with respect to Lebesgue measure.

P r o o f. Let

B+(z) = {(x, y) ∈ D : x ≥ 0 ; xy ≤ z}
and let

B−(z) = {(x, y) ∈ D : x < 0 ; |x|y ≤ z}.
Then using the fact that

Rn =
Qn−1

Qn
|Nnx|

and the argument used in the proof of Theorem 2.11 we have that

lim
l→∞

1

kl
|{1 ≤ i ≤ kl : Rnl+i ≤ z}| = μ(B+(z)) + μ(B−(z)).

Computation varifies that if z ∈ [0, g2 ]

μ(B+(z)) = M1(z)

and that if z ∈ [0, g
2

2 ]

μ(B−(z)) = M2(z),

completing the proof of Theorem 2.13. �

Let Li2(x) denote the dilogarithm defined for instance in [Ri]. Again taking
first moments we have the following result.
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������� 2.14� If the sequence of pairs of natural numbers (nl, kl)
∞
l=1 is Stoltz

then

lim
l→∞

1

kl

kl∑
i=1

Rnl+i = −3 − log 2 +
1

logG

(
π2

12
+ log 4 − 2Li2

(
g2

2

))
,

almost everywhere with respect to Lebesgue measure.

������
�������� We thank the referee for his very detailed comments that
substantially improved the presentation of the paper.
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