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THE NEAREST INTEGER CONTINUED FRACTION
AND THE MOVING AVERAGE ERGODIC
THEOREM

HarLiza HAILI-KAMARUL — RADHAKRISHNAN NAIR

ABSTRACT. We use a moving average ergodic theorem to derive various re-
sults concerning moving averages of nearest integer continued fractions previously
known only for non-moving averages and then derived using the pointwise ergodic
theorem.

Communicated by S. Akiyama

1. Introduction

In this paper we apply the moving average theorem of A. Bellow, R. Jones
and J. Rosenblatt [BJR] which we state presently to derive some new results
about the metric theory of moving averages for the nearest integer continued
fractions. The corresponding results for non-moving averages are known and
some are classical. For a continued fraction expansion of a real number x there
are two standard presentations for it we can give. The first is

xr = [00;6101762027"'},
and the second
€1
Tr=c +
€2
c1+

02+_

Of course they say the same thing. Here (¢;)5°  is a sequence of integers and
¢, € {—1,1}. The numbers ¢; (i = 1,2,---) are called the partial quotients of
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the expansion and for each natural number n the truncates
P, €1
— = |C0;€1C1, " ,€pCn| =C + ———
Qn [ 0, €1€C1 y En n] 0 Cl+.

€n

+Cn

are called the convergents of the expansion. The expansion is called semi-regular
if : (i) ¢, is a natural number, for positive n; (ii) €,41 + cp41 > 1 and
(iii) €n41 + cn+1 > 2 for infinitely many n if the expansion is itself infinite.
Central to the class of semi-regular continued fraction expansions is the regular
continued fraction expansion which is also the most familiar and obtained when
¢p, is a natural number for natural numbers n and ¢; takes the value one for all 3.
Here and henceforth for a real number y let |y| denote the the greatest integer
less than y and let {y} denote its fractional part, that is y — |y]. Notice that
for the regular continued fraction expansion ¢y = [z]. It is thus convenient and
no real restriction to assume z is in [0,1). If this is done we define the Gauss
map

1
Tx—{—},x#O;TO—O.
x

on [0,1). We have ¢;(x) = c;(T" 'z) (i = 1,2,---) — the partial quotients
of the regular continued fraction expansion of z. The nearest integer continued
fraction expansion is defined by an analogous procedure. Here we set co(z) to
be the integer nearest to z and we thus also implicitly define €;(x). Given this

information set € to be (—%, %) \ Q and define the map S : © — Q by

€1 1 1
Sz = . {|x| + 2J .
Then we have ¢;(z) = ¢;—1(Sz) and €;(z) = ¢;—1(Sx) for i« > 1. Again in this
instance (¢;(x))52, defines the partial quotients of the nearest integer continued
fraction expansion. For n > 1 we always have that ¢, (z) > 2 and that ¢, (z) +
6n+1($) Z 1.

In section 2.1, using the ergodic theory of S and its natural extension we state
and prove some results concerning the moving average behaviour of the nearest
integer continued fraction expansion. These results extend certain earlier work
of G. J. Rieger [Ri]. The sequence (%):;1 in the case of the nearest integer
continued fraction expansion is a subsequence of the corresponding sequence for
the regular continued fraction expansion [Pe p. 168-78]. Recall the inequality

1

P,
S @a

r — —

@n
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which is classical, well known and due to L. J. Dirichlet [HW p.194-8] for regular
continued fractions and hence also for the nearest integer continued fractions,
their convergents being a subsequence of those of the regular continued fraction
expansion. Clearly if for each natural number n we set

P

Pn(z) = Q% T = Q_:
for the nearest integer continued fraction expansion, then for each x the sequence
of numbers (¢, (z))32; lies in the interval [0, g] where ¢ = 1(v/5 — 1) [Pe

p. 168-78]. In section 2.2, extending work of H. Jager [J] and C. Kraaikamp
[Krl] we state and prove results concerning the distribution of the sequence
(o ()52, for almost all x with respect to Lebesgue measure. Section 2.3 studies
other arithmetic sequences attached to the nearest integer continued fraction
expansion. An analogous study of the regular continued fraction appears in [KN].

We now state the moving average ergodic theorem [BJR]. We begin by intro-
ducing some notation. Let Z be a collection of points in Z x N and let

Z" = {(n,k) : (n,k) € Zandk > h},
Zh = {(z,s) € Z* : |z — y| < a(s — r) for some (y,7) € Z"}

and

ZMN) = {n: (n,\) € 2. (AeN)
Geometrically we can think of Z! as the lattice points contained in the union
of all solid cones with aperture o and vertex contained in Z! = Z. We say a
sequence of pairs of natural numbers (n;, ;)72 is Stoltzif there exists a collection
of points Z in Z x N, and a function h = h(t) tending to infinity with ¢ such
that (ng, k)2, € ZM®) and there exist hg, ap and A > 0 such that for all
integers A > 0 we have [Z/2(\)] < AX. Our main tool is the following theorem
[BJR].
THEOREM 1. Let (X,08,,u,T) denote a dynamical system, with set X, a o-
algebra of its subsets 8, a measure pu defined on the measurable space (X, [3)
such that w(X) = 1 and a measurable, measure preserving map T from X

to itself. Suppose f is in L*(X, 3, ) and that the sequence of pairs on natural
numbers (n, kp);2, is Stoltz then if (X, 5, u,T) is ergodic,

exists almost everywhere with respect to Lebesgue measure.
Note that if my ¢(z) = kil S F(T ) then

my g (Tx) —myp(x) =k (FTMHRTY) = F(T ).
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This means that m¢(Tz) = my(x) p almost everywhere. A dynamical system
(X, B, 1, T) is called ergodic if given any A € 3 for which T71'A := {zr € X :
Tx € A} = A, the set A has either full or null measure. A standard fact in ergodic
theory is that if (X, 8, u, T') is ergodic and m¢(T'z) = my(x) almost everywhere,
then my(z) = [ fdp p almost everywhere [CFS p.14]. The term Stoltz is used
here because the condition on (k;, n;);°, is analogous to the condition required in
the classical non-radial limit theorem for harmonic functions also called a Stoltz
condition, which suggested the above theorem to the authors of [BJR]. Averages

where k; = 1 for all [ will be called non-moving. Moving averages satisfying
the above hypothesis can be constructed by taking for instance n; = 22" and
ko= 2270,

2. Applying ergodic theory to the nearest integer
continued fraction expansion

2.1. Average behaviour of convergents

Let G = 1(1 + V/5). Also let n denote the measure on (—1%, 1) given for

arbitrary Lebesgue measurable sets £ C (—%, %) by
1

n(kE) = logG/Ep(t)dt,

p(t) = Gy if t > 0 and p(t) = gy if £ <0
It was shown in [Ri] that 7 is preserved by the map S and that the dynamical
system (€, 3,1,5), where 8 denotes the o-algebra of Lebesgue measurable sets
is ergodic. This fact via Theorem 1 has a number of arithmetic consequences.
Our first theorem is the following

where

THEOREM 2.1. Suppose we are given two integers ¢ and € with ¢ > 2, € in
{—1,1} and such that ¢ + € > 2. Suppose also that (n, k)52, is Stoltz. Then if

L (4e + € — 3 + 2B)(4c + ¢ — 5 + 2V5)

L(c,e) = 0 ;
() = g0 (e v c = 7 1 2B (e T € — 1 & %)
1
lim — {1 < i <ki: cpri(x) = ¢ €n0q = €} = Llcye),
l—oo ky )

almost everywhere with respect to Lebesgue measure.
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Proof. Note that z is in

b 4 4
Ge de+e+ 14c+e— 1
if and only if
e1(x) = min(1,¢i(x)) = min(ez(x),c) = e € {—1,1},

and that x is in

B — —4 7 —4
“f de+e+ 1de+e— 1
if and only if
e1(x) = min(—1,¢1(x)) = min(ez(z),c) = e ={-1,1}.

Applying Theorem 1 to the characteristic function of the set Bze U B_ . we see
that the required averages converge to

1 1 (4c+€—3+2V5)(dc+ € — 5+ 2/5)
p(t)dt = 0g :
log G Jp+.uB:. logG " (4c+ e — T+ 2V5)(4c + e — 1 +2V/5)

as required. 0

We have the following general result concerning the average behaviour of
the convergents. See [KN] for an analogous result about the the convergents of
regular continued fraction expansion.

THEOREM 2.2. Suppose the function F with domain the non-negative real num-
bers and range the real numbers is continuous and increasing. For each natural
number n and arbitrary non-negative real numbers ay,--- , a, we define

1 n
Mpa(aq, - ,a,) = F71|= Fla.
Fon(ay ) ”;:1 (a;)

Then if the sequence of pairs of natural numbers (ng, k)72, is Stoltz

llirgoMF,n(an—l(x)v’” ’ Cﬂz+kz(x)) = F! LO;Q/_E F(Cl(t))dp(t)‘| ’

1
2

almost every where with respect to Lebesgue measure.

Proof. If Fin L'(n) the result follows immediately from Theorem 1. If however
F is not in L'(n), set

fu(x) == F(c1(z)) if F(e1(z)) < M and fa(z) == M if F(ci(x)) > M.
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This means that for each M > F(1) and almost all  with respect to Lebesgue
measure we have

lim sup — F(e
oo ki Z (@

B log G
which tends to infinity with M, as required. O

Finally in this section we note the following result.

THEOREM 2.3. If the sequence of pairs of natural numbers (ng, k)2, is Stoltz,
then

i 3 o) = oS
Am oD emi(®) = oz o8 7

almost everywhere with respect Lebesgue measure.

Proof. Note that €,-1(Sz) = ¢,(z) and application of Theorem 1 gives the
result. O

2.2. Average behaviour of the approximation constants (¢, (z))5%,

In this section we prove a result relating to the distribution of the sequence of
pairs (¢n—1(2), dn(x))o for almost all  with respect to Lebesgue measure. Let
I'; be the interior of the quadrilateral; with vertices (0,0), (g,0), (2¢%, ¢?) and
(0,1) where g = 2(v/5 — 1). Also let I'_; be the interior of the quadrilateral
with vertices (0,0), (¢2,0), (2¢% g) and (0,3). Further put I' = Iy UT'_;.
In [Kr] it is shown that for all irrational x the sequence is distributed over T
Further where G = 1(v5 + 1) set

1 1 .
fila, B) = 1ogGmlf1 — 4aB > 0
and 1 1
falef) = gy i1+ aB > 0
Also set
Set f(a,B) = fi(a,B) if (o, 8) € T \T'-q;set f(a,B) :== fi(e, B) +
f-1(e, B) if (o, B) € ThiNI'—y and set f(a, B) == f-1(a, B) if (o, ) € T'-1\I'y
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Then we have the following theorem.

THEOREM 2.4. Suppose A is a Borel subset of the set I' then if the sequence of
pairs of natural numbers (ng, k)72, is Stoltz we have

I—oo ki

lim —ZXA burti1() Gursala)) = [ fleB)dar B

almost everywhere wzth respect to Lebesque measure.

The stationary variant of Theorem 2.4 appears in [Kr]. To prove Theorem 2.4
we need to use the ergodic properties of the map S associated to the nearest
integer continued fraction expansion or more accurately its natural extention.
In particular we need the following theorem to be found in either [Ri] or [INT].
See also [N].

THEOREM 2.5. Let

={r € Q:2 <0}x[0,g—1U{z € Q : 2z > 0} x]0,9).
Let B denote the o-algebra of Borel sets in D and let 1 be the measure defined on
the measurable space (D, ) with Radon - Nikodym derivative (log G)~*(1 + zy)?

relative to two dimensional Lebesgue measure on D. Also define the map N :
D — D by

N(xay> - (va (cl + 61y)_1)'
Then the dynamical system (D, 3, u, N) is ergodic.

The dynamical system (D, 3, u, N) is the natural extention of the nearest
integer continued fraction transformation (2, 8,7, .5), defined in the introduction
and [Ri]. See [CFS p. 239-41] for a formal discussion of the natural extension. In
[Pe p. 168-78] it is shown that if x is irrational then % < gandife, > 3

then % < ¢2. We readily see that (S™z, ch L) isin D.

To prove Theorem 2.4 we need to prove the following theorem.

THEOREM 2.6. Suppose A is a Borel subset of the set D. Then if the sequence
of pairs of natural numbers (ng, ki), is Stoltz we have

Qny+i— 1 / dzdy
i — nH—z l _
lg& ZXA (5%, inﬂ logG + zy)?

almost everywhere wzth respect to Lebesgue measure.
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Proof. Note that €,(z) = € (S" 'z) and so from the procedure for defin-
ing the nearest integer continued fraction expansion we observe the following
recurrence relations:

(2.1) Py =1;,P =0PFP, = cPr1 + €,Pr—2 (n = 1,2,--+)
and
(22) Q*l = 1; QO - 0; Qn - Cnanl + 6nQn72- (n - 1a27)

The analoguous recurrence relation for the regular continued fraction expansion
is well known and proved similarly. Using (2.1) and (2.2) and the definition of
the map S we readily see that for each natural number n

(2.3) N™(z,0) = (S"z, ch—l ).
Note that
% - [07 Cny €nCn—1,""" ,€2C1}.

We also easily check that for any y such that (z,y) € D
lim (N"(z,0) — N"(z,y)) =0.

n— oo

Let B be the set of x for which the conclusion of Theorem 2.6 fails and let
C={xreB:2 < 0}x[0,g—1)U{z € B:z > 0}x]0,9).

Then for almost all (z,y) in C' the sequence N"(x,y) is not distributed with
respect to the measure having Radon - Nikodym derivative (log G)~*(1 + zy)?
relative to two dimensional Lebesgue measure on D. This is in contradiction to
Theorem 1 unless the measure of B is zero as required. O

We now complete the proof of Theorem 2.4. The following discussion also
appears in [Kr]. First we note by induction that

P, (=1)"(x)---en(x)Sm

¢ — 2N = n =12
Qn = Qu@n + Qui5m) ( )

and from the fact €,115"z > 0 we see that
dn(z) = _ e (n =1,2,-)

1+ G=tgng

Also because )

1
———— = Cp+1 -+ S’Il+ T
€nt15™x
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and 0 0
Qn—;rl = Cpt1 T €nt1 5;17
we have 0
1
On(x) = L .
(@) Qn-11 + —QQ”’ Sn—lyg
n+1
Let
b a

(a,8) = F(a,b) = (
for ab # 1. Then F has derivative

—b° 1
F'(a,b) = ( G +a2b>2>

TT a0 T fab)?

1 + ab’ 1 —l—ab)

and Jacobian J = —(1 — ab)(1 + ab)~3. Then as a consequence of Theorem 2.6
for almost all z with respect to Lebesgue measure (F(S"x), Q5;1 )52, which
is just the sequence (¢n (), €np1dns1(x))22,, is distributed over I'y UT}, with
density \J\lﬁ W Here I'7 is the reflection of I'; in the o axis. Thus from
the definition of F' we have

1 1 1 1

[JlogG (1 + ab)? — [J[logG (1 — 4ap)?

and the other details follow analoguously and so Theorem 2.4 is proved. O

Corollaries of Theorem 2.4
Apply Theorem 2.4 with
A= {(z,y) € D: 2 < aand y < b}

we have the following moving average analogue of the Doeblin-Lenstra conjecture
proved in [BJW].

COROLLARY 2.7. Let
G(Z)_{logG isz[O,l—g};

@(z - 15 tlg5 + 1) ifz € 1-—g9,9]

Then if the pair of sequences of natural numbers (ny, k)i, is Stoltz we have

lim ~[{1 <i <k : dmailz) < 2} = G(2)

=00 K

for almost all x with respect to Lebesque measure.
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To derive our next result we need the following Lemma [Kr].

LEMMA 2.8. Let A(a) be the interior of the triangle in the («, ) plane with
vertices (0,0), (0,a) and (a,0) with0 < a < bg — 2. Set

1 a
H@ = o [ /A g, Sy = /0 ha () dt

1 a
x,y)dzdy = / h_1(t)dt.
log G //A(a)ﬁFl fl@ y)dzdy 0 )
Then for a in [0,59 — 2]

and
H,1 (CL) =

210gG IOg 1+a Zfa € {Oa %}
log 3 ifac [3,9]
ha(a) = 210gG 2
1( ) 210gG IOg 1+Egz:3 B 1Og(}jg) Zfa € (ga 39 - 1]
0 ifa € (3g—1,5g—2]
and
loglG arctana 'Lfa € [0792}
h_i(a) = @ arctan g2 if a € (g2, %}
loglg(arctan(Sg —2) —arctana) if a € (3,59 — 2

We have the following result.

COROLLARY 2.9. Let h = hy + h_y. Then if the sequence of pairs of natural
numbers (n, k)52, is Stoltz

i LSSk Gusina(e) + duele) < ol = [ " (),

I—oo k

almost everywhere with respect to Lebesgue measure.

Proof. If A( ) is as in the statement of Lemma 2.8 we have

ZIE&_Hl <i <k: ¢sz+i*1(‘r) + ¢sz+i(x) <a € = 1}‘
= [z, y)dzdy,
lOgG//A(a)ﬂl"l (z.9)

lim _|{1 <i <kt fngioi(T) + ppi(r) < a e, = —1}

-0 k
= f(x,y)dzdy.
IOgG//A(a)ﬂl“l (=:9)

and
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Thus Corollary 2.9 follows from Lemma 2.8. ]
In [Kr] it is shown that for irrational x —g < ¢,—1(x) — ¢n(z) < g for

all positive integers n. We have the following result proved in the same way to
Corollary 2.9.

COROLLARY 2.10. Letk = k1 + k_;

mogc(log?» + log %) ifa € [-4,3g 2]
ky(a) = 210gG210g5 ) ifa € (3g—2,0]
210gG( 10g5 - IOg +a) Zfa € (9739_1}
0 ifa € (429
and
lgG(arctam; +arctana) ifa € [_%’0]
k_i(a) = logGarctan§ ifa € (0,59 — 3]

@(arctang — arctana) ifa € (59— 3,¢].

Then if the sequence of pairs of natural numbers (ng, k)72, is Stoltz

I—oo k

fim {1 <0 < uini(@) = Guilo) < a] = / k(t)dt,
0

almost everywhere with respect to Lebesgue measure.

2.3. Other sequences attached to the nearest integer continued frac-
tion expansion

Theorem 1 has a number of other consequences for the nearest integer con-
tinued fraction expansion which we now describe. Let

() = {@(log(l + £) — log(l — 52)) if z € (0,97
g log(l + 3) — log(1 — %)) ifz € (4% 4]

Note that L is monotonically increasing, continuous and such that L(0) = 0
with L(g) = 1. We have the following theorem

THEOREM 2.11. If the sequence of pairs of natural numbers (ny, k;);2, is Stoltz

then
lim —|{1 < i < K OQuvi
=0 k Qm-i—i—l

almost everywhere wzth respect to Lebesgue measure.

<z} = L(2),
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Proof. Let
A(z) = {(z,y) : (zy) € Dy < 2}

Qn—l
@n

As a consequence of this observation and (2.3) we see that for n > ng(e) and
any (z,y) € D if

We note that

- [07 Cny€nCn—1,""", 6201}*

N"(z,y) € A(z — ¢)
then
N"™(z,y) € A(z).
< z and which in turn implies
N™(z,y) € A(z + o).

Hence, for almost all x with respect to Lebesgue measure, using the argument
used to prove Theorem 2.6 we see that

This is equivalent to %

1 ny+1
lim —{1 < i < Ky :Qiﬂr <z} = wp(A(2)).
I=00 ki Qny+i—1

Computation reveals that pu(A(z)) = L(z), as required. O

Taking first moments and evaluating fog zdL(z) we readily have the following
theorem.

THEOREM 2.12. If the sequence of pairs of natural numbers (ny, k)i, is Stoltz,
then

ki
.1 Qny+i 1
lim — d = VB — 2 4+ 4log2 + 2log(v5 — 2)),
l—o0 kl z:zl in+i71 10gG( & g( ))

almost everywhere with respect to Lebesque measure.

For z € [0, %] let

Mi(z) = 1o;G <log(1 Yoz - 1izlog(2Gz))
and for z € [0, %} let
My(z) = — <—log(1 - 2 log(2Gz)).
log G 1—2z
Next define M : [0,4] — [0,1] that is continuous and monotonically

increasing by
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M M. if 7
M(z) = MG+ 2(? e c {2’2 2;
Mi(z) + My(%) ifz € (%, 9]
Further let
- &
x — —_—n
Rn = Qn . (n = 172’)
_ Pnfl
"” ap—y

In [Pe p. 168-78] it is shown that 0 < R, < { for irrational 2. We have the
following theorem,

THEOREM 2.13. If the sequence of pairs of natural numbers (ng, ky)j2, is Stoltz
then

1
l

l—o0 -

almost everywhere with respect to Lebesque measure.

Proof. Let

Bi(z) = {(z,y) € D:x > 052y < 2}
and let

B_(z) = {(z,y) € D : 2z < 0; |z|ly < z}.

Then using the fact that

Qn—l
R, = ——|N"x
o, N

and the argument used in the proof of Theorem 2.11 we have that

lm LS 0 S ki Rus < 2] = a(Bi() + a(B- ()
Computation varifies that if z € [0, §]
w(By(2)) = M(2)
and that if z € [0,%]

u(B-(2)) = Ma(2),

completing the proof of Theorem 2.13. O

Let Liy(z) denote the dilogarithm defined for instance in [Ri]. Again taking
first moments we have the following result.
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THEOREM 2.14. If the sequence of pairs of natural numbers (ny, k;);2, is Stoltz

then
ky 2 2
. 1 1 s . g
lim — i = —3 — log2 — | = log4 — 2L Z ,
ziﬂkl;Rﬁ 3 = log2 + logG<12 T o8 12(2))

almost everywhere with respect to Lebesque measure.
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