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JOINT DISTRIBUTION OF DISCRETE
LOGARITHMS

IGOrR E. SHPARLINSKI

ABSTRACT. We improve a recent result by D. J. Gibson on the joint distribution
of discrete logarithms modulo a prime p of integers x1,...,z, that run indepen-
dently through short arithmetic progressions. This improvement is based on an
alternative approach, which makes use of bounds of multiplicative character sums.

Communicated by Sergei Konyagin

1. Introduction

Let g be a fixed primitive root modulo a prime p. As usual, for an integer x
with ged(x,p) = 1 we define the discrete logarithm ind 2 by the conditions

gindm = (mod p) and Oglndx<p—1

We also set indz = p— 1 if p | . The question of distribution of values of ind
has a long history that dates back to early works of Vinogradov [I1]. Recently,
Gibson [2] considered the join distribution of the points

ind ind
(m noo f”) neT...m el W
p—1 p—1
in the r-dimensional unit cube U", where the variables x1,...,x, run indepen-
dently trough N-term arithmetic progressions of the form
Ij:{hj+kjn : nzl,...,N}, (2)
with some integers h; and k;, ged(kj,p) =1, j = 1,...,r. Note that in [2] only
the case of equal progressions Z; = ... = Z,. is considered, but the extension of

the method and the result to the general case is immediate. In particular, it is
shown in [2, Theorem 1] that for a very wide class of domains @ C U", including
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all convex domains, the number T'(Zy,...,Z,,Q) of points (I]) that fall inside of
Q) satisfies the bound

T(ZTy,.... T, Q) = p(QN" + O(N" ' p' =127 (log p)?),

where 1 is the Lebesgue measure on U”. Note that the result of [2] is slightly more
precise, but the difference is essential only for N that is close to the threshold
p'=1/2" when it becomes trivial.

Gibson [2] uses bounds of exponential sums.

Here we show that using multiplicative character sums one almost instantly
obtains a stronger result which is nontrivial in a much wide region.

THEOREM 1. For any r arithmetic progressions [2)) with ged(kj,p) =1, j =
1,...,7, of length N < p and any domain  C U" whose surface is a manifold
of dimension r — 1, we have

(T, ..., T,,Q) = u(Q)N" + O (NT—l/rup(u+1)/4ry2+o(1)) :

where v is an arbitrary fived positive integer and the implied constant depends
only on r, v and the size of the surface of ).

Clearly for any fixed & > 0, Theorem [} is nontrivial for N > p'/4te (rather
than N > p!=1/27%¢ a5in [2]) provided that p is large enough. The same approach
(with only small notational changes) also works for the joint distribution of r
discrete logarithms taken to r distinct bases.

2. Background on the Theory of Uniform Distribution

Given a sequence I' of M points

I'= {('Vm,lv'“a%n,r) 7]\;;[;017 (3)
in U", we define its discrepancy with respect to a domain 2 C U" as

#N ()
—pu(Q
7 M)
where, as before, p is the Lebesgue measure on U” where N(2) is the number
of points ([@)) inside .
We now define the discrepancy of I' as

D) = Sup A, 1),

)

AT, Q) = ‘

where the supremum is taken over all boxes
11 = {Ozl,ﬂ1) X ... X [Ozr,ﬂr) - U,
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Typically the bounds on the discrepancy of a sequence are derived from
bounds of exponential sums with elements of this sequence. The relation is made
explicit in the celebrated Koksma—Sziisz inequality, see [I, Theorem 1.21], which
we present in the following form.

LEMMA 2. Suppose that for the sequence of points [@B) for some integer L > 1
and the real number S we have

M—-1 r
Z exp | 2mi Z ajYm,j || <5,
m=0 j=1

for all integers —L < a; < L, j=1,...,r, not all equal to zero. Then,
1 (logL)"
D(T — S

where the implied constant depends only on r.

As usual, we define the distance between a vector u € U and a set Q C U”
by
dist(u, 2) = inf |ju—w|,
we
where ||v|| denotes the Euclidean norm of v. Given ¢ > 0 and a domain 2 C U"
we define the sets

QF ={ueUn\Q : dist(u,Q) < &}
and
Q ={ueQ : dist(u,U"\Q) < e}.
Let h(e) be an arbitrary increasing function defined for e > 0 and such that
gl_rg’(l) h(e) = 0.
As in [7, 8], we define the class ¥, of domains Q@ C U for which
p(QF) <h(e)  and  p(Q7) <hle)
for any € > 0.
A relation between D(I") and A(T, Q) for Q € ¥, is given by the following
inequality of [7] (see also []]).

LEMMA 3. For any domain 2 € Xy, we have
AL, Q) < h <r1/2D(F)1/T> .
Finally, the following bound, which is a special case of a more general result

of H. Weyl [12] shows that if the boundary of €2 is a manifold then Q € X}, for
some linear function h(e) = Ce.
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LEMMA 4. If the surface of Q) is a manifold of dimension r — 1,

p(9QF) = 0(e),
where the implied constant depends only on the size of the surface of §2.

REMARK 5. It is easy to see that for convexr domains ), the implied constant in
Lemma [§] depends only on r.

3. Background on the Multiplicative Characters

We recall that the set of functions

ind
Xa(z)—exp<27riam 21>7 a=0,...,p—2, (4)
p

form the set of multiplicative characters on modulo p (where we also set x,(0) =
0).

Our main tool is the following combination of the Pélya-Vinogradov (for
v = 1) and Burgess (for v > 2) bounds, see [4, Theorems 12.5 and 12.6].

LEMMA 6. For arbitrary integers W and Z with 1 < Z < p, the bound

W+Zz ,
< 71=1/v (v+1)/4v7+0(1)
L max > xal2)| <2 p
z=W+1

holds with any fized positive integer v.
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4. Proof of Theorem [I]

Using (@), we derive that for any integers —p+2<a; <p—2,j=1,...,r,
we have

Z Z exp | 2mi ! iajindxj
=1

—1
z1 €T, €L, p j=

= > D Xa @) Xa (@) = [ D2 xa, ()

xr1€T, x,. €L, j=1 Tj EIJ'
r N r
=TI D xa, (i +kjmy) =T D Xa, ()
j=1n;=1 Jj=1lz;€T;
r N r N
=11 D xa,(hs + kjny) = T ] xa, (k) D Xa, (4 + 1),
j:l ’I’Lj:]. ]:1 ’I’Lj:].

where /; satisfies the congruence k;¢; = h; (mod p) (we recall that ged(k;,p) =
1), =1,...,7r. If not all integers aq,...,a, are equal to zero, then applying
Lemma [6] we immediately conclude that

1 T
Z Z exp | 27 1 Zajind;z;j gNrfl/vp(u+1)/4u2+o(1)
x1€1; x,.€L, p—= J=1

holds with any fixed positive integer v. Thus, using Lemma[2 with L = p—2, we
see that the discrepancy of the points ([J) is bounded by N’l/l’p(”ﬂ)/‘l”Q*O(l).
Now, applying Lemmas [3] and [, we conclude the proof.

5. Comments

As we see from Remark [l for convex domains €2, the implied constant in
Theorem [ depends only on r and v.

It is easy to see that question of distribution of the points (1) in boxes can be
reduced to r independent questions about the number of solutions to congruences
of the type

¢g=x (modp), z€Z, yeJ
where 7 is an N-term arithmetic progression and J is an interval of length T
This and several related questions of this kind have been considered in a number
of works, see [3 [0 [6] and references therein.
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Finally, we note that our result combined with classical results of Schmidt [9)]
in the theory of uniform distribution and some ideas of [10], can be used to
derive a sharp asymptotic formula for the number of points

ind xq ind x,

c,Xy) € O

(p—].’ 7p_1>7 (:Ela 7x)

that in the r-dimensional unit cube U", that fall inside of € for two domains
0,0CU.
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