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JOINT DISTRIBUTION OF DISCRETE

LOGARITHMS

Igor E. Shparlinski

Abstract. We improve a recent result by D. J. Gibson on the joint distribution
of discrete logarithms modulo a prime p of integers x1, . . . , xr that run indepen-
dently through short arithmetic progressions. This improvement is based on an
alternative approach, which makes use of bounds of multiplicative character sums.

Communicated by Sergei Konyagin

1. Introduction

Let g be a fixed primitive root modulo a prime p. As usual, for an integer x
with gcd(x, p) = 1 we define the discrete logarithm ind x by the conditions

gindx ≡ x (mod p) and 0 � ind x < p− 1.

We also set ind x = p− 1 if p | x. The question of distribution of values of ind x
has a long history that dates back to early works of Vinogradov [11]. Recently,
Gibson [2] considered the join distribution of the points(

indx1

p− 1
, . . . ,

indxr

p− 1

)
, x1 ∈ I1, . . . , xr ∈ Ir, (1)

in the r-dimensional unit cube U
r, where the variables x1, . . . , xr run indepen-

dently trough N -term arithmetic progressions of the form

Ij = {hj + kjn : n = 1, . . . , N}, (2)

with some integers hj and kj , gcd(kj , p) = 1, j = 1, . . . , r. Note that in [2] only
the case of equal progressions I1 = . . . = Ir is considered, but the extension of
the method and the result to the general case is immediate. In particular, it is
shown in [2, Theorem 1] that for a very wide class of domains Ω ⊆ U

r, including
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all convex domains, the number T (I1, . . . , Ir,Ω) of points (1) that fall inside of
Ω satisfies the bound

T (I1, . . . , Ir,Ω) = μ(Ω)N r +O(N r−1p1−1/2r(log p)2),

where μ is the Lebesgue measure on U
r. Note that the result of [2] is slightly more

precise, but the difference is essential only for N that is close to the threshold
p1−1/2r when it becomes trivial.

Gibson [2] uses bounds of exponential sums.

Here we show that using multiplicative character sums one almost instantly
obtains a stronger result which is nontrivial in a much wide region.

������� 1� For any r arithmetic progressions (2) with gcd(kj , p) = 1, j =
1, . . . , r, of length N < p and any domain Ω ⊆ U

r whose surface is a manifold
of dimension r − 1, we have

T (I1, . . . , Ir,Ω) = μ(Ω)N r +O
(
N r−1/rνp(ν+1)/4rν2+o(1)

)
,

where ν is an arbitrary fixed positive integer and the implied constant depends
only on r, ν and the size of the surface of Ω.

Clearly for any fixed ε > 0, Theorem 1, is nontrivial for N > p1/4+ε (rather
thanN > p1−1/2r+ε as in [2]) provided that p is large enough. The same approach
(with only small notational changes) also works for the joint distribution of r
discrete logarithms taken to r distinct bases.

2. Background on the Theory of Uniform Distribution

Given a sequence Γ of M points

Γ = {(γm,1, . . . , γm,r)}M−1
m=0 , (3)

in U
r, we define its discrepancy with respect to a domain Ω ⊆ U

r as

Δ(Γ,Ω) =

∣∣∣∣#N(Ω)

M
− μ(Ω)

∣∣∣∣ ,
where, as before, μ is the Lebesgue measure on U

r where N(Ω) is the number
of points (3) inside Ω.

We now define the discrepancy of Γ as

D(Γ) = sup
Π⊆Ur

Δ(Γ, Π),

where the supremum is taken over all boxes

Π = [α1, β1)× . . .× [αr, βr) ⊆ U
r.
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Typically the bounds on the discrepancy of a sequence are derived from
bounds of exponential sums with elements of this sequence. The relation is made
explicit in the celebrated Koksma–Szüsz inequality , see [1, Theorem 1.21], which
we present in the following form.

����	 2� Suppose that for the sequence of points (3) for some integer L � 1
and the real number S we have∣∣∣∣∣∣

M−1∑
m=0

exp

⎛
⎝2πi

r∑
j=1

ajγm,j

⎞
⎠
∣∣∣∣∣∣ � S,

for all integers −L � aj � L, j = 1, . . . , r, not all equal to zero. Then,

D(Γ) � 1

L
+

(logL)r

M
S,

where the implied constant depends only on r.

As usual, we define the distance between a vector u ∈ U
r and a set Ω ⊆ U

r

by
dist(u,Ω) = inf

w∈Ω
‖u−w‖,

where ‖v‖ denotes the Euclidean norm of v. Given ε > 0 and a domain Ω ⊆ U
r

we define the sets

Ω+
ε = {u ∈ U

r\Ω : dist(u,Ω) < ε}
and

Ω−
ε = {u ∈ Ω : dist(u,Ur\Ω) < ε} .

Let h(ε) be an arbitrary increasing function defined for ε > 0 and such that

lim
ε→0

h(ε) = 0.

As in [7, 8], we define the class Σh of domains Ω ⊆ U
r for which

μ
(
Ω+

ε

)
� h(ε) and μ

(
Ω−

ε

)
� h(ε)

for any ε > 0.

A relation between D(Γ) and Δ(Γ,Ω) for Ω ∈ Σh is given by the following
inequality of [7] (see also [8]).

����	 3� For any domain Ω ∈ Σh, we have

Δ(Γ,Ω) � h
(
r1/2D(Γ)1/r

)
.

Finally, the following bound, which is a special case of a more general result
of H. Weyl [12] shows that if the boundary of Ω is a manifold then Ω ∈ Σh for
some linear function h(ε) = Cε.
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����	 4� If the surface of Ω is a manifold of dimension r − 1,

μ
(
Ω±

ε

)
= O(ε),

where the implied constant depends only on the size of the surface of Ω.


��	�� 5� It is easy to see that for convex domains Ω, the implied constant in
Lemma 4 depends only on r.

3. Background on the Multiplicative Characters

We recall that the set of functions

χa(z) = exp

(
2πia

ind z

p− 1

)
, a = 0, . . . , p− 2, (4)

form the set of multiplicative characters on modulo p (where we also set χa(0) =
0).

Our main tool is the following combination of the Pólya-Vinogradov (for
ν = 1) and Burgess (for ν � 2) bounds, see [4, Theorems 12.5 and 12.6].

����	 6� For arbitrary integers W and Z with 1 � Z � p, the bound

max
a=1,...,p−2

∣∣∣∣∣
W+Z∑

z=W+1

χa(z)

∣∣∣∣∣ � Z1−1/νp(ν+1)/4ν2+o(1)

holds with any fixed positive integer ν.
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4. Proof of Theorem 1

Using (4), we derive that for any integers −p+ 2 � aj � p− 2, j = 1, . . . , r,
we have

∑
x1∈I1

. . .
∑

xr∈Ir

exp

⎛
⎝2πi

1

p− 1

r∑
j=1

aj indxj

⎞
⎠

=
∑

x1∈I1

. . .
∑

xr∈Ir

χa1
(x1) . . . χar

(xr) =

r∏
j=1

∑
xj∈Ij

χaj
(xj)

=

r∏
j=1

N∑
nj=1

χaj
(hj + kjnj) =

r∏
j=1

∑
xj∈Ij

χaj
(xj)

=

r∏
j=1

N∑
nj=1

χaj
(hj + kjnj) =

r∏
j=1

χaj
(kj)

N∑
nj=1

χaj
(�j + nj),

where �j satisfies the congruence kj�j ≡ hj (mod p) (we recall that gcd(kj , p) =
1), j = 1, . . . , r. If not all integers a1, . . . , ar are equal to zero, then applying
Lemma 6 we immediately conclude that∣∣∣∣∣∣

∑
x1∈I1

. . .
∑

xr∈Ir

exp

⎛
⎝2πi

1

p− 1

r∑
j=1

aj ind xj

⎞
⎠
∣∣∣∣∣∣ � N r−1/νp(ν+1)/4ν2+o(1)

holds with any fixed positive integer ν. Thus, using Lemma 2 with L = p−2, we

see that the discrepancy of the points (1) is bounded by N−1/νp(ν+1)/4ν2+o(1).
Now, applying Lemmas 3 and 4, we conclude the proof.

5. Comments

As we see from Remark 5, for convex domains Ω, the implied constant in
Theorem 1 depends only on r and ν.

It is easy to see that question of distribution of the points (1) in boxes can be
reduced to r independent questions about the number of solutions to congruences
of the type

gy ≡ x (mod p), x ∈ I, y ∈ J,

where I is an N -term arithmetic progression and J is an interval of length T .
This and several related questions of this kind have been considered in a number
of works, see [3, 5, 6] and references therein.
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Finally, we note that our result combined with classical results of Schmidt [9]
in the theory of uniform distribution and some ideas of [10], can be used to
derive a sharp asymptotic formula for the number of points(

ind x1

p− 1
, . . . ,

ind xr

p− 1

)
, (x1, . . . , xr) ∈ Θ,

that in the r-dimensional unit cube U
r, that fall inside of Ω for two domains

Θ,Ω ⊆ U
r.
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