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ABSTRACT. In Part I of this paper we constructed a two dimensional binary
lattice by using the Legendre symbol and polynomials of two variables, and we
studied its pseudorandom properties. We proved that if the polynomial is non-
degenerate then under certain conditions the lattice possesses strong pseudoran-

dom properties, while in the degenerate case it may occur that the lattice has
only weak pseudorandom properties. In this paper we continue our analysis of
the degenerate case and we will give both lower and upper bounds for the pseu-
dorandom measures of the lattices. We will also give an algorithm to decide if
a polynomial is degenerate. Finally, we shall construct a large family of non-
degenerate polynomials satisfying one of the sufficient conditions for which the

corresponding lattices have strong pseudorandom properties.

Communicated by Christian Mauduit

1. Introduction

First we recall some definitions, notation and results from Part I [3] of this
paper.

In 1997 Mauduit and Sárközy [6] initiated a new, constructive approach to
the theory of pseudorandomness of binary sequences. Their paper was followed
by many other papers written on this subject (see the survey paper [10] and the
references in [2]). This theory has been extended to n dimensions by Hubert,
Mauduit and Sárközy [5]. They introduced the following definitions:

Denote by InN the set of n-dimensional vectors whose coordinates are integers
between 0 and N − 1:

InN = {x = (x1, . . . , xn) : x1, . . . , xn ∈ {0, 1, . . . , N − 1}}.
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This set is called an n-dimensional N -lattice or briefly an N -lattice. Here we
will extend this definition to more general lattices in the following way. Let
u1,u2, . . . ,un be n linearly independent vectors, where the i-th coordinate of
ui is a positive integer, and the other coordinates of ui are 0, so ui is of the
form (0, . . . , 0, zi, 0, . . . , 0) (where zi ∈ N). Let t1, t2, . . . , tn be integers with
0 ≤ t1, t2, . . . , tn < N . Then we will call the set

Bn
N = {x = x1u1 + · · ·+ xnun : 0 ≤ xi |ui| ≤ ti(< N) for i = 1, . . . , n}

an n-dimensional box N -lattice or briefly a box N -lattice.

In [5] the definition of binary sequences is extended to more dimensions by
considering functions of type

ex = η(x) : InN → {−1,+1}.
If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will slightly simplify
the notation by writing η(x) = η(x1, . . . , xn).

Such a function can be visualized as the lattice points of the N -lattice replaced
by the two symbols + and −, thus they are called binary N -lattices. Binary 2 or
3 dimensional pseudorandom lattices can be used in encryption of digital images.

In [5] Hubert, Mauduit and Sárközy introduced the following pseudorandom
measure of binary lattices (here we will present the definition in a slightly mod-
ified but equivalent form):

���������� 1� Let

η : InN → {−1,+1}.
The pseudorandom measure of order � of η is defined by

Q�(η) = max
B,d1,...,d�

∣∣∣∣∣
∑
x∈B

η(x+ d1) · · · η(x+ d�)

∣∣∣∣∣ ,
where the maximum is taken over all distinct d1, . . . ,d� ∈ InN and all box N -
lattices B such that B + d1, . . . , B + d� ⊆ InN .

Then η is said to have strong pseudorandom properties, or briefly, it is con-
sidered as a good pseudorandom lattice if for fixed n and � and large N the
measure Q�(η) is small (much smaller than the trivial upper bound Nn). This
terminology is justified by the fact that, as was proved in [5], for a truly random
binary lattice defined on InN and for fixed � the measure Q�(η) is small. It is less

than Nn/2 multiplied by a logarithmic factor.

In applications one needs large families of binary lattices with strong pseudo-
random properties. Constructions of this type have been given in [5], [7] and [8].
However, one would expect that, as in one dimension [1], [4], [6], [11], the most
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promising constructions can be given by using the Legendre symbol. Indeed, in
Part I [3] we presented the following construction of this type.

	��
���
���� 1� Let p be an odd prime, f ∈ Fp[x1, x2] be a polynomial in two
variables. Define η : I2p → {−1,+1} by

η(x1, x2) =

{ (
f(x1,x2)

p

)
if (f(x1, x2), p) = 1,

1 if p | f(x1, x2).
(1.1)

In [3] we showed that there are many polynomials f ∈ Fp[x1, x2] for which
the lattice η defined by (1.1) has a very regular structure, so that it certainly
cannot be considered of pseudorandom type. All these polynomials belong to
the family described in the following definition.

���������� 2� A polynomial f ∈ Fp[x1, x2] is called degenerate if there exist
λ ∈ Fp, (γ1, δ1), . . . , (γs, δs) in Fp × Fp, ϕ1, . . . , ϕs in Fp[x] and ψ in Fp[x1, x2]
for which for all (x1, x2) in Fp × Fp

f(x1, x2) = λ

⎛
⎝ s∏

j=1

ϕj(γjx1 + δjx2)

⎞
⎠ψ2(x1, x2). (1.2)

If f cannot be expressed in form (1.2) then it is said to be non-degenerate.

Notice that under this definition f(x1, x2) = xp1 + x2 is degenerate since
f(x1, x2) = x1 + x2 for all (x1, x2) ∈ Fp × Fp. We are interested in f as a
function as opposed to a formal polynomial. However if we suppose that f is of
degree less than p in x1 and in x2 then the two notions coincide and we may
view (1.2) as an identity of polynomials.

Our main result in [3] was that if f ∈ Fp[x1, x2] is non-degenerate and one
of 5 sufficient conditions hold then the pseudorandom measures associated with
(1.1) are small.

Theorem A Let f ∈ Fp[x1, x2] be a polynomial of degree k. Suppose that
f(x1, x2) cannot be expressed in the form (1.2) and one of the following 5 con-
ditions holds:

a) f(x1, x2) is irreducible in Fp[x1, x2],

b) � = 2,

c) 2 is a primitive root modulo p,

d) 4k+� < p,

e) � and the degree of the polynomial in x1 (or in x2) are odd.
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Then for the binary p-lattice defined by (1.1) we have

Q�(η) ≤ 11k�p3/2 log p.

In this paper our goal is to continue the study of Construction 1. First we
will analyze the degenerate case. In Section 2 we will analyze the structure of
the degenerate polynomials f(x1, x2), and we will introduce the notion of the
normal form and rank r = r(f) of such a polynomial. In Section 3 we will
prove that if f is degenerate, � ≤ r = r(f), η is defined by (1.1) and one of four
specified conditions holds, then Q�(η) is small. We will also present an algorithm
for deciding whether a given polynomial f(x1, x2) is degenerate and, if it is, for
determining its normal form. In Section 4 we will show that here the upper bound
r cannot be replaced by 2r. In Section 5 we will study the implementation of
Construction 1 and, in particular, we will construct a large family of polynomials
f(x1, x2) which are non-degenerate and satisfy the first sufficient condition in
Theorem A so that the binary lattice η in (1.1) possesses strong pseudorandom
properties. In particular its pseudorandom measures Q�(η) are small for � not
very large. Finally, in Section 6, we construct families of polynomials for which
the bounds for the pseudorandom measures are essentially optimal.

2. Structure of degenerate polynomials

In this section our goal is to transform the representation (1.2) of a degenerate
polynomial into another more useful one. We will need several lemmas.

����� 1� If F is a field, then in F[x1, x2, . . . , xn] every polynomial has a factor-
ization into irreducible polynomials which is unique apart from constant factors
and reordering.

Proof of Lemma 1. See, for example [9, Theorem 207]. �

����� 2� Let g1, g2 ∈ Fp[x, y] and f ∈ Fp[x] be non-zero polynomials. Suppose
that for some (α, β) ∈ Fp × Fp

g1(x, y)g2(x, y) = f(αx+ βy). (2.1)

Then there exist f1, f2 ∈ Fp[x] such that

gi(x, y) = fi(αx+ βy)

for i = 1, 2.
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Proof of Lemma 2. If (α, β) = (0, 0) the result is immediate. Thus we may
suppose that (α, β) �= (0, 0) and, without loss of generality, we may assume that
α �= 0. Put

z = αx+ βy

so that x = α−1z − α−1βy. We may now define h1, h2 in Fp[y, z] by putting

hi(y, z) = gi(α
−1z − α−1βy, y) for i = 1, 2.

From (2.1) we find that

h1(y, z)h2(y, z) = f(z). (2.2)

Write

h1(y, z) = ua(z)y
a + ua−1(z)y

a−1 + · · ·+ u0(z),

h2(y, z) = vb(z)y
b + vb−1(z)y

b−1 + · · ·+ v0(z)

and

h1(y, z)h2(y, z) = wa+b(z)y
a+b + wa+b−1(z)y

a+b−1 + · · ·+ w0(z)

where ua(z), vb(z) are not the zero polynomial. Clearly we have

wa+b(z) = ua(z)vb(z). (2.3)

But by (2.2), h1(y, z)h2(y, z) is a one variable polynomial in z, thus we have

wa+b(z) = wa+b−1(z) = · · · = w1(z) = 0 if a+ b > 0. (2.4)

It follows from (2.3) and ua(z) �= 0, vb(z) �= 0 that wa+b(z) �= 0. Thus by (2.4)
we have a + b = 0 whence a = b = 0. Then h1(y, z) = u0(z), h2(y, z) = v0(z)
which completes the proof of the lemma. �

We shall identify the elements of Fp with the p congruence classes modulo
p and shall denote the elements of Fp × Fp by (a, b) with a and b integers rep-
resenting the congruence class of a and of b modulo p. Define the subset T of
Fp × Fp by

T = {(0, 1), (1, 0), (1, 1), (2, 1), . . . , (p− 1, 1)}.
����� 3� Let f be a non-constant degenerate polynomial in Fp[x1, x2] of de-
gree less than p in x1 and in x2. Then there exist a non-zero λ in Fp, a non-
negative integer r, distinct elements (γ1, δ1), . . . , (γr, δr) from T, ψ in Fp[x1, x2]
and squarefree non-constant polynomials ϕ1, . . . , ϕr in Fp[x] for which

f(x1, x2) = λ

⎛
⎝ r∏

j=1

ϕj(γjx1 + δjx2)

⎞
⎠ψ2(x1, x2). (2.5)
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Further r is uniquely determined and the polynomials ϕj(γjx1 + δjx2) and
ψ(x1, x2) are unique up to constant factors and reordering of ϕ1(γ1x1 +
δ1x2), . . . , ϕr(γrx1 + δrx2).

We shall refer to a decomposition of f as in (2.5) as a normal form of f and
to r as the rank of f. Notice that since (γ1, δ1), . . . , (γr, δr) are distinct elements
of T we have

γjδi − δjγi �= 0 for i �= j. (2.6)

Proof of Lemma 3. Let ψ be a polynomial of largest degree for which ψ2

divides f in Fp[x1, x2]. Then since f is degenerate we may write f in the form
(1.2) with ψ as above and with (γi, δi) �= (0, 0) for i = 1, . . . , s. Further we may
suppose that ϕ1, . . . , ϕs are squarefree polynomials in Fp[x] and that ϕ1 · · ·ϕs

is also squarefree.

Suppose that ϕ is in Fp[x] and (γ, δ) are in Fp × Fp\{(0, 0)} and define ϕ∗ in
Fp[x] by

ϕ∗(x) =

{
ϕ(γx) when γ �= 0,

ϕ(δx) when γ = 0.

Then

ϕ(γx1 + δx2) =

{
ϕ∗(x1 + δγ−1x2) if γ �= 0,

ϕ∗(x2) if γ = 0.

Therefore we may write

ϕ1(γ1x1 + δ1x2) · · ·ϕs(γsx1 + δsx2)

as
ϕ∗
1(γ1x1 + δ1x2) · · ·ϕ∗

s(γsx1 + δsx2)

where now (γi, δi) is in T for i = 1, . . . , s. We now collect and multiply together
the polynomials ϕ∗

i for which (γi, δi) are the same to get a representation for f
of the form (2.5).

Suppose that, in addition to (2.5),

f(x1, x2) = λ1

⎛
⎝ s∏

j=1

ρj(θjx1 + βjx2)

⎞
⎠ψ2

1(x1, x2)

with (θ1, β1), . . . , (θs, βs) distinct elements of T, λ1 a non-zero element of Fp,
ψ1 in Fp[x1, x2] and squarefree non-constant polynomials ρ1, . . . , ρs in Fp[x]. By
Lemma 1 ψ(x) is a constant times ψ1(x) since ψ2(x) and ψ2

1(x) correspond to
the greatest square factor of f in Fp[x1, x2]. Next note that for each j from 1 to
s we may decompose ρj(θjx1 + βjx2) into irreducibles and by Lemma 2

ρj(θjx1 + βjx2) = ρj,1(θjx1 + βjx2) · · ·ρj,t(θjx1 + βjx2)
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where ρj,1, . . . , ρj,t are irreducible polynomials in Fp[x]. Thus each irreducible
ρj,k(θjx1 + βjx2) occurs in the essentially unique decomposition of ϕm(γmx1 +
δmx2) into irreducibles for somem.Notice that if a polynomial g(x, y) = f1(γ1x+
β1y) = f2(γ2x + β2y) with f1, f2 ∈ F[x] and γ1β2 − γ2β1 �= 0 then g(x, y) is a
constant. (Indeed, fix a, b, c, d ∈ Fp and we will prove that g(a, b) = g(c, d). Since
γ1β2 − γ2β1 �= 0 the system of linear equations

γ1x+ β1y = γ1a+ β1b

γ2x+ β2y = γ2c+ β2d

has a unique solution in x, y ∈ Fp. Then

g(a, b) = f1(γ1a+ β1b) = f1(γ1x+ β1y) = g(x, y) = f2(γ2x+ β2y)

= f2(γ2c+ β2d) = g(c, d).)

Thus, by (2.6), (θj , βj) = (γm, δm). Repeating this argument with all the irre-
ducible factors of ρj and all the irreducible factors of ϕm(γmx1 + δmx2) we find
that ϕm(γmx1+δmx2)/ρj(θjx1+βjx2) is a constant. From this it readily follows
that r = s and the result follows. �

We remark that we may determine if a polynomial f is degenerate by first
replacing it with a polynomial f∗ of degree at most p−1 in each variable by using
the fact that xp = x for all x in Fp.We then factor f∗ and write f∗ as a product
of irreducibles multiplied by its largest square divisor. Each irreducible must be
tested to see if it is of the form g(γx+ βy) with g ∈ Fp[x] and (γ, β) ∈ T. Given
(γ, β) in T if suffices to check that the irreducible is constant on the lines in
Fp×Fp given by γx+βy = c for c in Fp and this is a finite process. Furthermore
T is a finite set. Either there is an irreducible not of the form g(γx+βy) for any
g ∈ F[x] and (γ, β) in T in which case f∗ is non-degenerate or f∗ is degenerate
and we may produce the normal form as in the proof of Lemma 3.

3. The pseudorandom measures of small order in the
degenerate case.

We will show that if f(x1, x2) is a degenerate polynomial and the order � of
the pseudorandom measure Q� is not greater than the rank of f then, for the
binary lattice η defined in (1.1), Q�(η) is small. In fact our estimates are the
same as in the non-degenerate case studied in Theorem A.

������� 1� Let f(x1, x2) ∈ Fp[x1, x2] be a non-constant degenerate polynomial
of reduced normal form (2.5) with degree k. Suppose that �, the order of the
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pseudorandom measure is not greater than the rank r of f(x1, x2), and one of
the following 5 conditions holds:
a) f(x1, x2) is irreducible in Fp[x1, x2],
b) � = 2,
c) 2 is a primitive root modulo p,
d) (4k)� < p or (4�)k < p,
e) � and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.
Then for the binary lattice η defined in (1.1) we have

Q�(η) < 11k�p3/2 log p.

Proof of Theorem 1. The proof will be based on the following result.

����� 4� Suppose that f ∈ Fp[x1, x2] is a polynomial such that there are no
distinct d1, . . . ,d� ∈ F2

p with the property that f(x+ d1) . . . f(x+ d�) is of the

form cq(x)2 with c ∈ Fp, q ∈ Fp[x1, x2]. Let k be the degree of the polynomial
f(x1, x2). Then for the binary p-lattice η defined in (1.1) we have

|Q�(η)| < 11k�p3/2 log p.

Proof of Lemma 4. This is Lemma 5 in [3] (note that we proved it by using
a consequence of Weil’s theorem [12]). �

In order to ensure the applicability of this lemma, we have to show that it
follows from one of the 5 assumptions in Theorem 1 that there are not distinct
d1, . . . ,d� ∈ F2

p such that the polynomial

h(x) = f(x+ d1) . . . f(x+ d�)

is of the form cq(x)2 with c ∈ Fp, q ∈ Fp[x1, x2]. Indeed, if this is proved, then
the assumption in Lemma 4 holds in each of these 5 cases thus the statement of
Theorem 1 follows from Lemma 4 immediately.

We will prove this by contradiction. Assume that

h(x) = f(x+ d1) · · · f(x+ d�)

is the constant multiple of a perfect square. Then we will prove

r + 1 ≤ �,

where r denotes the rank of f , which contradicts our assumption.

Write

di = (d′i, d
′′
i )

for i = 1, . . . , l.
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Suppose that f has the normal form

f(x1, x2) = λ

r∏
j=1

fj(αjx1 + βjx2)ψ
2(x1, x2)

with λ ∈ Fp\{0}, (α1, β1), . . . , (αr, βr) distinct elements of T, f1, . . . , fr square-
free non-constant polynomials in Fp[x] and ψ ∈ Fp[x1, x2]. Then it follows that

r∏
j=1

fj(αjx1+βjx2 + αjd
′
1 + βjd

′′
1 )fj(αjx1 + βjx2 + αjd

′
2 + βjd

′′
2 ) · · ·

fj(αjx1 + βjx2 + αjd
′
� + βjd

′′
� ). (3.1)

is a non-zero multiple of the square of a polynomial in Fp[x1, x2].

Now we will introduce an equivalence relation which is similar to the one used
in the proof of Theorem 1 in [1].

���������� 3� Two polynomials ϕ(x1, x2), ψ(x1, x2) ∈ Fp[x1, x2] are t-
equivalent (t for translation) if there are a1, a2 ∈ Fp such that

ψ(x1, x2) = ϕ(x1 + a1, x2 + a2).

Consider any two factors fj1(αj1x1 + βj1x2 + αj1d
′
v1

+ βj1d
′′
v1
) = f∗j1(αj1x1 +

βj1x2) and fj2(αj2x1 + βj2x2 + αj2d
′
v2

+ βj2d
′′
v2
) = f∗j2(αj2x1 + βj2x2) with j1 �=

j2 on the right hand side of (3.1), factor them into irreducible polynomials,
and consider an irreducible factor ϕ1 of the former polynomial and ϕ2 of the
latter polynomial. Then by Lemma 2, these irreducible factors are of the form
ϕ1(αj1x1 + βj1x2), and ϕ2(αj2x1 + βj2x2). Assume that these two polynomials
are t-equivalent, so that there exist a, b ∈ Fp such that

ϕ1(αj1x1 + βj1x2) = ϕ2(αj2(x1 + a) + βj2(x2 + b))

= ϕ2((αj2x1 + βj2x2) + (αj2a+ βj2b)) = ϕ3(αj2x1 + βj2x2)
(3.2)

(where ϕ3(z) = ϕ2(z + (αj2a + βj2b))). Both the first and last polynomial in
(3.2) are in normal form, and since the normal form is unique, we must have
(αj1 , βj1) = (αj2 , βj2) whence j1 = j2.

Thus if two factors fj1(αj1x1+βj1x2+αj1d
′
v1
+βj1d

′′
v1
) and fj2(αj2x1+βj2x2+

αj2d
′
v2

+ βj2d
′′
v2
) on the right hand side of (3.1) have t-equivalent irreducible

factors then j1 = j2. But then the expression (3.1) is of the form cq(x1, x2)
2 if

and only if

fj(αjx1 + βjx2 + αjd
′
1 + βjd

′′
1 ) · · · fj(αjx1 + βjx2 + αjd

′
� + βjd

′′
� )
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is the constant multiple of a square for every 1 ≤ j ≤ r. Writing z = αjx1+βjx2
and d∗j (i) = αjd

′
i + βjd

′′
i ∈ F∗

p we obtain for 1 ≤ j ≤ r:

fj(z + d∗j (1))fj(z + d∗j (2)) · · · fj(z + d∗j (�))

is of the form cq(z)2. Let Dj be the set of terms of the sequence (d∗j (1), . . . , d
∗
j (�))

which occur with odd multiplicity. If Dj is not empty, then the one variable
polynomial ∏

d∈Dj

fj(z + d)

is also the constant multiple of a perfect square. By the proof of Lemma 2 in [1]
this is not possible (note that by Lemma 2, in case a) the one-variable polynomial
f(z) is also irreducible) since the polynomial fj(z) is squarefree. It remains to

consider the case when Dj is empty for j = 1, . . . , r. Ṫhen, for 1 ≤ j ≤ r, in the
sequence

(αjd
′
1 + βjd

′′
1 , αjd

′
2 + βjd

′′
2 , . . . , αjd

′
� + βjd

′′
� )

every term occurs with even multiplicity, hence every term occurs with multi-
plicity at least 2. Then for every j, there is a number 2 ≤ i(j) ≤ � such that

αjd
′
1 + βjd

′′
1 = αjd

′
i(j) + βjd

′′
i(j).

We will prove that 1, i(1), i(2), . . . , i(r) are different numbers. It is clear that
none of i(1), i(2), . . . , i(r) is equal to 1. It remains to prove that

x = i(j1) = i(j2) (3.3)

is not possible. Suppose that (3.3) holds. Then

αj1d
′
1 + βj1d

′′
1 = αj1d

′
x + βj1d

′′
x,

αj2d
′
1 + βj2d

′′
1 = αj2d

′
x + βj2d

′′
x.

Thus

αj1(d
′
1 − d′x)− βj1(d

′′
1 − d′′x) = 0,

αj2(d
′
1 − d′x)− βj2(d

′′
1 − d′′x) = 0. (3.4)

Since (d′1, d
′′
1 ) �= (d′x, d

′′
x) from (3.4) we obtain

αj1βj2 − αj2βj1 = 0,

from which j1 = j2 follows. Thus 1 < i(1), i(2), . . . , i(r) ≤ � and i(1), i(2), . . . , i(r)
are different numbers, so that

r + 1 ≤ �

which contradicts the conditions of Theorem 1 and this completes the proof of
the theorem. �
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4. The pseudorandom measures of large order in the
degenerate case

In Section 3 we showed that in the degenerate case if � ≤ r then Q�(η) is
small. Now we will prove that Q�(η) is large for some � with � at most 2r.

������� 2� Let f ∈ Fp[x1, x2] be a degenerate polynomial with rank r and
degree m and n in x1 and x2, respectively. Then there exists a positive integer �
with � at most 2r for which

Q�(η) ≥ p2 − 4rp3/2 − 2�(m+ n)p.

Proof of Theorem 2 We may assume that r ≤ p1/2/4 since otherwise the
theorem is immediate. Suppose that f(x1, x2) has the normal form

f(x1, x2) = λ

r∏
j=1

fj(αjx1 + βjx2)ψ(x1, x2)
2

with (α1, β1), . . . , (αr, βr) distinct elements from T.We distinguish two cases. In
the first case all of the αi’s are non-zero. In the second case one of the αi’s is zero
and in that case we may suppose, without loss of generality, that (α1, β1) = (0, 1)
(since x1 and x2 play symmetric role and if α1 = 0, β1 �= 0, 1 then writing
y = β1x2, x1, x2 can be replaced by the variables x1,

y
β1
). There exists an integer

γi with 1 ≤ |γi| ≤ p1/2 + 1 such that γiαi is congruent modulo p to a positive
integer of size at most p1/2 for i = 1, . . . , r in the first case and i = 2, . . . , r in
the second case. To see this consider the first [p1/2] + 2 multiples of αi in Fp.

Two of them have representations which differ by at most (p−1)/([p1/2]+1), so
by at most p1/2, and the difference gives the result. In the second case we may
take γ1 = 1 so γ1β1 = 1.

Put

E = {ε = (ε1, . . . , εr) with εi ∈ {0, 1} for i = 1, . . . , r}
and for each ε in E put

d(ε) = ε1(β1,−α1)γ1 + · · ·+ εr(βr,−αr)γr.

Notice that for each ε in E, d(ε) has coordinates represented by integers between
−r(p1/2 + 1) and r(p1/2 + 1).

����� 5� ∏
ε∈E

f(x+ d(ε))

is the square of a polynomial in Fp[x1, x2].
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Proof of Lemma 5. Write

fj(x1, x2) = fj(αjx1 + βjx2),

for j = 1, . . . , r, so that

f(x) = λ

r∏
j=1

fj(x1, x2)ψ
2(x1, x2). (4.1)

For each integer j with 1 ≤ j ≤ r we may split E into two disjoint sets E0
j

and E1
j where ε in E is in E0

j if εj = 0 and is in E1
j if εj = 1. For ε in E0

j let

ε1 denote the element of E1
j with the same coordinates as ε except for the j-th

coordinate which is 1. Then, for ε in E0
j ,

fj(x+ d(ε)) = fj(x+ d(ε1))

and so ∏
ε∈E

fj(x+ d(ε)) =
∏

ε∈E0
j

(fj(x+ d(ε))fj(x+ d(ε1)))

=

⎛
⎝ ∏

ε∈E0
j

fj(x+ d(ε))

⎞
⎠

2

.

The result now follows from (4.1) since |E| is even. �

Let D be the set of d = d(ε) which occur with odd multiplicity among the
terms d(ε) with ε in E. It follows from Lemma 5 that if D is non-empty then∏

d∈D

f(x+ d) (4.2)

is the square of a polynomial in Fp[x1, x2].

We claim that (0, 0) is in D. Certainly d(0, . . . , 0) = (0, 0). Further if ε is in
E and d(ε) = (0, 0) then ε1α1γ1 + · · · + εrαrγr = 0. Since αiγi is congruent
to a positive integer of size at most p1/2 and r is at most p1/2/4 we see that
ε1 = · · · = εr = 0 in the first case and that ε2 = · · · = εr = 0 in the second
case. But in the second case we find that d(ε) = (ε1β1γ1, 0) = (ε1, 0) so ε1 = 0.
Therefore if ε is in E and d(ε) = (0, 0) we see that ε = (0, . . . , 0) and this shows
that (0, 0) is in D. Clearly, |D| ≡ |E| (mod 2) and since |E| = 2r we conclude
that

2 ≤ |D| ≤ |E| = 2r.
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Let d = (d1, d2) in D. Then d1 and d2 are integers between −r(p1/2 +1) and
r(p1/2 + 1). Put

d11 = min
d∈D

d1, d12 = min
d∈D

d2

and

d0 = (d11, d
1
2).

Then d− d0 ∈ I2p for d ∈ D since r ≤ p1/2/4. Next put

B = {(x1, x2) ∈ I2p | 0 ≤ xi < p− 2r(p1/2 + 1) for i = 1, 2}.
Notice that

|B| ≥ (p− 2r(p1/2 + 1))2 ≥ p2 − 4rp3/2. (4.3)

Put

F (x) =
∏
d∈D

f(x+ d − d0).

F (x) is the square of a polynomial in Fp[x1, x2] by (4.2). Let � = |D|. With η
defined by (1.1) we find that

Q�(η) ≥
∣∣∣∣∣
∑
x∈B

∏
d∈D

η(x+ d− d0)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
x∈B

F (x)�=0

(
F (x)

p

)
+

∑
x∈B

F (x)=0

∏
d∈D

η(x+ d− d0)

∣∣∣∣∣∣∣∣
≥

∑
x∈B

F (x)�=0

1−
∑
x∈B

F (x)=0

1 ≥ |B| − 2
∑
x∈F

2
p

F (x)=0

1. (4.4)

It is easy to see that if a polynomial F ∈ Fp[x1, x2] is of degree u and v in x1
and x2, respectively, then the number of its zeros x ∈ F2

p is at most (u + v)p.
Thus it follows from (4.3) and (4.4) that

Q�(η) ≥ p2 − 4rp3/2 − 2�(m+ n)p

which proves Theorem 2. �

5. Generating a large family of suitable polynomials

In this section we construct a large family of polynomials which are non-
degenerate.
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������� 3� Let f ∈ Fp[x1, x2] be a polynomial of the form

f(x1, x2) = xk1 + x1x2g(x1, x2) + x2h(x2) (5.1)

with g ∈ Fp[x1, x2], deg g ≤ k− 3, h ∈ Fp[x2], deg h(x2) ≤ k− 2 and x2 � h(x2).
Then for the binary lattice η defined in (1.1) we have

Q�(η) < 11k�p3/2 log p. (5.2)

Proof of Theorem 3. We will need the following generalization of the
Schönemann-Eisenstein theorem.

����� 6� If f(x) = a0x
n + · · ·+ an is a polynomial over an integral domain R

and a is a maximal ideal of R with

a0 �≡ 0 (mod a),

a1 ≡ · · · ≡ an ≡ 0 (mod a),

an �≡ 0 (mod a2)

then f(x) cannot be decomposed in R[x] into a product of non-constant factors.

Proof of Lemma 6. See, for example [9, Theorem 282]. �

R = Fp[x2] is an integral domain and a =< x2 > is a maximal ideal in it.
Then the conditions of Lemma 6 hold for the polynomial f(x1, x2) ∈ R[x1] in
(5.1), thus f(x1, x2) is irreducible.

In order to use Theorem 1 we prove that f(x1, x2) is not of the form (2.5).
Since f(x1, x2) is irreducible we have to prove that f(x1, x2) is not of the form

f(x1, x2) = f1(α1x1 + β1x2). (5.3)

Let h be the degree of f1 and consider the terms of degree h in f1, so

f1(α1x1 + β1x2) = c(α1x1 + β1x2)
h + f2(α1x1 + β1x2),

where the degree of f2(α1x1 + β1x2) is ≤ h − 1 and c �= 0 ∈ Fp. Clearly,
c(α1x1 + β1x2)

h equals the sum of the terms of degree k of f(x1, x2), thus by
the conditions of Theorem 2 we have

c(α1x1 + β1x2)
h = xk1 .

We may suppose that k is less than p since the result is immediate otherwise. It
then follows that h = k, c = α1 = 1 and β1 = 0, thus from (5.3)

f(x1, x2) = f1(x1). (5.4)

On the other hand f(x1, x2) contains a power of x2, and this contradicts (5.4).
Thus f(x1, x2) is not of the form (2.5). We have also proved that f(x1, x2) is
irreducible, and by using Theorem 1 a) we obtain the result. �

60



LEGENDRE SYMBOL LATTICES

6. A Legendre symbol construction with optimal bounds

As we remarked already in [3], our upper bounds are not optimal; in partic-
ular, in (5.2) the optimal upper bound would be, up to logarithmic factors, p
(with a factor depending on k and �). On the other hand this construction is
more natural than the ones using finite fields in [5], [7] or [8] (where the bounds
are sharper), and it can be implemented faster. However, we will show that for
a certain (rather special) family of polynomials the finite field construction pre-
sented in [7] is equivalent to a Legendre symbol construction of type (1.1). Thus
in this case we obtain a family of binary lattices which combines the advantages
of the two constructions: as in [7] we have optimal bounds, and as a Legendre
symbol construction it can be implemented fast and easily.

Indeed, combining Theorems 1 and 2 of [7], we get the following result:

Theorem A. Let p be an odd prime, n ∈ N, q = pn, and denote the quadratic
character of Fq by γ (setting also γ(0) = 0). Consider the linear vector space
formed by the elements of Fq over Fp, and let v1, . . . , vn be a basis of this vector
space. Let f(x) ∈ Fq[x] be a polynomial of degree k with

0 < k < p (6.1)

which has no multiple zero. Define the n-dimensional binary p-lattice η(x) :
Inp → {−1,+1} by

η(x) = η((x1, . . . , xn))

=

{
γ(f(x1v1 + · · ·+ xnvn)) for f(x1v1 + · · ·+ xnvn) �= 0
1 for f(x1v1 + · · ·+ xnvn) = 0.

(6.2)

Assume also that � ∈ N with

4n(k+�) < p. (6.3)

Then we have

Q�(η) < k�
(
q1/2(1 + log p)n + 2

)
. (6.4)

Our next result follows from Theorem A in the case that n = 2 and for a
special choice of v1, v2 and the polynomial f .

������� 4� Let p be an odd prime and let r be a quadratic non-residue modulo
p. Then the polynomial x2 − r is irreducible over Fp; denote one of its zeros by
θ, and consider the extension of Fp by θ: Fp[θ](∼= Fp2). Let k and � be integers
which satisfy (6.1) and (6.3), and assume that a1, a2, . . . , ak, b1, b2, . . . , bk ∈ Fp

satisfy

ai + biθ �= aj + bjθ and ai + biθ �= aj − bjθ for 1 ≤ i < j ≤ k. (6.5)
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Put

f̃(x1, x2) =

k∏
i=1

(
(x1 − ai)

2 − r(x2 − bi)
2
)

(6.6)

and

η̃(x) = η̃(x) = η̃((x1, x2)) =

{ (
f̃(x1,x2)

p

)
if (f̃(x1, x2), p) = 1

1 if p | f̃ (x1, x2).
(6.7)

For each positive integer � with

42(�+k) < p (6.8)

we have

Q�(η̃) < �k
(
p(1 + log p)2 + 2

)
.

Proof of Theorem 4. By the definition of θ and Euler’s lemma, we have

θp = (θ2)
p−1
2 θ = r

p−1
2 θ = −θ. (6.9)

We will use Theorem A with n = 2, q = p2, v1 = 1, v2 = θ, so that now
the elements of Fq = Fp2 are represented in the form x1 + x2θ. Then by the
generalization of Euler’s lemma to Fq and (6.9), for x1 + x2θ ∈ F∗

p2 , so with

(x1, x2) �= (0, 0), we have

γ(x1 + x2θ) = (x1 + x2θ)
p2−1

2 = (x1 + x2θ)
p2−p

2 (x1 + x2θ)
p−1
2

= ((x1 + x2θ)
p)

p−1
2 (x1 + x2θ)

p−1
2 = (xp1 + xp2θ

p)
p−1
2 (x1 + x2θ)

p−1
2

= (x1 − x2θ)
p−1
2 (x1 + x2θ)

p−1
2 = (x21 − x22θ

2)
p−1
2 = (x21 − rx22)

p−1
2

=

(
x21 − rx22

p

)
.

By the multiplicativity of γ and the Legendre symbol, it follows that writing

f(x1 + x2θ) =
k∏

i=1

((x1 + x2θ)− (ai + biθ)) (6.10)

and defining η(x) = η((x1, x2)) as in (6.2) we have

η(x) = γ(f(x1 + x2θ)) = γ

(
k∏

i=1

((x1 + x2θ)− (ai + biθ))

)

=

k∏
i=1

γ ((x1 + x2θ)− (ai + biθ)) =

k∏
i=1

γ ((x1 − ai) + (x2 − bi)θ)
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=

k∏
i=1

(
(x1 − ai)

2 − r(x2 − bi)
2

p

)
=

(∏k
i=1((x1 − ai)

2 − r(x2 − bi)
2)

p

)

=

(
f̃(x1, x2)

p

)
= η̃(x) (for f(x1 + x2θ) �= 0) (6.11)

with the polynomial f̃ and the lattice η̃ defined by (6.6) and (6.7), respectively,
and trivially we have

η(x) = η̃(x) for f(x1 + x2θ) = 0. (6.12)

By (6.5) and the definition of r, the polynomial f̃ has no multiple zero, and now
(6.3) holds by (6.8). Thus Theorem A can be applied, and then we obtain from
(6.4), (6.11) and (6.12) that

Q�(η) = Q�(η̃) < �k
(
p(1 + log p)2 + 2

)
which completes the proof of Theorem 4.

We remark that the construction in Theorem 4 could be extended by also
considering higher degree factors in (6.10). Even more generally, we may consider
polynomials f which are not given in a product form. In either case, we may
use the fact that if f(x1 + x2θ) = p(x1, x2) + θq(x1, x2) (with f(z) ∈ Fp[z],
p(x1, x2), q(x1, x2) ∈ Fp[x1, x2] and θ, r defined as above), then we have

γ(f(x1 + θx2)) = γ(p(x1, x2) + θq(x1, x2)) =

(
p2(x1, x2)− rq2(x1, x2)

p

)
.

However this would make the polynomial f̃ in (6.6) in Theorem 4 much more
complicated.

Finally, we would like to discuss the implementation of the construction in
Theorem 4. The critical point of the implementation is to find a quadratic non-
residue r. If p is fixed, then it is known that the GRH implies that the least
quadratic non-residue modulo p is less than (log p)c (with some positive con-
stant c), and since the quadratic character of a given residue can be decided in
polynomial time (by using Jacobi symbols), r can be chosen as the least qua-
dratic non-residue modulo p which can be determined in polynomial time. On
the other hand, no algorithm is known for finding the least quadratic non-residue
in polynomial time without any unproved hypothesis. However, in most cases
one need not fix p, and this difficulty can be avoided. Namely, we may start
out from the fact that if p is a prime of the form 4k − 1, then -1 is a quadratic
non-residue modulo p. Thus it is worthwhile to make first a long sequence of
primes p1 = 3 < p2 < · · · < pt of the form 4k − 1 with say, pi < pi+1 < 2pi, and
if we need a prime p of size about N with p ≡ −1 (mod 4), then we take the
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first prime from this sequence greater than N , and we take r = −1. (If we want
a large prime p of the form 4k− 1, then we may use the fact that the Mersenne
primes are of the form 4k − 1.)
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Logic, Vol. ��, Birkhäuser, Verlag, Basel, 2001; pages 59-68.
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[11] A. Sárközy and C. L. Stewart, On pseudorandomness in families of sequences derived
from the Legendre symbol, Periodica Math. Hungar. �� (2007), pages 163-173.
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E-mail : sarkozy@cs.elte.hu

65


	1. Introduction
	2. Structure of degenerate polynomials
	3. The pseudorandom measures of small order in the degenerate case.
	4. The pseudorandom measures of large order in the degenerate case
	5. Generating a large family of suitable polynomials
	6. A Legendre symbol construction with optimal bounds
	REFERENCES

