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A STATISTICAL RELATION OF ROOTS OF A

POLYNOMIAL IN DIFFERENT LOCAL FIELDS IV
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ABSTRACT. Let f(x) = xn+an−1x
n−1+· · · be an irreducible polynomial with

integer coefficients, and L a natural number. For a prime p for which f(x) mod p
is completely decomposable, we consider the n roots ri with ri ≡ 0 mod L and
0 ≤ ri < pL. We propose several conjectures on the distribution of integers

(an−1 +
∑

ri)/p when p varies. We have studied the case L = 1 in previous
papers, and this is a continuation.

Communicated by Shigeki Akiyama

1. Introduction

Let
f(x) = xn + an−1x

n−1 + ...+ a1x+ a0 ∈ Z[x] (1)

be a monic polynomial with integer coefficients, and let L be a natural number.
Put

Spl(f) = {p | f(x) mod p is completely decomposable},
where p (> L) denotes prime numbers. For a prime p ∈ Spl(f), we can take n
integers r1, · · · , rn ∈ Z such that⎧⎨

⎩
f(ri) ≡ 0 mod p,
ri ≡ 0 mod L, (i = 1, · · · , n)
0 ≤ ri ≤ pL− 1,

(2)

by Chinese Remainder Theorem. Then we have an−1 +
∑

ri ≡ 0 mod p, and
there exists an integer Cp(f) such that

an−1 +

n∑
i=1

ri = Cp(f)p. (3)

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 11K.
Keywords: polynomial,roots modulo prime,distribution.

17



Y. KITAOKA

To study the distribution of Cp(f), we put

PrX(f, L)[k] =
#{p ∈ SplX(f) | Cp(f) = k}

#SplX(f)
,

where SplX(f) = {p ∈ Spl(f) | p ≤ X}.
When L = 1, numerical data suggest that the limit

Pr(f, L)[k] = lim
X→∞

PrX(f, L)[k]

exists, and we gave several observations in [6],[7],[8]. For example, Pr(f, L)[k]
(L = 1) is given by Eulerian numbers, and it suggests that the n! arrangements
(ri1/p, · · · , rin−1

/p) of all possible choices of n− 1 roots among r1, · · · , rn seem

to be uniformly distributed in [0, 1)n−1 if f(x) is of deg ≥ 2, irreducible and not
of the form f(x) = g(h(x)) with 1 < deg h(x) < deg f(x). When n = 2, it is
true ([1],[9]). Even if f(x) has the decomposition above, we can see how matters
stand if the decomposition is essentially unique. Otherwise, we have no prospect.

In this paper, we are concerned with a case with congruence condition, that
is L > 1.

We may replace the condition ri ≡ 0 mod L (i = 1, · · · , n) by ri ≡ a mod L for
any fixed integer a. But, considering g(x) = f(x + a), it is reduced to the case
a = 0, since Cp(f) = Cp(g) holds except finitely many primes p ∈ Spl(f(x)) =
Spl(g(x)), if f(x) has no integer roots.

Before observations, which are given in the next section, we give a following
basic remark.

����������� 1	 Let f be a monic polynomial with integer coefficients in (1),
and let L, j be natural numbers, and put N = (an−1, L). We denote Euler’s
function by ϕ. If an−1 ≡ 0 mod L, then we have

lim
X→∞

∑
k≡j mod L

PrX(f, L)[k] =

{
1 if j ≡ 0 mod L,
0 otherwise.

If an−1 �≡ 0 mod L, then we have

lim
X→∞

∑
k≡j mod L

PrX(f, L)[k] =
[Q(ζL/N ) ∩Q(f) : Q]

ϕ(L/N)
or 0,

where the limit is not zero if and only if (i) (j, L) = N and (ii) an−1/N and
j/N induce the same automorphism on the field Q(ζL/N ) ∩Q(f). Here Q(f) is
the field generated by all roots of f(x) over the rational number field Q, and ζa
denotes an a-th primitive root of unity.
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Proof. Let p ∈ Spl(f) and integers ri satisfy (2). Then Cp(f) ≡ j mod L is
equivalent to an−1 ≡ jp mod L by the definition (3). Hence we have

∑
k≡j mod L

PrX(f, L)[k] =
#{p ∈ SplX(f) | an−1 ≡ jp mod L}

#SplX(f)
.

Let us state conditions on p in words of Frobenius automorphisms : For a prime
p in Spl(f) with an−1 ≡ jp mod L, let σ be a Frobenius automorphism of
Q(f, ζL/N) over Q corresponding to p. If p does not divide the discriminant
of f(x), then p is unramified in the field Q(f), and moreover the condition
p ∈ Spl(f) means that p is completely decomposable in the field Q(f), that is σ
is the identity mapping on a subfield Q(f). In addition, σ is an automorphism
on Q(ζL/N ) induced by ζL/N → ζpL/N .

The condition an−1 ≡ jp mod L means that j is divisible by N = (an−1, L), and
(j, L) = N .

If an−1 ≡ 0 mod L, then we have N = L and j is divisible by L, hence the
statement of the proposition is true in this case.

Suppose that an−1 �≡ 0 mod L; we have (an−1/N,L/N) = 1 and an−1/N ≡
j/N ·p mod L/N , which is equivalent to (ζL/N )an−1/N = σ(ζL/N )j/N . Therefore,
in case that one of the conditions (i),(ii) in the proposition is not satisfied, the
limit of the statement of the proposition is zero.

We note that the condition (j/N, L/N) = 1 implies that σ is uniquely deter-
mined by the condition (ζL/N )an−1/N = σ(ζL/N )j/N . Hence a conjugate class of
σ in Gal(Q(f, ζL/N)/Q) consists of one element σ, since σ is trivial on Q(f).

Under the conditions (i),(ii), Chebotarev’s density theorem implies

lim
X→∞

∑
k≡j mod L

PrX(f, L)[k]

= lim
X→∞

#{p ∈ SplX(f) | an−1 ≡ jp mod L}
#{p | p ∈ Spl(f), p ≤ X}

= lim
X→∞

#{p ∈ SplX(f) | an−1 ≡ jp mod L}/#{p < X}
#SplX(f)/#{p < X}

=
[Q(f) : Q]

[Q(f, ζL/N) : Q]

=
1

[Q(f, ζL/N) : Q(f)]

=
1

[Q(ζL/N ) : Q(ζL/N ) ∩Q(f)]
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=
[Q(ζL/N ) ∩Q(f) : Q]

ϕ(L/N)
.

�


���� 1	 The proof of the proposition shows that if p ∈ Spl(f) does not divide
the discriminant of f(x), then putting j = Cp(f), which implies PrX(f, L)[j] �=
0, we have (i) (j, L) = N , and (ii) an−1/N and j/N induce the same automor-
phism on the field Q(ζL/N) ∩Q(f), if L �= N .

The value limX→∞
∑

k≡j mod L PrX(f, L)[k] is independent of j if it is not zero.

In the rest of this paper, we assume that a polynomial f(x) is irreducible and
of deg(f) > 1. Our basic conjecture is that the limit

Pr(f, L)[k] := lim
X→∞

PrX(f, L)[k]

exists.

It is easy to see 1 ≤ Cp(f) ≤ nL − 1 with finitely many exceptional primes
p, since Cp(f) ≤ 0 (resp. Cp(f) ≥ nL) implies 0 ≤ ∑

ri ≤ −an−1 (resp. 0 <∑
(Lp−ri) ≤ an−1), which implies that the polynomial f(x) has an integer root.

Therefore we write

Pr = Pr(f, L) = [Pr(f, L)[1], · · · , P r(f, L)[nL− 1]], (4)

or simply

Pr = [Pr[1], · · · , P r[nL − 1]].

Moreover in view of the remark, we define a natural number T and a shrunk
density SPr by

T = L/N, SPr(f, L)[k] = Pr(f, L)[kN ], (5)

where N = (an−1, L) as in Proposition 1. Under the basic conjecture of the
existence of Pr(f, L), the condition SPr[j] �= 0 implies that (i) j < nT and (ii)
(j, T ) = 1, and (iii) j and an−1/N induce the same automorphism on the field
Q(ζT ) ∩Q(f), and furthermore

∑
k≡j mod T

SPr[k] =
[Q(ζT ) ∩Q(f) : Q]

ϕ(T )
, (6)

for any integer j satisfying the condition (iii) above.

The reducible case will be discussed in a subsequent paper.
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2. Observations

When a polynomial f(x) is of the form g(h(x)) with 1 < deg g(x) < deg f(x),
we call f(x) reduced. Otherwise, f(x) is called non-reduced. Putting for a non-
reduced irreducible monic polynomial f(x) with integer coefficients and deg f =
n

N = (an−1, L), T = L/N, Δ = (n− 1)!ϕ(Tn),

our basic conjecture is that all components of SPr(f, L) are rational numbers
whose denominator divides Δ.

Our strategy to find the likely rational values ofPr from numerical data PrX(f, L)
is

(i) to find an integer c approximating Δ ·PrX(f, L)[k] for a large number X,

(ii) to confirm that |Δ · PrX(f, L)[k] − c| < 1 holds when X is reasonably
large.

Hereafter statements are conjectures based on observations supported by nu-
merical data 1 unless we give proofs.

2.1. n = 2 and L > 1

Suppose that f(x) = x2 + ax+ b is a monic irreducible polynomial of degree
2 and L(> 1) is a natural number.

In case of a ≡ 0 mod L, i.e. T = L/N = 1, SPr = SPr(f, L) is given by

SPr[1] = 1, SPr[j] = 0 if j �= 1. (7)

Next, suppose that a �≡ 0 mod L, then our observation is that SPr(f, L) is
equal to the following distribution table SPr : denoting the discriminant of a
quadratic field Q(f) by D, for 1 ≤ j ≤ T − 1

SPr[j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2j

T · ϕ(T ) if (j, T ) = 1, D | T, χD(a/N) = χD(j),

j

T · ϕ(T ) if (j, T ) = 1, D � T,

and

SPr[T + j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(T − j)

T · ϕ(T ) if (j, T ) = 1, D | T, χD(a/N) = χD(j),

T − j

T · ϕ(T ) if (j, T ) = 1, D � T,

and SPr[k] = 0 except the above, where χD(m) means Kronecker’s symbol (Dm ).

1 Data were made by PARI/GP.
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We note that the condition D | T is equivalent to Q(f) ⊂ Q(ζT ) and the above
observations are compatible with (6). If χD(−1) = −1, then Pr is not symmetric.
This is checked by the method referred above for irreducible polynomials with
0 ≤ a ≤ 50, |b| ≤ 50 and X < 1010.

In case of n = 2, we can give following theoretical results.

������� 1	 Let f(x) = x2 + Ax + B be a monic irreducible polynomial of
degree 2, and L(> 1) a natural number. Supposing that A ≡ 0 mod L, we have
Cp(f) = L except finitely many primes in Spl(f), hence the observation (7)
above is true.

Proof. We divide the proof into two cases f(x) = (x + a)2 + c or f(x) =
(x + a)2 + x + c (a, c ∈ Z). First, suppose that f(x) = (x + a)2 + c ; then the
assumption A ≡ 0 mod L implies that 2a ≡ 0 mod L. Let R be an integer such
that

f(R) ≡ 0 mod p, R ≡ 0 mod L, and 0 ≤ R < pL, (8)

where p ∈ Spl(f), in particular p > L ≥ 2.

Let us see that for

R1 = pL− R− 2a,

conditions f(R1) ≡ 0 mod p, R1 ≡ 0 mod L, R1 �≡ R mod pL and 0 ≤ R1 < pL
are satisfied except finitely many primes in Spl(f). Once they had been proved,
Cp(f) = (2a + R + R1)/p = L is obvious, and the proof is over in this case.
The first follows from f(−R − 2a) = (−R − a)2 + c = f(R) ≡ 0 mod p. The
second is easy. If R1 ≡ R mod pL holds, then we have 2(R+ a) ≡ 0 mod p, and
so f(R) ≡ f(−a) ≡ c mod p, which implies p | c. Thus R1 ≡ R mod pL does not
happen if p > c.

Let us confirm 0 ≤ R1 < pL; suppose that there are infinitely many primes
p ∈ Spl(f) such that R1 < 0; this implies −2a < R − pL < 0, and so there is
an integer r between −2a and 0 such that r = R− pL holds for infinitely many
primes p ∈ Spl(f). Therefore we have f(r) = f(R− pL) ≡ 0 mod p for infinitely
many primes p, that is f(r) = 0, which contradicts the irreducibility of f(x).
Next, suppose that R1 ≥ pL and so 0 ≤ R ≤ −2a for infinitely many primes
p ∈ Spl(f); then there is an integer r between 0 and −2a such that r = R holds
for infinitely many primes p ∈ Spl(f). This implies f(r) = f(R) ≡ 0 mod p,
which contradicts the irreducibility of f(x) again.

Second, we assume that f(x) = (x+ a)2 +x+ c. Then A = 2a+1 ≡ 0 mod L
follows from the assumption. For a prime p ∈ Spl(f), take an integer R satisfying
(8); then an integer R1 = pL−R− 2a− 1 satisfies conditions f(R1) ≡ 0 mod p,
R1 ≡ 0 mod L, R1 �≡ R mod pL and 0 ≤ R1 < pL except finitely many primes
similarly to the above, hence we have Cp(f) = L. �
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������� 2	 Let f(x) = x2+Ax+B be a monic irreducible polynomial of degree
2, and L(> 1) an integer. Suppose that A �≡ 0 mod L. For a prime p ∈ Spl(f),
define an integer t by

pt ≡ A mod L and 1 ≤ t ≤ L− 1.

Then we have

Cp(f) =

{
t if R ≤ tp,

t+ L if R ≥ tp+ 1
(9)

except finitely many primes p, where an integer R is defined by

f(R) ≡ 0 mod p, R ≡ 0 mod L, 0 ≤ R ≤ pL− 1. (10)

Proof. First, let us assume that f(x) = x2+2ax+ b (a, b ∈ Z) with A = 2a �≡
0 mod L. To evaluate Cp(f), we must find another integer R′, which satisfies
(10). First, we show that −R − 2a is another solution of f(x) ≡ 0 mod p. Put
s = −R − 2a; then f(s) = f(R) ≡ 0 mod p is easy. If s ≡ R mod p, then we
have 2a ≡ −2R mod p, and hence R ≡ −a mod p, which implies f(R) ≡ −a2+ b
mod p. Thus p is a divisor of b − a2( �= 0). Excluding such a finite number of
primes, we have shown

f(−R− 2a) ≡ 0 mod p, −R− 2a �≡ R mod p.

Now, to look for another solution R′ with R′ ≡ 0 mod L, 0 ≤ R′ ≤ pL − 1
explicitly, we put

R′ := −R− 2a+ pα (α ∈ Z).

Since R′ ≡ 0 mod L is equivalent to pα ≡ 2a ≡ A mod L, we have α ≡ t mod L.
Hence R′ is of the form

R′ = −R− 2a+ p(t+ βL)

for an integer β. The inequality 0 ≤ R′ ≤ pL− 1 means

0 ≤ −R− 2a+ tp+ βLp ≤ pL− 1, (11)

from which follows

(R+ 2a− tp)/(Lp) ≤ β ≤ 1 + (R+ 2a− tp− 1)/(Lp),

and so conditions 1 ≤ t ≤ L− 1 and 0 ≤ R ≤ pL− 1 imply

2a/(Lp)− 1 + 1/L ≤ β ≤ 1 + (pL− 1 + 2a− p− 1)/(Lp),

which implies β = 0, 1 except finitely many primes p. Thus we have

Cp(f) = (R+R′ + 2a)/p =

{
t if β = 0,

t+ L if β = 1.
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Since we have, by (11){
0 ≤ −R− 2a+ tp ≤ pL− 1 if β = 0,

−pL ≤ −R− 2a+ tp ≤ −1 if β = 1,

we have

Cp(f) =

{
t if −R− 2a+ tp ≥ 0,

t+ L if −R− 2a+ tp ≤ −1,

hence

Cp(f) =

{
t if R ≤ tp− 2a,

t+ L if R ≥ tp− 2a+ 1.

Now, let us show that the number of primes p for satisfying |R − tp| ≤ 2|a| is
finite, which completes a proof. Suppose that there are infinitely many primes
p so that |R − tp| ≤ 2|a|, which implies that there are infinitely many primes
satisfying R − tp = r for some integer r with |r| ≤ 2|a|. Therefore we have a
contradiction f(r) ≡ f(R) ≡ 0 mod p for infinitely many primes, i.e. f(r) = 0.

The case of f(x) = x2 + (2a+ 1)x+ b is similarly proved. �


���� 2	 For 1 ≤ t ≤ L− 1, Theorem2 implies

Pr(f, L)[t]

= lim
X→∞

#

{
p ∈ SplX(f)

∣∣∣∣ pt ≡ A mod L, ∃R s.t. f(R) ≡ 0 mod p,
R ≡ 0 mod L, 0 < R ≤ tp

}
#SplX(f)

.

Our observation suggests that if ((A2 − 4B)t, L) = 1, it is equal to

t

Lϕ(L)
,

and if we neglect the condition pt ≡ A mod L, we may expect

lim
X→∞

#

{
p ∈ SplX(f)

∣∣∣∣ ∃R s.t. f(R) ≡ 0 mod p,
R ≡ 0 mod L, 0 < R ≤ tp

}
#SplX(f)

= t/L.

2.2. The case that n ≥ 3 and f is non-reduced

In this subsection, we assume that f(x) is irreducible, of n = deg f(x) ≥ 3 and
non-reduced moreover. Before stating observations, let us recall a distribution
table by Eulerian numbers introduced in [7], which are defined by the following
rules : Let A(1, 1) = 1 and let A(n, k) (1 ≤ k ≤ n) be defined by

A(n, k) = (n− k + 1)A(n− 1, k − 1) + kA(n− 1, k).
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The Eulerian table En is defined by

En(k) =
A(n− 1, k)

(n− 1)!
(1 ≤ k ≤ n− 1).

The first conjecture is that for T = 1,

SPr = En, i.e. SPr(f, L)[k] = En(k) (1 ≤ k ≤ n− 1).

Suppose T > 1. We introduce a function Fn(x) by

Fn(x) =
1

(n− 1)!

∑
0≤i≤x

(−1)i
(
n

i

)
(x− i)n−1 (i ∈ Z),

which is the volume of

{(x1, · · · , xn−1) | 0 ≤ ∀xi < 1, x− 1 <

n−1∑
i=1

xi ≤ x}

and
En(k) = Fn(k) (1 ≤ k ≤ n− 1).

(See I.9 in [2],[3].)

Our conjecture is

SPr[j] =

{
[Q(f)∩Q(ζT ):Q]

ϕ(T ) Fn(j/T ) if (j, T ) = 1 and [[j]] = [[an−1/N ]],

0 otherwise,

where for an integer j relatively prime to T , [[j]] denotes an automorphism of
Q(f) ∩Q(ζT ) which is the restriction of an automorphism of Q(ζT ) induced by

ζT → ζjT .

For a natural number j < nT , we put

v[j] = (n− 1)!Tn−1Fn(j/T ),

and we define a table RT by

RT [j] =

{
v[j] if (j, T ) = 1,
0 otherwise.

(12)

The sum
∑nT−1

j=1 RT [j] is equal to Δ and the mean and the variance of the

distribution RT /Δ are nT/2 and nT 2/12, respectively.

The following shows that the above conjecture is compatible with Proposition
1.

����������� 2	 For a table v above and an integer k not divisible by T , we
have ∑

j≡k mod T

v[j] = (n− 1)!Tn−1, i.e.
∑

j≡k mod T

Fn(j/T ) = 1.
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To prove the proposition, we need the following:

���� 1	 For a natural number N , we have

N∑
�=0

(−1)�
(
N

�

)
P (�) = 0, (13)

where P (x) is any polynomial of degP (x) ≤ N − 1, and

N∑
�=0

(−1)�
(
N

�

)
(N − �)N = N ! ,

N∑
�=0

(−1)�
(
N

�

)
�N = (−1)NN ! . (14)

Proof. Put

f0(x) = 1, fk(x) = x(x− 1) · · · (x− (k − 1)) (k > 0),

and differentiating (x+1)N =
∑N

�=0

(
N
�

)
x� k-times (0 ≤ k ≤ N − 1) and substi-

tuting x = −1, we get

0 =

N∑
�=0

(−1)�
(
N

�

)
fk(�) (0 ≤ k ≤ N − 1)

by fk(0) = · · · = fk(k−1) = 0 (k > 0). Since a polynomial P of degP (x) ≤ N−1
is a linear combination of f0, · · · , fN−1, we get (13).

We use induction on N to prove (14). It is obvious when N = 1. Suppose N > 1;
then we have

N∑
�=0

(−1)�
(
N

�

)
(N − �)N

=

N−1∑
�=0

(−1)�
(
N

�

)
(N − �)N

=N

N−1∑
�=0

(−1)�
(
N − 1

�

)
(N − �)N−1

applying (13) to a polynomial P (�) = (N − �)N−1 − (−�)N−1 of deg ≤ N − 2
and N − 1 instead of N

=N

N−1∑
�=0

(−1)�
(
N − 1

�

)
(−�)N−1

=N

N−1∑
�=0

(−1)�+N−1

(
N − 1

�

)
�N−1
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=N

N−1∑
�=0

(−1)�
(

N − 1

N − 1− �

)
(N − 1− �)N−1

=N

N−1∑
�=0

(−1)�
(
N − 1

�

)
(N − 1− �)N−1

=N !.

�
We remark that (13) implies v[j] = v[nT − j] for 1 ≤ j ≤ nT − 1 if j is not

divisible by T .

Proof of Proposition 2.

Assume 0 < k < T ; then we have

∑
j≡k mod T

v[j] =

n−1∑
m=0

v[mT + k]

=

n−1∑
m=0

m∑
i=0

(−1)i
(
n

i

)
(mT + k − iT )n−1

=

n−1∑
i=0

n−1∑
m=i

(−1)m−i

(
n

m− i

)
(iT + k)n−1

using
∑m

r=0(−1)r
(
n
r

)
= (−1)m

(
n−1
m

)
(0 ≤ m ≤ n− 1)

=

n−1∑
i=0

(−1)n−1−i

(
n− 1

n− 1− i

)
(iT + k)n−1

=

n−1∑
j=0

(−1)j
(
n− 1

j

)
((n− 1− j)T + k)n−1,

applying (13)

=

n−1∑
j=0

(−1)j
(
n− 1

j

)
(−jT )n−1,

= (n− 1)!Tn−1 by (14).

�
Here, let us refer to how to be convinced of the truth of conjectures by cal-

culation by computer. For a polynomial f , we calculate a shrunk density

SPrX(f, L)[k] = PrX(f, L)[kN ] (1 ≤ k < nT )
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for a large number X, then we define V as follows : If SPrX (f, L)[k] �= 0, then
V [k] = A(n − 1, k) if T = 1, or V [k] = v[k] if T > 1. If SPrX(f, L)[k] = 0, we
put V [k] = 0. Put s =

∑
k V [k] and D[k] = r(s · SPrX(f, L)[k]) − V [k], where

r(x) means the rounded integer of x. If D[k] = 0, then SPrX (f, L)[k] is well-
approximated by V [k]/s. We have only to observe that |D[k]| (∈ Z) decreases to
0 when X increases. The convergence is relatively slow.

2.2.1. The case that n = 4 and f is reduced

In this case, an irreducible polynomial f(x) is reduced, i.e. of the form (x2 +
ax)2 + b(x2 + ax) + c (a, b, c ∈ Z), and entries of SPr seem rational numbers
whose denominators are a divisor of 12ϕ(T 4) = 2Δ.

When T = 1, i.e. 2a ≡ 0 mod L, we conjecture that

SPr = [0, 1, 0] or [1/4, 1/2, 1/4],

and it is likely that SPr = [0, 1, 0] if and only if L divides a. Even if SPr =
[0, 1, 0] holds, PrX(f, L)[2L] �= 1 may happen.

Suppose that T > 1; put

f2(x) = −2x2 + 8Tx− 6T 2, f3(x) = −x2 + 8Tx− 6T 2.

We conjecture that there is a constant c such that for k = 1, · · · , T − 1, a
sub-vector c(SPr[k], SPr[T + k], SPr[2T + k], SPr[3T + k]) is equal to one of

(0, 0, 0, 0),

(k2, f2(T + k), (4T − (2T + k))2, 0),

(0, (T + k)2, f2(4T − (2T + k)), (T − k)2),

(k2, f3(T + k), f3(4T − (2T + k)), (4T − (3T + k))2).

The sum of entries of the second, the third and the last is equal to 4T 2, 4T 2

and 8T 2, respectively. Therefore Proposition 1 implies that the last line does not
appear together with the second and the third at the same time. If T is odd, the
last does not occur, and there is a non-zero constant c such that every non-zero
cSPr[j] is equal to RT [j] defined by

RT [j] =

⎧⎨
⎩

j2 if j ≡ 0 mod 2, 2 ≤ j ≤ 2T − 2,
f2(j) if j ≡ 1 mod 2, T + 2 ≤ j ≤ 2T − 1,
0 if 1 ≤ j ≤ 2T and except the above,

RT [4T − j] = RT [j] if 1 ≤ j ≤ 2T.

Let us give a graph of R19.
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The author does not know the meaning of polynomials f2, f3.

BIBLIOGRAPHIE

[1] W. Duke, J.B. Friedlander and H. Iwaniec: Equidistribution of roots of a quadratic

congruence to prime moduli, Ann. of Math., ���(1995), 423-441.

[2] W. Feller: An introduction to probability theory and its applications, Vol. 2, J. Wiley,

New York, 1966.

[3] D. Foata: Distributions eulériennes et mahoniennes sur le groupe des permutations, in
“Higher Combinatorics, Proceedings of the NATO Advanced Study Institute,

Berlin, West Germany, September 1-10, 1976” (M.Aigner, Ed), 27-49, Reidel,

Dordrecht/Boston, 1977.

[4] H. Iwaniec, E. Kowalski: Analytic Number Theory, American Mathematical Soci-

ety, Colloquium Publications textbf53(2004).

[5] T. Hadano, Y. Kitaoka, T. Kubota, M. Nozaki: Densities of sets of primes related
to decimal expansion of rational numbers, Number Theory: Tradition and Modern-

ization, pp. 67-80, W. Zhang and Y. Tanigawa, eds. c©2006 Springer Science +

Business Media,Inc.

[6] Y. Kitaoka: A statistical relation of roots of a polynomial in different local files, Math.

of Comp. ��(2009), 523-536.

29



Y. KITAOKA

[7] Y. Kitaoka: A statistical relation of roots of a polynomial in different local files II,
Number Theory : Dreaming in Dreams (Series on Number Theory and Its Appli-

cation Vol. 6), pp. 106-126, World Scientific, 2010.

[8] Y. Kitaoka: A statistical relation of roots of a polynomial in different local files III,

Osaka J. Math. 49 (2012), 393-420.
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