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CONSTRUCTIONS OF UNIFORMLY DISTRIBUTED

SEQUENCES USING THE b-ADIC METHOD

Peter Hellekalek — Harald Niederreiter

ABSTRACT. For bases b = (b1, . . . , bs) of not necessarily distinct integers
bi ≥ 2, we employ b-adic arithmetic to study questions in the theory of uni-

form distribution. A b-adic function system is constructed and the related Weyl
criterion is proved. Relations between the uniform distribution of a sequence in
the b-adic integers, on the s-dimensional torus, and in the rational integers are
established and several constructions of uniformly distributed sequences based on
b-adic arithmetic are presented.

Communicated by Henri Faure

1. Introduction

In this paper we present tools for the analysis and for the construction
of sequences that are uniformly distributed in the s-dimensional unit cube [0, 1)s.
Our approach is based on b-adic arithmetic, which means that we employ struc-
tural properties of the compact group of b-adic integers.

Any construction method for finite or infinite sequences of points in [0, 1)s

will have to employ some arithmetical operations like addition or multiplication,
on a suitable domain. It is most helpful if the algebraic structure underlying
these operations is an abelian group. The choice of this group determines which
function systems will be suitable for the analysis of the equidistribution behavior
of this sequence, because the construction method is intrinsically related to the
function system, via the concept of the dual group (see Hewitt and Ross [6]).
An example of such a suitable ‘match’ between sequences and function systems
is given by Kronecker sequences or, in the discrete version, good lattice points,
and the trigonometric functions. This construction method is based on addition
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modulo one (see Niederreiter [14, Ch. 5] and Sloan and Joe [16]). A second
example is digital nets and sequences and the Walsh functions. Here, addition
without carry of digit vectors comes into play (see Niederreiter [14, Ch. 4] and
Dick and Pillichshammer [2] for details).

One important type of a digital sequence, the Halton sequence, can also be
generated by addition with carry of digit vectors, the underlying group being the
compact group of b-adic integers. This observation is the starting point for this
paper.

In Section 2, we extend results of the first author [4, 5] from the case of prime
bases to arbitrary bases b = (b1, . . . , bs) with not necessarily distinct integers
bi ≥ 2. We show that the associated b-adic function system is an orthonormal
basis of the Hilbert space L2([0, 1)s) and we prove the b-adic Weyl criterion,
among other results.

In Section 3 we review results on the uniform distribution of integer lattice
points modulo vectors m = (m1, . . . ,ms) of positive integers. As an application,
in Section 4 criteria for the uniform distribution of sequences of rationals in
[0, 1)s are established that relate the b-adic approach to uniform distribution of
lattice points.

In Section 5 various types of sequences and their uniform distribution are
discussed.

2. The b-adic function system on [0, 1)s

In this section, we will extend the concept of p-adic function systems intro-
duced in [4, 5] from the case of prime bases to general bases. The cornerstones
of this approach are the enumeration of the dual group of the compact group
of b-adic integers (see Remark 2.3), the b-adic function system, which is an
orthonormal basis of the space L2([0, 1)s) (Theorem 2.12), and the fact that the
indicator functions of particular subintervals of [0, 1)s, so-called b-adic elemen-
tary intervals, have finite Fourier series (Lemma 2.10), with pointwise identity
(Lemma 2.11).

Throughout this paper, b denotes a positive integer, b ≥ 2, and b = (b1, . . . , bs)
stands for a vector of not necessarily distinct integers bi ≥ 2, 1 ≤ i ≤ s. N rep-
resents the positive integers, and we put N0 = N ∪ {0}.

The underlying space is the s-dimensional torus Rs/Zs, which will be identi-
fied with the half-open interval [0, 1)s. Haar measure on the s-torus [0, 1)s will
be denoted by λs. We put e(y) = e2πiy for y ∈ R, where i is the imaginary unit.
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We will use the standard convention that empty sums have the value 0 and
empty products value 1.

For a nonnegative integer k, let k =
∑

j≥0 kj b
j , kj ∈ {0, 1, . . . , b− 1}, be the

unique b-adic representation of k in base b. With the exception of at most finitely
many indices j, the digits kj are equal to 0.

Every real number x ∈ [0, 1) has a b-adic representation x =
∑

j≥0 xj b
−j−1,

with digits xj ∈ {0, 1, . . . , b − 1}. If x is a b-adic rational, which means that
x = ab−g , a and g integers, 0 ≤ a < bg, g ∈ N, and if x 6= 0, then there exist two
such representations.

The b-adic representation of x is uniquely determined under the condition
that xj 6= b−1 for infinitely many j. In the following, we will call this particular
representation the regular (b-adic) representation of x.

Let Zb denote the compact group of the b-adic integers. We refer the reader
to Hewitt and Ross [6] and Mahler [10] for details. An element z of Zb will be
written in the form z =

∑

j≥0 zj b
j , with digits zj ∈ {0, 1, . . . , b− 1}.

The set Z of integers is embedded in Zb. If z ∈ N0, then at most finitely many
digits zj are different from 0. If z ∈ Z, z < 0, then at most finitely many digits
zj are different from b− 1. In particular, −1 =

∑

j≥0(b− 1) bj.

We recall the following concepts from Hellekalek [4, 5].Definition 2.1. The map ϕb : Zb → [0, 1), given by

ϕb





∑

j≥0

zj b
j



 =
∑

j≥0

zj b
−j−1 (mod 1),

will be called the b-adic Monna map.

The restriction of ϕb to N0 is often called the radical-inverse function in base
b. The Monna map is surjective, but not injective. It may be inverted in the
following sense.Definition 2.2. We define the pseudoinverse ϕ+

b of the b-adic Monna map ϕb

by

ϕ+
b : [0, 1) → Zb, ϕ+

b





∑

j≥0

xj b
−j−1



 =
∑

j≥0

xj b
j ,

where
∑

j≥0

xj b
−j−1

stands for the regular b-adic representation of the element x ∈ [0, 1).
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The image of [0, 1) under ϕ+
b is the set Zb \ (−N). Furthermore, ϕb ◦ ϕ+

b is

the identity map on [0, 1), and ϕ+
b ◦ ϕb the identity on N0 ⊂ Zb. In general,

z 6= ϕ+
b

(

ϕb(z)
)

, for z ∈ Zb. For example, if z = −1, then

ϕ+
b

(

ϕb(−1)
)

= ϕ+
b (0) = 0 6= −1.

A central point in the concept of p-adic function systems introduced in [4, 5]

is the enumeration of the dual group Ẑp, p a prime. We extend this approach
to general integer bases as follows. In analogy to [8, Sect. 5.2, pp. 322ff], let Rb

denote the set of b-adic rationals in [0, 1). Put Rb(0) = {0} and, for g ∈ N, let

Rb(g) =
{

ab−g, 1 ≤ a < bg : a ∈ N, b 6 |a
}

.

The set Rb is the disjoint union of the sets Rb(g), taken over all g ∈ N0. We refer

the reader to [6] for the relation between Rb and the dual group Ẑb of Zb.Remark 2.3. For every g ∈ N, the function ϕb gives a bijection between the
subset of positive integers {k ∈ N : bg−1 ≤ k < bg} and the set Rb(g). As a

consequence, Ẑb can be written in the form

Ẑb = {χk : k ∈ N0},

where

χk : Zb → {c ∈ C : |c| = 1}, χk





∑

j≥0

zjb
j



 = e
(

ϕb(k)(z0 + z1b+ · · · )
)

.

We note that χk depends only on a finite number of digits of z and, hence, this
function is well defined.

As in [5], we employ the function ϕ+
b to lift the characters χk to the torus.Definition 2.4. For k ∈ N0, let γk : [0, 1) → {c ∈ C : |c| = 1}, γk(x) =

χk

(

ϕ+
b (x)

)

, denote the kth b-adic function. We put Γb = {γk : k ∈ N0} and call
it the b-adic function system on [0, 1).

There is an obvious generalization of the preceding notions to the higher-
dimensional case. Let b = (b1, . . . , bs) be a vector of not necessarily distinct
integers bi ≥ 2, let x = (x1, . . . , xs) ∈ [0, 1)s, let z = (z1, . . . , zs) denote an
element of the compact product group Zb = Zb1 × · · · × Zbs of b-adic integers,
and let k = (k1, . . . , ks) ∈ Ns

0. We define ϕb(z) =
(

ϕb1(z1), . . . , ϕbs(zs)
)

, and

ϕ+
b (x) =

(

ϕ+
b1
(x1), . . . , ϕ

+
bs
(xs)

)

.

Let χk(z) =
∏s

i=1 χki
(zi), where χki

∈ Ẑbi , and define γk(x) =
∏s

i=1 γki
(xi),

where γki
∈ Γbi , 1 ≤ i ≤ s. Then γk = χk ◦ϕ

+
b . Let Γ

(s)
b = {γk : k ∈ Ns

0} denote
the b-adic function system in dimension s.
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The dual group Ẑb is an orthonormal basis of the Hilbert space L2(Zb).

It would follow from some measure-theoretic arguments that Γ
(s)
b is an orthonor-

mal basis of L2([0, 1)s). Below, we present a more elementary approach to prove
this important property of the b-adic function system. As a side effect, we obtain
several helpful insights and results, like the b-adic Weyl criterion.

For an integrable function f on [0, 1)s, the kth Fourier coefficient of f with

respect to the function system Γ
(s)
b is defined as the inner product 〈f, γk〉 in

L2([0, 1)s):

f̂ (k) =

∫

[0,1)s
fγk dλs, k ∈ Ns

0.

We denote the formal Fourier series of f by sf ,

sf =
∑

k∈Ns
0

f̂(k)γk,

where, for the moment, we ignore questions of convergence.Definition 2.5. A b-adic elementary interval, or b-adic elint for short, is a
subinterval Ic,g of [0, 1)s of the form

Ic,g =

s
∏

i=1

[

ϕbi(ci), ϕbi(ci) + b−gi
i

)

,

where the parameters are subject to the conditions

g = (g1, . . . , gs) ∈ Ns
0, c = (c1, . . . , cs) ∈ Ns

0, and 0 ≤ ci < bgii , 1 ≤ i ≤ s.

We say that Ic,g belongs to the resolution class defined by g or that it has
resolution g.

A b-adic interval in the resolution class defined by g ∈ Ns
0 (or with resolution

g) is a subinterval of [0, 1)s of the form

s
∏

i=1

[

aib
−gi
i , dib

−gi
i

)

, 0 ≤ ai < di ≤ bgii , ai, di ∈ N0, 1 ≤ i ≤ s .

For a given resolution g ∈ Ns
0, we define the following domains:

∆b(g) =
{

k = (k1, . . . , ks) ∈ Ns
0 : 0 ≤ ki < bgii , 1 ≤ i ≤ s

}

,

∆∗
b(g) = ∆b(g) \ {0} .

We note that ∆b(0) = {0}.Remark 2.6. For a given resolution g ∈ Ns
0, the family of b-adic elints

{Ic,g : c ∈ ∆b(g)} is a partition of [0, 1)s.
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The following function will allow for a compact notation. For k ∈ N0, with
b-adic representation k = k0 + k1b+ · · · , we define

vb(k) =

{

0 if k = 0,

1 + max{j : kj 6= 0} if k ≥ 1.

If k ∈ Ns
0, then let vb(k) =

(

vb1(k1), . . . , vbs(ks)
)

.Lemma 2.7. For every k ∈ Ns
0, γk is a step function given by

γk(x) =
∑

c∈∆b(vb(k))

χk(c)1Ic,vb(k)
(x) ∀x ∈ [0, 1)s.

P r o o f. We argue as in the proof of Lemma 3.5 in [5]. �Corollary 2.8. For every k 6= 0, the function γk has integral 0.

P r o o f. If k 6= 0, then
∑

c∈∆b(vb(k))
χk(c) = 0. �Lemma 2.9. The class of functions Γ
(s)
b is an orthonormal system in the space

L2([0, 1)s).

P r o o f. It is elementary to verify that the inner product 〈γk, γk′〉 is equal to 0
if k 6= k′, and equal to 1 if k = k′. �

A key ingredient in the b-adic approach is the study of the Fourier series of
indicator functions 1I of b-adic elints and intervals I.Lemma 2.10. Let Ic,g be an arbitrary b-adic elint. Then

1̂Ic,g(k) =

{

0 if k 6∈ ∆b(g),

λs(Ic,g)χk(c) if k ∈ ∆b(g).

P r o o f. It is straightforward to adapt the proof of Lemma 3.1 in [4] to the
s-dimensional case and to a general base b. �Lemma 2.11. Let Ic,g be an arbitrary b-adic elint and put f = 1Ic,g . Then

f = sf in the space L2([0, 1)s) and even pointwise equality holds:

1Ic,g(x) =
∑

k∈∆b(g)

1̂Ic,g(k)γk(x) ∀x ∈ [0, 1)s. (1)
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P r o o f. The function f −sf is orthogonal to every function γk. We deduce that

‖f − sf‖
2
2 = 〈f, f〉 − 〈sf , f〉 = λs(Ic,g)−

s
∏

i=1

b−gi
i = 0.

This implies that f = sf almost everywhere on [0, 1)s.

From Lemma 2.7 it follows that the function sf is a step function on the
same partition {Id,g : d ∈ ∆b(g)} of [0, 1)s as the function f . As a consequence
of equality almost everywhere, f and sf must coincide on every elint of the
partition. Hence, these two step functions are equal in every point of [0, 1)s. �Theorem 2.12. The function system Γ

(s)
b is an orthonormal basis of L2([0, 1)s).

P r o o f. The idea of the proof is to show that in the Hilbert space L2([0, 1)s),

the set of finite linear combinations of elements of Γ
(s)
b is dense in the set of

functions 1J , J an arbitrary subinterval of [0, 1)s. From this property it follows

by a standard argument that Γ
(s)
b is an orthonormal basis.

Given an arbitrary subinterval J of [0, 1)s, it is a straightforward adaption of
the method of proof used in [5, Lemma 3.9] to show that J can be approximated
arbitrarily closely from within and from without by b-adic intervals J and J , by
choosing a suitable resolution g. The latter intervals are finite disjoint unions of
b-adic elints. Thus, by Lemma 2.11, the indicator functions 1J and 1J have finite
Fourier series. As a consequence, the function 1J can be approximated arbitrarily

closely in L2([0, 1)s) by finite linear combinations of functions from Γ
(s)
b . �Remark 2.13. The method of proof of Lemmas 2.7 - 2.11 and Theorem 2.12

is not limited to the function system Γ
(s)
b . It applies also to the system of Walsh

functions in base b, for example. The latter are an obvious generalization of the
case b = (b, . . . , b) to the general case studied in this paper. As a consequence,
we obtain a different proof for several pointwise identities for the Fourier series
of the indicator functions of elints, like identity (1) in [5, Lemma 3.4] or identity
(10) in [3, Theorem 1]. We also obtain a generalization of Theorem A.11 in Dick
and Pillichshammer [2, p. 562] and, in addition, a different method of proof.

If ω = (xn)n≥0 is a -possibly finite- sequence on the torus [0, 1)s with at least
N elements, and if f : [0, 1)s → C, we define

SN (f, ω) =
1

N

N−1
∑

n=0

f(xn).
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PETER HELLEKALEK — HARALD NIEDERREITERLemma 2.14. A sequence ω is uniformly distributed in [0, 1)s if and only if

lim
N→∞

SN (1I , ω) = λs(I),

for every b-adic elint I in [0, 1)s.

P r o o f. We observe that SN (1I , ω) − λs(I) = SN

(

1I − λs(I), ω
)

. It is an easy
exercise to translate the proof of Lemma 3.9 in [5] into the case of general
bases. �

The notion of a (t,m, s)-net in base b is one of the most important concepts
in the modern theory of quasi-Monte Carlo methods and its applications. We
refer the reader to Niederreiter [14] and Dick and Pillichshammer [2] for details.Definition 2.15. For given integers s ≥ 1, b ≥ 2, m ≥ 1, and t, 0 ≤ t ≤ m,
a finite sequence ω of bm points in [0, 1)s is called a (t,m, s)-net in base b if
Sbm(1Ic,g , ω) = λs(Ic,g), for all b-adic elints Ic,g where b = (b, . . . , b) and where
the resolution g satisfies the condition g1 + · · ·+ gs ≤ m− t.

We obtain the following characterization of these finite point sets in terms of

the system Γ
(s)
b , where b = (b, . . . , b):Lemma 2.16. A sequence ω = (xn)

N−1
n=0 of N = bm points in [0, 1)s is a (t,m, s)-

net in base b if and only if

SN (γk, ω) = 0 ∀k : 0 <

s
∑

i=1

vb(ki) ≤ m− t. (2)

P r o o f. Put N = bm and b = (b, . . . , b). If ω is a (t,m, s)-net in base b, then
Lemma 2.7 implies

SN (γk, ω) =

(

s
∏

i=1

b−vb(ki)

)

∑

c∈∆b(vb(k))

χk(c) = 0

for those indices k such that 0 < vb(k1) + · · ·+ vb(ks) ≤ m− t. This proves (2).

For the reverse direction, assume (2). The pointwise identity in Lemma 2.11
implies that

SN (1Ic,g , ω) = 1̂Ic,g(0) = λs(Ic,g)

for all b-adic elints with g1 + · · ·+ gs ≤ m− t. By definition, ω is a (t,m, s)-net
in base b. �Theorem 2.17 (Weyl criterion for Γ

(s)
b ). Let ω be a sequence in [0, 1)s. Then

ω is uniformly distributed in [0, 1)s if and only if

lim
N→∞

SN (γk, ω) = 0 ∀ k 6= 0. (3)
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P r o o f. Let ω be uniformly distributed in [0, 1)s. Each function γk is a step
function on [0, 1)s, hence Riemann integrable. The uniform distribution of ω
implies that SN (γk, ω) tends to the integral of γk, which is 0 if k 6= 0. This
proves (3).

For the reverse direction, let us assume relation (3). In identity (1), the sum-
mation domain ∆b(g) is finite. Thus, relation (3) implies limN→∞ SN (1I , ω) =
λs(I), for every b-adic elint I. From Lemma 2.14, the uniform distribution of ω
follows. �Corollary 2.18. Let ω = (xn)n≥0, xn =

(

ϕb1(n), . . . , ϕbs(n)
)

, be the Halton
sequence in base b = (b1, . . . , bs). Then ω is uniformly distributed in [0, 1)s

if and only if the bases bi are pairwise coprime.

P r o o f. This is easily seen by the Weyl criterion for Γ
(s)
b . If the bases bi are

not pairwise coprime, then it is a simple task to find an index k 6= 0 such that
SN (γk, ω) = 1, for all N . As a consequence, ω is not uniformly distributed in
this case.

Let us now suppose that the bases bi are pairwise coprime. We have

γk(xn) =

s
∏

i=1

e
(

ϕbi(ki)n
)

.

Hence, for every k 6= 0,

|SN (γk, ω)| =
1

N

∣

∣

∣

∣

∣

e(ϕb1(k1) + · · ·+ ϕbs(ks))
N − 1

e
(

ϕb1(k1) + · · ·+ ϕbs(ks)
)

− 1

∣

∣

∣

∣

∣

≤
1

N

∣

∣

∣
sin
(

π
(

ϕb1(k1) + · · ·+ ϕbs(ks)
)

)∣

∣

∣

−1

,

where the fact that the bases bi are pairwise coprime ensures

ϕb1(k1) + · · ·+ ϕbs(ks) 6∈ Z.

Hence, limN→∞ SN (γk, ω) = 0. �

3. Background on uniform distribution in Zs

We recall some concepts and results from the paper Niederreiter [13] on
uniform distribution of sequences of lattice points. Let s ≥ 1 be a given di-
mension and let m = (m1, . . . ,ms) ∈ Ns. For b = (b1, . . . , bs) ∈ Zs and
c = (c1, . . . , cs) ∈ Zs, we write b ≡ c (mod m) if bi ≡ ci (mod mi) for 1 ≤ i ≤ s.

193



PETER HELLEKALEK — HARALD NIEDERREITERDefinition 3.1. The sequence (yn)n≥0 of elements of Zs is uniformly dis-
tributed mod (m1, . . . ,ms) if

lim
N→∞

1

N
#{0 ≤ n < N : yn ≡ d (mod m)} =

1

m1 · · ·ms

for all d ∈ Zs.

The following Weyl criterion for uniform distribution mod (m1, . . . ,ms) was
stated in Niederreiter [13, Theorem 2.1].Lemma 3.2. Let

yn = (yn1, . . . , yns) ∈ Zs for n = 0, 1, . . . , and (m1, . . . ,ms) ∈ Ns.

Then the sequence (yn)n≥0 is uniformly distributed modulo (m1, . . . ,ms)
if and only if

lim
N→∞

1

N

N−1
∑

n=0

e

(

h1

m1
yn1 + · · ·+

hs

ms

yns

)

= 0

for all (h1, . . . , hs) ∈ Zs \ {0} with 0 ≤ hi < mi for 1 ≤ i ≤ s.

The following result was shown in Niederreiter [13, Theorem 2.5].Lemma 3.3. Let

(m1, . . . ,ms) ∈ Ns and xni ∈ R for n ≥ 0 and 1 ≤ i ≤ s.

If the sequence
(

(

{xn1/m1}, . . . , {xns/ms}
)

)

n≥0
is uniformly distributed in [0, 1)s,

then the sequence
(

(

⌊xn1⌋, . . . , ⌊xns⌋
)

)

n≥0
is uniformly distributed modulo (m1, . . . ,ms).

4. Some criteria

Let s ≥ 1 again be a given dimension. For each i = 1, . . . , s, let fi : N0 → N0

be a self-map of N0. We write f = (f1, . . . , fs), f : N0 → Ns
0.

For arbitrary (not necessarily distinct) integers b1, . . . , bs, with bi ≥ 2,
1 ≤ i ≤ s, we define the points

xn =
(

ϕb1

(

f1(n)
)

, . . . , ϕbs

(

fs(n)
)

)

∈ [0, 1)s, n = 0, 1, . . . (4)

The sequence (xn)n≥0 can be viewed as a generalization of the Halton se-
quence in base b = (b1, . . . , bs). For a generalization in a different direction, we
refer to [7].
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We refer the reader to Beer [1] and to Kuipers and Niederreiter [8, Sect. 5.2]
for the notion of uniform distribution in the compact group Zp, p a prime, and
to Meijer [11] for the generalization to Zb.Definition 4.1. A sequence ω is uniformly distributed in Zb if, for all z ∈ Zb

and all g ∈ N,

lim
N→∞

SN (1z+bgZb
, ω) = b−g.

This definition is easily extended to the compact product group Zb, by con-
sidering subsets of the form (z1 + bg11 Zb1) × · · · × (zs + bgss Zbs), where zi ∈ Zbi

and gi ∈ N, 1 ≤ i ≤ s.Theorem 4.2. The following properties are equivalent:

(i) the sequence (xn)n≥0 of points in (4) is uniformly distributed in [0, 1)s;

(ii) the sequence
(

f (n)
)

n≥0
of elements of Zs is uniformly distributed modulo

(bg11 , . . . , bgss ) for all g1, . . . , gs ∈ N0 that are not all 0;

(iii) the sequence
(

f (n)
)

n≥0
is uniformly distributed modulo (bg1, . . . , b

g
s) for all

g ∈ N;

(iv) the sequence
(

f (n)
)

n≥0
of elements of Zb is uniformly distributed in Zb.

P r o o f. (i) ⇔ (ii). Let ω = (xn)n≥0 be the sequence of points in (4). By the
b-adic Weyl criterion (Theorem 2.17) ω is uniformly distributed in [0, 1)s if and
only if SN (γk, ω) tends to 0 if N tends to infinity, for all k = (k1, . . . , ks) ∈ Ns

0

with k 6= 0. By the definitions of γk and xn, we have

SN (γk, ω) =
1

N

N−1
∑

n=0

s
∏

i=1

γki

(

ϕbi

(

fi(n)
)

)

=
1

N

N−1
∑

n=0

s
∏

i=1

χki

(

fi(n)
)

=
1

N

N−1
∑

n=0

e
(

ϕb1(k1)f1(n) + · · ·+ ϕbs(ks)fs(n)
)

,

because ϕ+
bi
◦ ϕbi is the identity map when restricted to N0. Note from Remark

2.3 that ϕbi gives a bijection between N0 and the set Rbi of rational numbers
in [0, 1) with denominator a power of bi. Further, ϕbi(0) = 0. Therefore the
equivalence of (i) and (ii) follows from (3) and the Weyl criterion in Lemma 3.2.

(ii) ⇔ (iii). The implication (ii) ⇒ (iii) is trivial. For the converse, we note
that if g1, . . . , gs ∈ N0 not all 0 are given and we put g = max(g1, . . . , gs), then
bg1Z× · · · × bgsZ is a subgroup of bg11 Z × · · · × bgss Z, and so uniform distribution
mod (bg1, . . . , b

g
s) implies uniform distribution mod (bg11 , . . . , bgss ).
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(i) ⇔ (iv). From the proof of the equivalence (i) ⇔ (ii) above, it follows that

(i) ⇔ lim
N→∞

SN

(

χk, (f (n)
)

n≥0
) = 0,

for all k ∈ Ns
0 with k 6= 0. From the Weyl criterion in the compact abelian

group Zb (see Kuipers and Niederreiter [8, Corollary 1.2, p. 227]), it follows that
(

f (n)
)

n≥0
is uniformly distributed in Zb, and vice versa. �Corollary 4.3. Let b1 = · · · = bs =: p, p prime. Then the following properties

are equivalent:

(i) the sequence (xn)n≥0 of points in (4) is uniformly distributed in [0, 1)s;

(ii) the sequence
(

a1f1(n)+ · · ·+asfs(n)
)

n≥0
of integers is uniformly distributed

mod pg for all g ∈ N and for all (a1, . . . , as) ∈ Zs with at least one ai coprime
to p.

P r o o f. It suffices to show that property (ii) in Corollary 4.3 is equivalent to
property (iii) in Theorem 4.2. First assume that property (ii) in Corollary 4.3
holds. Now choose g ∈ N. In order to prove that

(

(f1(n), . . . , fs(n))
)

n≥0
is

uniformly distributed mod (pg, . . . , pg), we need to show according to Lemma 3.2
that for all (h1, . . . , hs) ∈ {0, 1, . . . , pg − 1}s \ {0} we have

lim
N→∞

1

N

N−1
∑

n=0

e

(

h1

pg
f1(n) + · · ·+

hs

pg
fs(n)

)

= 0. (5)

Put pd = gcd(h1, . . . , hs, p
g) and note that d < g. We can write hi = aip

d with
ai ∈ {0, 1, . . . , pg−d − 1} for 1 ≤ i ≤ s and at least one ai coprime to p. Then (5)
follows from the fact that

(

a1f1(n) + · · ·+ asfs(n)
)

n≥0

is uniformly distributed mod pg−d.

For the converse, choose g ∈ N and (a1, . . . , as) ∈ Zs with at least one ai
coprime to p. In order to prove that

(

a1f1(n) + · · · + asfs(n)
)

n≥0
is uniformly

distributed mod pg, we need to show according to Lemma 3.2 that for any h ∈ Z

with 1 ≤ h < pg we have

lim
N→∞

1

N

N−1
∑

n=0

e

(

h

pg
(

a1f1(n) + · · ·+ asfs(n)
)

)

= 0. (6)

Since gcd(ai, p) = 1 for at least one i, we have hai 6≡ 0 (mod pg) for this value of i
and all values of h under consideration. Therefore (6) holds by Theorem 4.2 (iii)
and Lemma 3.2. �
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CONSTRUCTIONS OF UNIFORMLY DISTRIBUTED SEQUENCESRemark 4.4. There is no obvious analog of Corollary 4.3 for the case where
s ≥ 2 and p1, . . . , ps are distinct primes. Consider the sequence (xn)n≥0 in (4)
with fi(n) = n for all 1 ≤ i ≤ s and n ≥ 0. Then the sequence

(

(

f1(n), . . . , fs(n)
)

)

n≥0
=
(

(n, . . . , n)
)

n≥0

is uniformly distributed mod (pg1, . . . , p
g
s) for all g ∈ N by the Chinese remainder

theorem (see also Corollary 2.18), and so the sequence (xn)n≥0 is uniformly
distributed in [0, 1)s by Theorem 4.2. On the other hand, take any integers
a1, . . . , as with a1 + · · ·+ as = 0. Then there is no modulus m ≥ 2 for which the
sequence

(

a1f1(n) + · · ·+ asfs(n)
)

n≥0
=
(

(a1 + · · ·+ as)n
)

n≥0

is uniformly distributed mod m.

5. Some constructionsExample 5.1. Let (Fn)n≥0 be the Fibonacci sequence. It was shown in Nieder-
reiter [12] that (Fn)n≥0 is uniformly distributed mod 5g for all g ∈ N. It follows
therefore from Theorem 4.2 that the sequence

(

ϕ5(Fn)
)

n≥0
is uniformly dis-

tributed in [0, 1).Remark 5.2. Note that (Fn)n≥0 is a second-order linear recurring sequence. We
could consider two second-order linear recurring sequences (un)n≥0 and (vn)n≥0

of nonnegative integers satisfying the same linear recurrence relation modulo a
prime p and then for s = 2 try f1(n) = un and f2(n) = vn for all n ≥ 0. But
then we claim that the sequence

(

(f1(n), f2(n))
)

n≥0
is not uniformly distributed

mod (pg, pg) for all g ∈ N. To prove this claim, we note that it is a necessary
condition that (un)n≥0 be uniformly distributed mod p. Then by [15, Cor. 3] the
minimal polynomial m(x) ∈ Fp[x] of (un)n≥0 mod p has multiple roots, hence
it is of the form m(x) = (x − c)2 for some c ∈ Fp. The generating functions
mod p of (un)n≥0 and (vn)n≥0, respectively, in the sense of [9, Sect. 6] are then
of the form

l1(x)

(x− c)2
,

l2(x)

(x− c)2
,

with polynomials l1, l2 ∈ Fp[x], deg(lj) ≤ 1 for j = 1, 2, and l1(c) 6= 0 (see [9,
Thm. 6.2]).
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Now choose a2 = 1 ∈ Fp and a1 ∈ Fp such that a1l1(c) + a2l2(c) = 0. Then the
generating function mod p of (a1un + a2vn)n≥0 is given by

a1l1(x) + a2l2(x)

(x− c)2
=

b

x− c

for some b ∈ Fp. Therefore the minimal polynomial of (a1un + a2vn)n≥0 mod p
is either 1 or x − c, hence it has no multiple roots, and so (a1un + a2vn)n≥0 is
not uniformly distributed mod p. Thus, the property (ii) in Corollary 4.3 does
not hold.Example 5.3. Let α1, . . . , αs be positive real numbers such that 1, α1, . . . , αs

are linearly independent over Q and let b1, . . . , bs be arbitrary integers ≥ 2. Then
for any g ∈ N, the sequence

(

(

{nα1/b
g
1}, . . . , {nαs/b

g
s}
)

)

n≥0

is uniformly distributed in [0, 1)s, and so by Lemma 3.3 the sequence
(

(

⌊nα1⌋, . . . , ⌊nαs⌋
)

)

n≥0

is uniformly distributed mod (bg1, . . . , b
g
s). Thus, if we put fi(n) = ⌊nαi⌋ for

1 ≤ i ≤ s and n ≥ 0, then the sequence of points in (4) is uniformly distributed
in [0, 1)s according to Theorem 4.2. We can also choose positive real numbers
α1, . . . , αs in such a way that α1 = 1/d for some d ∈ N and 1, α2, . . . , αs are
linearly independent over Q. Then by [13, Theorem 2.7] the sequence

(

(

⌊nα1⌋, . . . , ⌊nαs⌋
)

)

n≥0

is uniformly distributed mod (bg1, . . . , b
g
s) for all g ∈ N, and so we can again take

fi(n) = ⌊nαi⌋ for 1 ≤ i ≤ s and n ≥ 0 and conclude that the sequence of points
in (4) is uniformly distributed in [0, 1)s.Example 5.4. Let d1, . . . , ds be distinct positive integers and let α1, . . . , αs be
positive irrational numbers. Then for any integers b1, . . . , bs ≥ 2 and any g ∈ N,
the sequence

(

(

{α1n
d1/bg1}, . . . , {αsn

ds/bgs}
)

)

n≥0

is uniformly distributed in [0, 1)s, and so we see as in Example 5.3 that we can
take fi(n) = ⌊αin

di⌋ for 1 ≤ i ≤ s and n ≥ 0 to obtain a sequence of points
in (4) which is uniformly distributed in [0, 1)s.A
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