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ABSTRACT. Motivated by the recent surge of activity on the subject, we present

a brief non-technical survey of numerous classical and new results in discrepancy

theory related to Roth’s orthogonal function method.

Communicated by Yukio Ohkubo

The goal of this paper is to survey the use of Roth’s orthogonal function
method in the theory of irregularities of distribution, which, in a broad sense,
means applications of orthogonal function decompositions to proving discrep-
ancy estimates. The idea originated in a seminal paper of Klaus Roth [61, 1954]
that, according to his own words “started a new theory” [26]. Since then and up
to today this approach has been widely exploited to produce new important re-
sults in the the area. In the present expository article we trace the method from
its origins to recent results (to which the author has made some contribution).
It is our intention to keep the exposition concise, simple, and unobscured by the
technicalities. We shall concentrate on the heuristics and intuition behind the
underlying ideas, introduce classical and novel points of view on the method,
as well as connections to other areas of mathematics.

Before we proceed to the main part of the discussion, I would like to em-
phasize the tremendous influence that the aforementioned paper of Roth [61],
entitled “On irregularities of distribution”, has had on the development of the
field. Even the number of papers with identical or similar titles, that appeared
in the subsequent years, attests to its importance: 4 papers by Roth himself
(On irregularities of distribution. I–IV, [61, 62, 63, 64]), one by H. Davenport
(Note on irregularities of distribution, [33]), 10 by W. M. Schmidt (Irregulari-
ties of distribution. I–IX, [65, 66, 67, 68, 69, 70, 71, 72, 73, 74]), 2 by J. Beck
(Note on irregularities of distribution. I–II, [5, 6]), 4 by W. W. L. Chen
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Keywords: Discrepancy, star-discrepancy, dyadic interval, Haar function, Besov space,
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(On irregularities of distribution. I–IV, [21, 22, 23, 24]), at least 2 by Beck and
Chen (Note on irregularities of distribution. I–II, [3, 8] and several others with
similar, but more specific names), as well as the fundamental monograph on the
subject by Beck and Chen, “Irregularities of distribution”, [4].

1. Introduction: history, old and new results.

We now begin by briefly discussing the essence and the history of the field.
Discrepancy theory at large is concerned with various forms of the following
questions: How well can uniform distribution be approximated by a discrete set
of N points? And what are the errors and limitations that necessarily arise in
such approximations?The latter question is the gist of the theory of irregularities
of distribution. The subject arose naturally in number theory in connection with
the notion of uniformly distributed sequences. A sequence ω = {ωn}∞n=1 ⊂ [0, 1]
is called uniformly distributed if, for any subinterval I ⊂ [0, 1], the proportion
of points ωn that fall into I approximates its length, i.e.,

lim
N→∞

#{ωn ∈ I : 1 ≤ n ≤ N}
N

= |I|. (1.1)

This quality can be easily quantified using the notion of discrepancy:

DN (ω) = sup
I⊂[0,1]

∣∣#{ωn ∈ I : 1 ≤ n ≤ N} −N · |I|
∣∣. (1.2)

In fact, it is easy to show that ω is uniformly distributed if and only if DN (ω)/N
tends to zero as N → ∞ (see e.g. [48]). In [30, 1935], van der Corput posed a
question whether there exists a sequence ω for which the quantity DN (ω) stays
bounded as N gets large. In [1, 1945], van Aardenne-Ehrenfest gave a negative
answer to this question, which meant that no sequence can be distributed too
well; furthermore, in [2] she gave a quantitative version of this statement, showing
that DN (ω) must be at least as big as log logN/ log log logN infinitely often.
In [61], Roth greatly improved this result by proving that for any sequence ω
the inequality

DN (ω) ≥ C
√

logN (1.3)

holds for infinitely many values of N. These results signified the birth of a new
theory.

Roth had equivalently reformulated the problem to the following setting: let

PN ⊂ [0, 1]d
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be a set of N points and consider the discrepancy function

DN (x1, . . . , xd) = #{PN ∩ [0, x1)× · · · × [0, xd)} −N · x1 · · ·xd, (1.4)

i.e., the difference of the actual and expected number of points of PN in the box
[0, x1)× · · · × [0, xd). In this setup, Roth provedTheorem 1.1 (Roth). In all dimensions d ≥ 2, for any N-point set

PN ⊂ [0, 1]d,

one has

sup
x∈[0,1]d

∣∣DN (x)
∣∣ ≥ Cd log

d−1
2 N, (1.5)

where Cd is an absolute constant that depends only on the dimension d.

Moreover, Roth demonstrated that, when d = 2, this result is equivalent
to (1.3). More generally, uniform lower bounds for the discrepancy function of
finite point sets (for all values of N) in dimension d are equivalent to lower
estimates for the discrepancy of infinite sequences (1.2) (for infinitely many
values of N) in dimension d − 1. These two settings are sometimes referred to
as ‘static’ (fixed finite point sets) and ‘dynamic’ (infinite sequences). In these
terms, one can say that the dynamic and static problems are equivalent at the
cost of one dimension—the relation becomes intuitively clear if one views the
sequence index (or time) as an additional dimension. In what follows, we shall
work with Roth’s, more geometrical, static reformulation.

In fact, instead of working directly with the L∞ norm of the discrepancy
function

‖DN‖∞ = sup
x∈[0,1]d

∣∣DN (x)
∣∣

(the normalized quantity 1
N ‖DN‖∞ is classically referred to as the star-dis-

crepancy; since in this paper we only work with the unnormalized version, we
shall sometimes use this name for ‖DN‖∞), Roth considered a smaller quantity,
its L2 norm ‖DN‖2—inequality (1.5) actually holds with the L2 norm of DN on
the left hand side. This substitution allows for an introduction of a variety of
Hilbert space techniques, including orthogonal decompositions.

Roth’s ingenious idea consisted of expanding the discrepancy function DN

in the classical orthogonal Haar basis and considering only the projection onto
the span of those Haar functions which are supported on rectangles of volume
roughly equal to 1

N (heuristically justified by the fact that, for a well distributed
set, they contain approximately one point per rectangle). To be even more pre-
cise, the size of the rectangles R was chosen so that |R| ≈ 1

2N , ensuring that at
least about half of all rectangles are free of points of PN . The Haar coefficients
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of DN , corresponding to these empty rectangles, are then easily computable,
which leads directly to the estimate (1.5). This approach strongly resonates
with Kolmogorov’s method of proving lower error bounds for cubature formulas,
see, e.g., [80, Chapter IV].

Roth’s result has been extended to other Lp norms, 1 < p < ∞, byW. Schmidt
in [74, 1977], who showed that in all dimensions d ≥ 2, for all p ∈ (1,∞) the
inequality

‖DN‖p ≥ Cd,p log
d−1
2 N, (1.6)

holds for some constant Cd,p independent of the collection of the points PN .
Schmidt’s approach was a direct extension of Roth’s method: rather then working
with arbitrary integrability exponents p, he considers only those p’s for which the
dual exponent q is an even integer. This allows one to iterate the orthogonality
arguments. Even though it took more than twenty years to extend Roth’s L2

inequality to other Lp spaces, a contemporary harmonic analyst may realize
that such an extension can be derived in several lines using Littlewood-Paley
inequalities. A more thorough discussion will be provided in § 3.

However, the endpoint case p = ∞, corresponding to the star-discrepancy, is
the most natural and important in the theory. As it turns out, Roth’s inequal-
ity (1.5) is not sharp for the sup-norm of the discrepancy function. It is perhaps
not surprising: intuitively, the discrepancy function is highly irregular and comes
close to its maximal values only on small sets. Hence, its average (e.g., L2 norm)
must necessarily be much smaller than its extremal (i.e., L∞) norm. This heuris-
tics also guides the use of some of the methods that have been exploited in the
proofs of the star-discrepancy estimates, such as Riesz products.

In 1972, W. M. Schmidt proved that in dimension d = 2 one has the following
lower bound:

sup
x∈[0,1]d

∣∣DN (x)
∣∣ ≥ C logN, (1.7)

which is sharp. Indeed, two-dimensional constructions, for which ‖DN‖∞ ≤
C logN holds for all N (or, equivalently, one-dimensional sequences ω for which
DN (ω) ≤ C logN infinitely often), have been known for a long time and go back
to the works of Lerch [52, 1904], van der Corput [30, 1935] and others. Several
other proofs of inequality (1.7) have been given later [54, 1979], [9, 1982], [39,
1981]. The latter (due to Halász) presents great interest to us as it has been
built upon Roth’s Haar function method—we will reproduce and analyze the
argument in § 4. Incidentally, the title of Halász’s article [39] (“On Roth’s method
in the theory of irregularities of point distributions”) almost coincides with the
title of the present paper.

Higher dimensional analogs of Schmidt’s estimate (1.7), however, turned out
to be extremely proof-resistant. For a long time inequality (1.5) remained the
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best known bound in dimensions three and above. In fact, the first gain over the
L2 estimate was obtained only thirty-five years after Roth’s result by
Beck [7, 1989], who proved that in dimension d = 3, the discrepancy function
satisfies

‖DN‖∞ ≥ C logN · (log logN)
1
8−ε. (1.8)

Almost twenty years later, in 2008, the author jointly with M. Lacey and
A. Vagharshakyan ([11], d = 3; [12], d ≥ 4) obtained the first significant im-
provement of the L∞ bound in all dimensions d ≥ 3:Theorem 1.2 (Bilyk, Lacey, Vagharshakyan). For all d ≥ 3, there exists some
η = η(d) > 0, such that for all PN ⊂ [0, 1]d with #PN = N we have the estimate:

‖DN‖∞ ≥ Cd (logN)
d−1
2 +η(d)

. (1.9)

The exact rate of growth of the star-discrepancy in higher dimensions remains
an intriguing open problem; in their book, [4] Beck and Chen named it ‘ ‘the great
open problem” and called it ‘ ‘excruciatingly difficult”. The precise form of the
conjecture is a subject of debate among the experts in the field. We start with
the form which is directly pertinent to the orthogonal function method.Conjeture 1.3. For all d ≥ 3 and all PN ⊂ [0, 1]d with #PN = N we have
the estimate:

‖DN‖∞ ≥ Cd (logN)
d
2 . (1.10)

This conjecture is motivated by connections of this field to other areas of
mathematics and, in particular, by a related conjecture in analysis, Conjecture
4.1, which is known to be sharp (a comprehensive review of this relation will
be given in § 4). This means, above all, that this is the best result that one can
achieve using Roth’s Haar function method.

On the other hand, the best known examples [40, 42] of well distributed sets
in higher dimensions have star-discrepancy of the order

‖DN‖∞ ≤ Cd (logN)d−1. (1.11)

Numerous constructions of such sets are known and are currently a subject of
massive ongoing research, see, e.g. the book [34]. These upper bounds together
with the estimates for a “smooth” version of discrepancy (see Temlyakov [85]),
provide grounds for the alternative form of the conjecture (which is actually
older and more established)Conjeture 1.4. For all d ≥ 3 and all PN ⊂ [0, 1]d with #PN = N we have
the estimate:

‖DN‖∞ ≥ Cd (logN)
d−1

. (1.12)
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One can notice that both conjectures coincide with Schmidt’s estimate (1.7)
when d = 2. M. Skriganov has proposed yet another form of the conjecture [76]:

‖DN‖∞ ≥ Cd (logN)
d−1
2 + d−1

d . (1.13)

In contrast to the L∞ inequalitites, it is well known that in the average (L2

or Lp) sense Roth’s bound (1.3), as well as inequality (1.6), is sharp. This was
initially proved by Davenport [33] in two dimensions for p = 2, who constructed
point distributions with ||DN‖2 ≤ C

√
logN . Subsequently, different construc-

tions have been obtained by numerous other authors, including Roth [63, 64],
Chen [21], Frolov [37]. It should be noted that most of the optimal construc-
tions in higher dimensions d ≥ 3 are probabilistic in nature and are obtained
as randomizations of some classic low-discrepancy sets. In fact, deterministic

examples of sets with ‖DN‖p ≤ Cd,p log
d−1
2 N have been constructed only in the

last decade by Chen and Skriganov [27] (p = 2) and Skriganov [75] (p > 1).
It would be interesting to note that their results are also deeply rooted in Roth’s
orthogonal function method—they use the orthogonal system of Walsh functions
to analyze the discrepancy function and certain features of the argument remind
of the ideas that appear in Roth’s proof.

The other endpoint of the Lp scale, p = 1, is not any less difficult than the
star-discrepancy estimate. Indeed, the only information that is available is the
two-dimensional inequality due to Halász (also contained in the aforementioned
paper [39]), which also makes use of the Roth’s orthogonal function method:

‖DN‖1 ≥ C
√
logN, (1.14)

which essentially states that the L1 norm of discrepancy behaves roughly like its
L2 norm. It is conjectured that the same similarity continues to hold in higher
dimensions.Conjeture 1.5. For all d ≥ 3 and all sets of N points in [0, 1]d:

‖DN‖1 ≥ Cd (logN)
d−1
2 . (1.15)

However, almost no results pertaining to this conjecture have been discovered

for d ≥ 3. The only known relevant fact is that Halasz’s log
1
2 N bound still holds

in higher dimensions, i.e., it is not even known if the exponent increases with
dimension. The reader is referred to (4.15)–(4.17) for Halasz’s L1 argument.

The outline of the paper is as follows. In § 2 we discuss Roth’s original
proof and its variations. The next section, § 3, introduces a powerful tool from
harmonic analysis, the Littlewood-Paley theory, which allows one to extend
Roth’s L2 inequality to Lp, 1 < p < ∞ as well as to numerous other norms.
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We survey a wide range of results and conjectures on lower discrepancy esti-
mates in various function spaces. Section 4 discusses the most important case:
the L∞ estimates for the discrepancy function. We bring up the closely related
small ball inequality, demonstrate two-dimensional proofs, and explore connec-
tions between the problems as well as links to other fields such as probability
and approximation theory. In § 5 we give a short three-page account of very
technical recent results of the author, Lacey, and Vagharshakyan which improve
lower bounds of the star-discrepancy in all dimensions. We try to make the pre-
sentation very intuitive and concentrate on the heuristics and ideas behind the
proof. Finally, the last section deals with applications of Roth’s method to ob-
taining upper discrepancy estimates, in particular for the variations of the van
der Corput set.

We often make use of the symbol “.”: F . G means that there exists a
constant C > 0 such that F ≤ CG. The constant is allowed to depend on the
dimension and, perhaps, some other parameters, but never on the number of
points N . The relation F ≈ G means that F . G and G . F .

The aim of this survey is really two-fold: to acquaint specialists in discrepancy
theory with some of the techniques of harmonic analysis which may be used in
this subject, as well as to present the circle of problems in the field of irregu-
larities of distribution to the analysts. Numerous books written on discrepancy
theory present Roth’s method and related arguments, see [4, 20, 34, 48, 56, 80];
the book [57] studies the relations between the uniform distribution and har-
monic analysis, [87] studies the subject from the point of view of function space
theory, while [77] specifically investigates the connections between discrepancy
and Haar functions. In addition, the survey [29] explores various ideas of Roth
in discrepancy theory, including the method discussed here, and [25] stresses the
applications of Fourier analysis to the theory of irregularities of distribution. We
sincerely hope however that the present paper will provide some novel ideas and
useful insights and will be of interest to both novices and specialists in the field.

2. Roth’s L
2 proof

We now turn to a more detailed discussion of Roth’s method. We shall begin
by reproducing the proof of his result, Theorem 1.1, [61], although our exposition
will slightly differ from the style of the original paper [61] (the arguments, how-
ever, will be identical to Roth’s). We shall make use of somewhat more modern
notation which is closer in spirit to functional and harmonic analysis. Hopefully,
this will allow us to make the idea of the proof more transparent.
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We start by defining the Haar basis in in L2[0, 1]. Let 1I(x) stand for the
characteristic function of the interval I. Consider the collection of all dyadic
subintervals of [0,1]:

D =

{
I =

[
m

2n
,
m+ 1

2n

)
: m,n ∈ Z, n ≥ 0, 0 ≤ m < 2n

}
. (2.1)

Dyadic intervals form a grid, meaning that any two intervals in D are either
disjoint, or one is contained in another. In addition, for every interval I ∈ D,
its left and right halves (we shall denote them by Il and Ir) are also dyadic. The
Haar function corresponding to the interval I is then defined as

hI(x) = −1Il(x) + 1Ir(x). (2.2)

Notice that in our definition, the Haar functions are normalized to have norm
one in L∞ (their L2 norm is ‖hI‖2 = |I|1/2). This will cause some of the classical
formulas to look a little unusual for those readers who are accustomed to the L2

normalization.

These functions have been introduced by Haar [38, 1910] and have played
an extremely important role in analysis, probability, signal processing etc. They
are commonly viewed as the first example of wavelets. Their orthogonality, i.e.,
the relation

〈hI′, hI′′〉 =
∫ 1

0

hI′(x) · hI′′(x) dx = 0, I ′, I ′′ ∈ D, I ′ 6= I ′′, (2.3)

follows easily form the facts that D is a grid and that if I ′ ( I ′′, then I ′ is
contained either in the left or right half of I ′′, hence hI′′ is constant on the
support of I ′. It is well known that the system H = 1[0,1] ∪ {hI : I ∈ D} forms

an orthogonal basis in L2[0, 1] and an unconditional basis in Lp[0, 1], 1 < p < ∞.

In higher dimensions, we consider the family of dyadic rectangles Dd = {R =
R1×· · ·×Rd : Rj ∈ D}. For a dyadic rectangleR, the Haar function supported by
it is defined as a coordinatewise product of the one-dimensional Haar functions:

hR(x1, . . . , xd) = hI1(x1) · · ·hId(xd). (2.4)

The orthogonality of these functions is easily derived from the one dimensional
property. It is also well-known that the ‘product’ Haar system Hd = {f(x) =
f1(x1) · · · fd(xd) : fk ∈ H} is an orthonormal basis of L2([0, 1]d)—often referred
to as the product basis. We note that this is not the only way to extend wavelet
bases to higher dimensions [32], but this multi-parameter approach is the correct
tool for the problems at hand, where the dimensions of the underlying rectangles
are allowed to vary absolutely independently (e.g., some rectangles may be long
and thin, while others may resemble a cube). This is precisely the setting of
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the product (multi-parameter) harmonic analysis—we shall keep returning to
this point throughout the text.

As mentioned in the introduction, Roth realized that the magnitude of the
discrepancy function is essentially determined by the part of the Haar decom-
position, which corresponds to rectangles of volume |R| ≈ 1

N
. Let us choose the

number n ∈ N so that 2n−2 ≤ N < 2n−1, i.e., n ≈ log2N (although the precise
choice of n is important for the argument), and consider dyadic rectangles of R
of volume 2−n. These rectangles come in a variety of shapes. To keep track of
them we introduce a collection of vectors with integer coordinates

Hd
n = {~r = (r1, . . . , rd) ∈ Zd

+ : ‖~r‖1 = n}, (2.5)

where the ℓ1 norm is defined as ‖~r‖1 = |r1|+ · · ·+ |rd|. These vectors will specify
the shape of the dyadic rectangles in the following sense: for R ∈ Dd, we say that
R ∈ Dd

~r if |Rj | = 2−rj for j = 1, . . . , d. Obviously, if R ∈ Dd
~r and ~r ∈ Hd

n, then
|R| = 2−n. Besides, it is evident that, for a fixed ~r, all the rectangles R ∈ Dd

~r

are disjoint. It is also straightforward to see that the cardinality

#Hd
n =

(
n+ d− 1

d− 1

)
≈ nd−1, (2.6)

which agrees with the simple logic that we have d − 1 “free” parameters: the
first d− 1 coordinates can be chosen essentially freely, while the last one would
be fixed due to the condition ‖~r‖1 = n or |R| = 2−n.

We now define a function f on [0, 1]d to be an r-function with parameter
~r ∈ Zd

+ if f has the form

f(x) =
∑

R∈Dd
~r

εRhR(x), (2.7)

for some choice of signs εR = ±1. These functions are generalized Rademacher
functions (hence the name)—indeed, setting all the signs εR = 1, one obtains
the familiar Rademacher function. It is trivial that if f is an r-function, then
f2 = 1 and thus ‖f‖2 = 1. Such functions play the role of building blocks in
numerous discrepancy arguments, therefore their L2 normalization justifies the
choice of the L∞ normalization for the Haar functions. In addition, the fact
that two r-functions corresponding to different vectors ~r are orthogonal readily
follows from the orthogonality of the family of Haar functions.

Next, we would like to compute how discrepancy function DN interacts with
the Haar functions in certain cases. Notice that discrepancy function can be
written in the form

DN (x) =
∑

p∈PN

1[p,~1](x)−N · x1 · · · xd, (2.8)
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where ~1 = (1, . . . , 1) and [p,~1] = [p1, 1]× · · · × [pd, 1]. We shall refer to the first
term as the counting part and the second as the volume (area) or the linear part.

It is easy to see that, in one dimension, we have
∫

1[q,1](x) · hI(x) dx =

∫ 1

q

hI(x) dx = 0

unless I contains the point q. This implies that for p ∈ [0, 1]d

∫

[0,1]d
1[p,~1](x) · hR(x) dx =

d∏

j=1

∫ 1

pj

hRj
(xj) dxj = 0 (2.9)

when p 6∈ R. Assume now that a rectangle R ∈ Dd is empty, i.e., does not contain
points of PN . It follows from the previous identity that for such a rectangle, the
inner product of the corresponding Haar function with the counting part of the
discrepancy function is zero:〈

∑

p∈PN

1[p,~1], hR

〉
= 0, (2.10)

in other words, the inner product 〈DN , hR〉 is determined purely by the linear
part of DN .

It is however a simple exercise to compute the inner product of the linear part
with any Haar function:

〈Nx1 . . . xd, hR〉 = N

d∏

j=1

〈
xj , hRj

(xj)
〉
= N · |R|2

4d
. (2.11)

Hence we have shown that if a rectangle R ∈ Dd does not contain points of PN

in its interior, we have
〈DN , hR〉 = −N |R|24−d. (2.12)

These, somewhat mysterious, computations can be explained geometrically
(see [74], also [20, Chapter 3]). For simplicity, we shall do it in dimension d = 2,
but this argument easily extends to higher dimensions. Let R ⊂ [0, 1]2 be an
arbitrary dyadic rectangle of dimensions 2h1 × 2h2 which does not contain any
points of PN and let R′ ⊂ R be the lower left quarter of R. Notice that, for any
point x = (x1, x2) ∈ R′, the expression

DN

(
x
)
−DN

(
x+ (h1, 0)

)
+DN

(
x+ (h1, h2)

)
−DN

(
x+ (0, h2)

)
=

−N · h1h2 = −N · |R|
4

. (2.13)
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Indeed, since R is empty, the counting parts will cancel out, and the area parts
will yield precisely the area of the rectangle with vertices at the four points in
the identity above. Hence, it is easy to see that

∫

R′

(
DN

(
x
)
−DN

(
x+ (h1, 0)

)
+DN

(
x+ (h1, h2)

)
−DN

(
x+ (0, h2)

))
dx =

−N ·
( |R|

4

)2

, (2.14)

while, on the other hand,
∫

R′

(
DN

(
x
)
−DN

(
x+ (h1, 0)

)
+DN

(
x+ (h1, h2)

)
−DN

(
x+ (0, h2)

))
dx =

∫

R

DN (x) · hR(x) dx = 〈DN , hR〉. (2.15)

In other words, the inner product of discrepancy with the Haar function sup-
ported by an empty rectangle picks up the local discrepancy arising purely as
the area of the rectangle.

We are now ready to prove a crucial preliminary lemma.Lemma 2.1. Let PN ⊂ [0, 1]d be a distribution of N points and chose n ∈ N so
that 2n−2 ≤ N < 2n−1. Then, for any ~r ∈ Hd

n, there exists an r-function f~r with
parameter ~r such that

〈DN , f~r〉 ≥ cd > 0, (2.16)

where the constant cd depends on the dimension only.

P r o o f. Construct the function f~r in the following way:

f~r =
∑

R∈Dd
~r
:R∩PN=∅

(−1) · hR +
∑

R∈Dd
~r
:R∩PN 6=∅

sgn
(
〈DN , hR〉

)
· hR (2.17)

By our choice of n, at least 2n−1 of the 2n rectangles in Dd
~r must be free of points

of PN . It then follows from (2.10) and (2.11) that

〈DN , f~r〉 ≥ −
∑

R∩PN=∅
〈DN , hR〉 =

∑

R∩PN=∅
〈Nx1 . . . xd, hR〉

=
∑

R∩PN=∅
N · |R|2

4d

≥ 2n−1 · 2n−2 · 2
−2n

4d
= cd. (2.18)

�
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DMITRIY BILYKRemark. Roth [61] initially defined the functions f~r slightly differently: he set
them equal to zero on those dyadic rectangles which do contain points of PN ,
i.e., Roth’s functions consisted only of the first term of (2.17). While this bears
no effect on this argument, it was later realized by Schmidt [74] that in more
complex situations it is desirable to have more uniformity in the structure of
these building blocks. He simply chose the sign that increases the inner product
on non-empty rectangles (the second term in (2.17)). Schmidt’s paper, as well
as subsequent papers by Halász [39], Beck [7], the author and collaborators
[11, 12, 14], make use of the r-functions as defined here (2.7).

Lemma 2.1 produces a rather large collection of orthogonal(!) functions such
that the projections of DN onto each of them is big, hence the norm of DN must
be big: this is the punchline of Roth’s proof.

P r o o f o f T h e o r e m 1.1. Roth’s proof proceeds by duality. Construct the
following test function:

F =
∑

~r∈Hd
n

f~r , (2.19)

where f~r are the r-functions provided by Lemma 2.1. Orthogonality of f~r’s yields:

‖F‖2 =


∑

~r∈Hd
n

‖f~r‖22



1/2

= (#Hd
n)

1/2 ≈ n
d−1
2 , (2.20)

while Lemma 2.1 guarantees that

〈DN , F 〉 ≥ (#Hd
n) · cd ≈ nd−1. (2.21)

Now Cauchy-Schwarz inequality easily implies that:

‖DN‖2 ≥ 〈DN , F 〉
‖F‖2

& n
d−1
2 ≈

(
logN

) d−1
2 , (2.22)

which finishes the proof. �

S e c o n d p r o o f o f T h e o r e m 1.1. One can formulate a different proof
which avoids using duality, although it boils down to the same idea. This proof
first appeared in an unpublished manuscript of A. Pollington and was repro-
duced in [25]. Use the orthogonality of Haar functions, Bessel’s inequality and
(2.11) to write

‖DN‖22 ≥
∑

|R|=2−n, R∩PN=∅

|〈DN , hR〉|2
|R| =

∑

~r∈Hd
n

∑

R∈Dd
~r
:R∩PN=∅

N2 · 2−4n

2−n · 42d

& (#Hd
n) · 2n−1 · 22n−42−3n ≈ nd−1 ≈

(
logN

)d−1
. (2.23)
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The first line of the above calculation may look a bit odd: this is a consequence
of the L∞ normalization of the Haar functions. �

One can easily extend the first proof to an Lp bound, 1 < p < ∞, provided
that one has the estimate for the Lq norm of the test function F , where q is the
dual index to p, i.e., 1/p+1/q = 1. Ineed, it will be shown in the next section as a
simple consequence of the Littlewood-Paley inequalities that for any q ∈ (1,∞)

we have the same estimate as for the L2 norm: ‖F‖q ≈ n
d−1
2 , see (3.10) and

(3.12). Hence, replacing Cauchy-Schwarz by Hölder’s inequality in (2.22), one
immediately recovers Schmidt’s result [74]:

‖DN‖p & (logN)
d−1
2 . (2.24)

Schmidt had originally estimated the Lq norms of the function F in the case
when q = 2m is an even integer, by using essentially L2 techniques: squaring out
the integrands and analyzing the orthogonality of the obtained terms. We point
out also that an analog of the second proof (2.23) can be carried out for the Lp

too using the device of the product Littlewood-Paley square function instead of
orthogonality. The reader is invited to consult the next section, § 3, for details.

Recently, Hinrichs and Markashin [44] have slightly modified Roth’s method
to obtain the best known value of the constant Cd in Theorem 1.1: they have
noticed that one can extend the summation in (2.23) to include rectangles with
larger volume |R| ≥ 2−n. A careful computation then yields

C2 =
7

216
√
log 2

= 0.038925 . . . and Cd =
7

27 · 22d−1
√
(d− 1)!(log 2)

d−1
2

for d ≥ 3, where all logarithms are taken to be natural.

3. Littlewood-Paley Theory

While Roth’s method in its original form provides sharp information about
the behavior of the L2 norm of the discrepancy function, additional ideas and
tools are required in order to extend the result to other function spaces, such as
Lp, 1 < p < ∞. In particular, the L2 arguments of the previous section made
essential use of orthogonality. Therefore, one needs an appropriate substitute for
this notion in the case p 6= 2. A hands-on approach to this problem has been
discovered by Schmidt in [74].

However, harmonic analysis provides a natural tool which allows one to push
orthogonality arguments from L2 to Lp, as well as to more general function
spaces. This tool is the so-called Littlewood-Paley theory. In this section, we shall
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give the necessary definitions, facts, and references relevant to our settings and
concentrate on the applications of this theory to the irregularities of distribution.

We start by considering the one-dimensional case. Let f be a measurable
function on the interval [0, 1]. The dyadic (Haar) square function of f is then
defined as

Sf(x) =

(∣∣∣∣
∫ 1

0

f(t)dt

∣∣∣∣
2

+
∑

I∈D

|〈f, hI〉|2
|I|2 1I(x)

)1
2

=



∣∣∣∣
∫ 1

0

f(t)dt

∣∣∣∣
2

+

∞∑

k=0

(
∑

I∈D, |I|=2−k

〈f, hI〉
|I| hI(x)

)2


1
2

(3.1)

We stress again that the formula may look unusual to a reader familiar with the
subject due to the uncommon (L∞, not L2) normalization of the Haar functions.
To intuitively justify the correctness of this definition, notice that ShI = 1I for
any I ∈ D. In particular, if the function has the form f =

∑
I∈D aIhI , then its

square function is

Sf =

(
∑

I∈D
a2I1I

)1
2

=




∞∑

k=0

(
∑

I∈D: |I|=2−k

aIhI

)2


1
2

. (3.2)

Since Haar functions (together with the constant 1[0,1]) form an orthogonal basis

of L2[0, 1], Parseval’s identity immediately implies that

‖Sf‖2 = ‖f‖2. (3.3)

A non-trivial generalization of this fact to an equivalence of Lp norms, 1<p<∞,
is referred to as the Littlewood-Paley inequalities. They can also be viewed as a
generalization of the famous Khintchine inequality:Theorem 3.1 (Littlewood-Paley inequalities, [88]). For 1 < p < ∞, there exist
constants Bp > Ap > 0 such that for every function f ∈ Lp[0, 1] we have

Ap‖Sf‖p ≤ ‖f‖p ≤ Bp‖Sf‖p. (3.4)

The asymptotic behavior of the constants Ap and Bp is known [88] and is
very useful in numerous arguments, especially when (3.4) is applied for very
high values of p. In particular Bp ≈ √

p when p is large. Also, a simple duality

argument shows that Aq = B−1
p , where q is the dual index of p. The reader is

invited to consult the following references for more details: [88, 78, 16].

What is very important is that these inequalities continue to hold for the
Hilbert space-valued functions (in this case, all the arising integrals are un-
derstood as Bochner integrals). This delicate fact allows one to extend the
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Littlewood-Paley inequalities to the multi-parameter setting in a fairly straight-
forward way by successively applying (3.4) in each dimension while treating the
other dimensions as vector-valued coefficients [59, 78]. We note that in the gen-
eral case one would apply the one dimensional Littlewood-Paley inequality d
times (once in each coordinate). However, in the setting introduced by Roth’s
method (where the attention is restricted to dyadic boxes R of fixed volume
|R| = 2−n) one would apply it only d − 1 times since this is the number of the
free parameters—once the lengths of d − 1 sides are specified, the last one is
determined automatically by the condition |R| = 2−n.

Rather then stating the relevant inequalities in full generality (which an in-
terested reader may find in [59, 11]), we illustrate the use of this approach by
a simple example, important to the topic of our discussion. Recall that the test
function (2.19) in Roth’s proof was constructed as

F =
∑

~r∈Hd
n

f~r =
∑

R: |R|=2−n

εRhR ,

where εR = ±1. We want to estimate the Lq norm of F . Applying the one-
dimensional Littlewood-Paley inequality in the first coordinate x1, we obtain

‖F‖q =

∥∥∥∥∥∥

∑

|R|=2−n

εRhR

∥∥∥∥∥∥
q

≤ Bq

∥∥∥∥∥∥∥∥∥∥




n∑

r1=1

∣∣∣∣∣∣∣∣∣

∑

|R|=2−n

|R1|=2−r1

εRhR

∣∣∣∣∣∣∣∣∣

2


1/2∥∥∥∥∥∥∥∥∥∥
q

. (3.5)

In the two-dimensional case for any value of r1 all the rectangles satisfying the
conditions of the innermost summation are disjoint, and for each point x we
have:

n∑

r1=1

∣∣∣∣∣∣∣∣∣

∑

|R|=2−n

|R1|=2−r1

εRhR(x)

∣∣∣∣∣∣∣∣∣

2

=

n∑

r1=1

∑

|R|=2−n

|R1|=2−r1

|εR|21R(x)

=
∑

R∈D2, |R|=2−n

1R(x) = #H2
n ≈ n, (3.6)

since ε2R = 1 and every point is contained in #H2
n dyadic rectangles (one per

each shape).

In the case d ≥ 3, the expression on the right-hand side of (3.5) can be viewed
as a Hilbert space-valued function. Indeed, fix all the coordinates except x2 and
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define an ℓ2-valued function

F2(x2) =
∑

I∈D





∑

|R|=2−n, R2=I

|R1|=2−r1

εR
∏

j 6=2

hRj
(xj)





n

r1=1

hI(x2) . (3.7)

Then the expression inside the Lq norm on the right hand side of (3.5) is ex-
actly |F |ℓ2 . Applying the Hilbert space-valued Littlewood-Paley inequality in
the second coordinate, we get

‖F‖q =

∥∥∥∥∥
∑

|R|=2−n

εRhR

∥∥∥∥∥
q

≤ Bq

∥∥ |F2|ℓ2
∥∥
q

≤ B2
q

∥∥∥∥∥∥∥∥∥∥




n∑

r1=1

n∑

r2=1

∣∣∣∣∣∣∣∣∣

∑

|R|=2−n

|Rj |=2−rj , j=1,2

εRhR

∣∣∣∣∣∣∣∣∣

2 


1/2∥∥∥∥∥∥∥∥∥∥
q

. (3.8)

And if d = 3, then analog of (3.6) holds, completing the proof in this case. In
the case of general d we continue applying the vector-valued Littlewood-Paley
inequalities inductively in a similar fashion a total of d− 1 times to obtain

‖F‖q =

∥∥∥∥∥
∑

|R|=2−n

εRhR

∥∥∥∥∥
q

≤ · · ·

· · · ≤ Bd−1
q

∥∥∥∥∥∥∥∥∥∥




n∑

r1=1

· · ·
n∑

rd−1=1

∣∣∣∣∣∣∣∣∣

∑

|R|=2−n

|Rj|=2−rj , j=1,...,d−1

εRhR

∣∣∣∣∣∣∣∣∣

2 


1/2∥∥∥∥∥∥∥∥∥∥
q

. (3.9)

Just as explained in (3.6), in this case all the rectangles in the innermost sum-
mation are disjoint and thus

‖F‖q ≤ Bd−1
q

∥∥∥∥∥∥∥


 ∑

R∈Dd, |R|=2−n

|εR|21R




1
2

∥∥∥∥∥∥∥
q

= Bd−1
q

(
#Hd

n

)1
2 ≈ n

d−1
2 . (3.10)
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ON ROTH’S ORTHOGONAL FUNCTION METHOD IN DISCREPANCY THEORYRemark. For a function f =
∑

R∈Dd aRhR on [0, 1]d, the expression

Sdf(x) =


 ∑

R∈Dd, |R|=2−n

|aR|21R(x)




1
2

is called the product dyadic square function of f . The product Littlewood-
Paley inequalities (whose proof is essentially identical to the argument presented
above) state that

Ad
p ‖Sdf‖p ≤ ‖f‖p ≤ Bd

p ‖Sdf‖p . (3.11)

With these inequalities at hand, one can estimate the Lq norm of F in a single
line:

‖F‖q =

∥∥∥∥∥∥

∑

|R|=2−n

εRhR

∥∥∥∥∥∥
q

≈ ‖Sdf‖q

=

∥∥∥∥∥∥∥


 ∑

R∈Dd, |R|=2−n

|εR|21R




1
2

∥∥∥∥∥∥∥
q

=
(
#Hd

n

)1
2 ≈ n

d−1
2 . (3.12)

We chose to include the illustrative proof of this estimate in order to demonstrate
the essence of the product Littlewood-Paley theory. In addition, the argument
leading to (3.10) gives a better implicit constant than the general inequalities
(Bd−1

q versus Bd
q , according to the number of free parameters). While we gen-

erally are not concerned with the precise values of constants in this note, the
behavior of this particular constant plays an important role in some further
estimates, see (3.19).

The proof of of Schmidt’s Lp lower bound (1.6) can now be finished immedi-
ately. Let q be the dual index of p, i.e. 1/p + 1/q = 1 and let F be as defined
in (2.19). Then, replacing Cauchy-Schwarz with Hölder’s inequality in (2.22) and
using (3.12), we obtain:

‖DN‖p ≥ 〈DN , F 〉
‖F‖q

& n
d−1
2 ≈

(
logN

) d−1
2 . (3.13)

An analog of the second proof (2.23) of Roth’s estimate (1.5) can also be carried
out easily using the Littlewood-Paley square function. We include it since it
provides a foundation for discrepancy estimates in other function spaces. It is
particularly useful when one deals with quasi-Banach spaces and is forced to
avoid duality arguments. We start with a simple lemma:
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DMITRIY BILYKLemma 3.2. Let Ak ⊂ [0, 1]d, k ∈ N, satisfy µ(Ak) ≥ c, where µ is the Lebesgue
measure, then for any M ∈ N

µ

({
x ∈ [0, 1]d :

M∑

k=1

1Ak
(x) >

1

2
cM

})
>

1

2
c.

P r o o f. Assume this is not true, then we immediately arrive to a contradiction

cM ≤
∫ M∑

k=1

1Ak
(x) dx

≤ 1

2
cM · µ

(
M∑

k=1

1Ak
<

1

2
cM

)
+M · µ

(
M∑

k=1

1Ak
>

1

2
cM

)

<
1

2
cM +M · 1

2
c = cM .

We shall apply the lemma as follows: for each ~r ∈ Hd
n, let A~r be the union of

rectangles R ∈ Dd
~r which do not contain points of PN . Then µ(A~r) ≥ c = 1

2 and

M = #Hd
n ≈ nd−1. Let E ⊂ [0, 1]d be the set of points where at least M/4 empty

rectangles intersect. By the lemma above, µ(E) > 1
4 . On this set, using (2.12):

SdDN (x) =


 ∑

R∈Dd

〈DN , hR〉2
|R|2 1R(x)




1
2

&
(
M ·N2 2−2n

) 1
2 ≈ n

d−1
2 . (3.14)

Integrating this estimate over E finishes the proof of (1.6)

‖DN‖p & ‖SdDN‖p & n
d−1
2 ≈ (logN)

d−1
2 .

�

3.1. Lower bounds in other function spaces

The use of the Littlewood-Paley theory opens the door to considering much
wider classes of functions than just the Lp spaces. There has been a splurge of
activity in this direction. We shall give a very brief overview of the results and
conjectures related to various function spaces. All of the results described below
are direct descendants of Theorem 1.1 and Roth’s method as every single one of
them makes use of the Haar coefficients of the discrepancy function.

In particular, a direct extension of the above argument provides a lower bound
of the discrepancy function in product Hardy spacesHp, 0 < p ≤ 1. These spaces
are generalizations of the classical classes introduced by Hardy, see [17, 18].
The norm of these spaces can be characterized using the square function:

‖f‖Hp ≈ ‖Sdf‖p.
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We have the following result due to Lacey [49]: for 0 < p ≤ 1,

‖D̃N‖Hp ≥ Cd,p(logN)
d−1
2 , (3.15)

where D̃N =
∑

R∈Dd
〈DN ,hR〉

|R| hR, i.e. the discrepancy function DN modified as

to have mean zero over every subset of coordinates. The proof of this result is a
verbatim repetition of the previous proof—one simply estimates the norm of the
square function. As this example clearly illustrates, in harmonic analysis Hardy
spaces Hp serve as a natural substitute for Lp spaces when p ≤ 1. Numerous
analytic tools, such as square functions, maximal functions, atomic decomposi-
tions [78], allow one to extend the Lp estimates to the Hp setting for 0 < p ≤ 1.
The Lp behavior of the discrepancy function for this range of p, however, still
remains a mystery. It is conjectured that the Lp norm should obey the same
asymptotics in N for all values of p > 0.Conjeture 3.3. For all p ∈ (0, 1] the discrepancy function satisfies the esti-
mate

‖DN‖p ≥ Cd,p(logN)
d−1
2 . (3.16)

The only currently available information regarding this conjecture is the result
of Halász [39] who proved that it indeed holds in dimension d = 2 for the L1

norm:
‖DN‖1 ≥ C

√
logN. (3.17)

We shall discuss Halász’s ingenious method in § 4. Halász was able to extend this
inequality to higher dimensions, but only with the same right-hand side. Thus
it is not known whether the L1 bound even grows with the dimension. As to the
case p < 1, no information whatsoever is available at this time.

In attempts to get close to L1, Lacey [49] has proved that if one replaces L1

with the Orlicz space L(logL)
d−2
2 , then the conjectured bound holds

‖DN‖L(logL)(d−2)/2 ≥ Cd(logN)
d−1
2 . (3.18)

We remark that an adaptation of the proof of Schmidt’s Lp bound given in the
previous subsection, specifically estimate (3.10), can easily produce a slightly
weaker inequality

‖DN‖L(logL)(d−1)/2 ≥ Cd(logN)
d−1
2 (3.19)

Indeed, let F once again be as defined in (2.19). It is well known that (see, e.g.,
[55]) the dual of L(logL)(d−1)/2 is the exponential Orlicz space exp(L2/(d−1)).
Hence we need to estimate the norm of F in this space. It is also a standard fact
that

‖F‖exp(Lα) ≈ sup
q>1

q−1/α‖F‖q (3.20)
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(this can be established using Taylor series for ex and Stirling’s formula).
We recall that the constant arising in the Littlewood-Paley inequalities (3.4)
is Bq ≈ √

q for large q and the implicit constant in (3.10) is Bd−1
q . Thus we

obtain

‖F‖exp(L2/(d−1)) . sup
q>1

q−(d−1)/2 · Bd−1
q n

d−1
2

≈ sup
q>1

q−(d−1)/2 · q(d−1)/2n
d−1
2 = n

d−1
2 , (3.21)

and (3.19) immediately follows by duality. These estimates are similar in spirit
to the famous Chang-Wilson-Wolff inequality [19].

In a different vein, Triebel has recently studied the behavior of the discrepancy
in Besov spaces [86, 87]. He proves, among other things, that

‖DN‖Sr
pqB([0,1]d) ≥ Cd,p,q,r N

r (logN)
d−1
q ,

1 < p, q < ∞,
1

p
− 1 < r <

1

p
. (3.22)

Here the space Sr
pqB([0, 1]d) is the Besov space with dominating mixed smooth-

ness. The exact definition of this class (which can be stated in terms very remi-
niscent of the Littlewood-Paley square function Sf) is technical and would take
our discussion far afield. We would only mention that the index p represents
integrability, r measures smoothness, and q is a certain correction index. In par-
ticular, the case q = 2 corresponds to the well-known Sobolev spaces which,
roughly speaking, consist of functions, with rth mixed derivative in Lp. Further-
more, when r = 0, one recovers Schmidt’s Lp estimates. At least in dimension
d = 2, the estimates (3.1) are sharp [43], see § 6. For more details, the reader
is directed towards Triebel’s recent book [87] concentrating on discrepancy and
numerical integration in this context as well as to his numerous other famous
books for a comprehensive treatise of the theory of function spaces in general.

The recent work of Ou [58] deals with the growth of the discrepancy function
in weighted Lp spaces. A non-negative measurable function ω on [0, 1]d is called
an Ap (dyadic product) weight if

sup
R∈Dd

(∫

R

ω

)(∫

R

ω− 1
p−1

)p−1

< ∞. (3.23)

The space Lp(ω) is then defined as the Lp space with respect to the measure
ω(x) dx. The Ap weights play a tremendously important role in harmonic anal-
ysis: they give the largest reasonable class of measures such that the standard
boundedness properties of classical operators (such as maximal functions, sin-
gular integrals, square functions) continue to hold in Lp spaces with respect
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to these measures. By an adaptation of the square function argument (3.14),
Ou was able to show that

‖DN‖Lp(ω) ≥ Cd,p,ω(logN)
d−1
2 , (3.24)

i.e., the behavior in weighted Lp spaces is essentially the same as in their
Lebesgue-measure prototypes.

Approaching the other end of the Lp scale in attempts to understand the pre-
cise nature of the kink that occurs at the passage from the average (Lp) to the
maximum (L∞) norm, Bilyk, Lacey, Parissis, and Vagharshakyan [14] computed
the lower bounds of the discrepancy function in spaces which are “close” to
L∞. One such space is the product dyadic BMO (which stands for bouded mean
oscillation). This space, introduced by Chang and Fefferman [17], is a proper
generalization of the classical BMO space to the multiparameter setting. In par-
ticular, the famous H1 − BMO duality is preserved. Just as H1 often serves as
a natural substitute for L1, in many problems of harmonic analysis BMO natu-
rally replaces L∞. However, Bilyk, Lacey, Parissis, and Vagharshakyan showed
that in this case the BMO norm behaves like Lp norms rather then L∞:

‖DN‖BMO ≥ Cd(logN)
d−1
2 . (3.25)

In fact, this estimate is not hard to obtain with the help of the same test func-
tion F (2.19) that we have used several times already—all we have to do is to
estimate its dual (H1) norm. Just as in (3.12):

‖F‖H1 ≈ ‖SF‖1 =

∥∥∥∥∥∥∥


 ∑

R∈Dd, |R|=2−n

|εR|21R




1
2

∥∥∥∥∥∥∥
1

=
(
#Hd

n

)1
2 ≈ n

d−1
2 , (3.26)

which immediately yields the result. In addition, the authors prove lower bounds
in the aforementioned exponential Orlicz spaces. These spaces exp(Lα) serve as
an intermediate scale between the Lp spaces, p < ∞, and L∞. The following
estimate is contained in [14]: in dimension d = 2 for all 2 ≤ α < ∞ we have

‖DN‖exp(Lα) ≥ C(logN)1−
1
α . (3.27)

We note that this inequality can be viewed as a smooth interpolation of lower
bounds between Lp and L∞. Indeed, when α = 2 (the subgaussian case exp(L2)),
the estimate is

√
logN—the same as in L2. On the other hand, as α approaches

infinity, the right hand side approaches the L∞ bound—logN . The proof of this
estimate closely resembles Halász’s proof of the L∞ bound (see (4.11) below),
with the obvious modification that the test function has to be estimated in the
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dual space L(logL)1/α. Hence the same problems and obstacles that arise when
dealing with star-discrepancy prevent straightforward extensions of this estimate
to higher dimensions. We finish this discussion by mentioning that both of these
estimates were shown to be sharp, see § 6.
4. The star-discrepancy (L∞) lower bounds and the small

ball inequality

We now turn our attention to the most important case: L∞ bounds of the
discrepancy function. As explained in the introduction, when the set PN is dis-
tributed rather well, its discrepancy comes close to its maximal values only on a
thin set, while staying relatively small on most of [0, 1]d. Therefore the extremal
L∞ norm of this function has to be much larger than the averaging L2 norm.
This heuristic was first confirmed by Schmidt [71] who proved

‖DN‖∞ ≥ C logN. (4.1)

Other proofs of this inequality have been later given by Liardet [54, 1979],
Béjian [9, 1982] (who produced the best known value of the constant C = 0.06),
and Halász [39, 1981]. The proof of Halász is the most relevant to the topic of
the present survey as it relies on Roth’s orthogonal function idea and takes it
to a new level. However, before we proceed to Halász’s proof of Schmidt’s lower
bound, we shall discuss another related inequality.

The small ball inequality, which arises naturally in probability and approxi-
mation, besides being important and significant in its own right, also serves as
a model for the lower bounds for the star-discrepancy (1.10). This inequality is
concerned with the lower estimates of the supremum norm of linear combina-
tions of multivariate Haar functions supported by dyadic boxes of fixed volume
(we call such sums ‘hyperbolic’) and can be viewed as a reverse triangle inequal-
ity. It is linked to the discrepancy function through Roth’s orthogonal function
method. Although no formal connections are known, most arguments designed
for this inequality can be transferred to the discrepancy setting. We now state
the conjecture:Conjeture 4.1 (The Small Ball Conjecture). In dimensions d ≥ 2, for any
choice of the coefficients αR one has the following inequality:

n
d−2
2

∥∥∥∥∥∥

∑

R∈Dd: |R|=2−n

αRhR

∥∥∥∥∥∥
∞

& 2−n
∑

R: |R|=2−n

|αR|. (4.2)
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The point of interest in this conjecture is the precise exponent of n on the left-
hand side. If one replaces n(d−2)/2 by n(d−1)/2, this inequality becomes almost
trivial, and, in fact, holds for the L2 norm. Indeed, using the orthogonality of
Haar functions and keeping in mind that ‖hR‖2 = |R|1/2, we obtain

∥∥∥∥∥∥

∑

R∈Dd: |R|=2−n

αRhR

∥∥∥∥∥∥
2

=


 ∑

|R|=2−n

|αR|22−n




1
2

&

∑
|R|=2−n |αR|2−n/2

(
nd−12n

) 1
2

= n− d−1
2 · 2−n

∑

|R|=2−n

|αR|, (4.3)

where in the last line we have used the Cauchy-Schwarz inequality and the fact
that the number of terms in the sum is of the order nd−12n. The presence of the
quantity d− 1 in this context is absolutely natural, as it is, in fact, the number
of free parameters (dictated by the condition |R| = 2−n). The passage to d − 2
for the L∞ norm requires a much deeper analysis and brings out a number of
complications.

This result and the conjecture should be compared to Roth’s L2 discrepancy
estimate (1.5) and Conjecture 1.3. The computation just presented is very close
the proof (2.23) of (1.5). In fact, the resemblance becomes even more striking if
one restricts the attention to the case when all the coefficients αR = ±1. In this
case 2−n

∑
|R|=2−n |αR| ≈ nd−1 and the L2 estimate (4.3) becomes

∥∥∥∥∥∥

∑

R∈Dd: |R|=2−n

αRhR

∥∥∥∥∥∥
2

& n
d−1
2 , (4.4)

while the conjectured L∞ inequality 4.2 for α = ±1 turns into∥∥∥∥∥∥

∑

R∈Dd: |R|=2−n

αRhR

∥∥∥∥∥∥
∞

& n
d
2 . (4.5)

Recalling that n in Roth’s argument was chosen to be approximately log2 N ,
one immediately sees the similarity of these inequalities to (1.5) and (1.10).

Choosing αR’s to be either independent Gaussian random variables or in-
dependent random signs αR = ±1 verifies that this conjecture is sharp, see,
e.g., [11]. This provides one of the reasons to believe that the correct esti-
mate for the star-discrepancy should be Conjecture 1.3: ‖DN‖∞ & (logN)d/2.
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We shall now illustrate the connection between this inequality and the discrep-
ancy estimates.

The Small Ball Conjecture has been proved in d = 2 by M. Talagrand [79]
in 1994. In 1995, V. Temlyakov [82] (see also [83, 84]) has given another, very
elegant proof of this inequality in two dimensions, which closely resembled the
argument of Halász [39] for (1.7). We shall present Temlyakov’s proof first as
it is somewhat “cleaner” and avoids technicalities. Then we shall explain which
adjustments need to be made in order translate this argument to a proof of
Schmidt’s estimate.

The proof is based on Riesz products. An important feature of the two-
dimensional case is the following product rule: if R, R′ ∈ D2 are not disjoint,
R 6= R′, and |R| = |R′|, then

hR · hR′ = ±hR∩R′ , (4.6)

i.e., the product of two Haar functions is again Haar. The proof of this fact
is straightforward. Unfortunately, this rule does not hold in higher dimensions.
Indeed, for d ≥ 3 one can have two different boxes of the same volume which
coincide in one of the coordinates, say R1 = R′

1. Then, hR1
· hR′

1
= h2

R1
= 1R1

–
–we lose orthogonality in the first coordinate. The fact that the product rule
fails in higher dimensions is a major obstruction on the path to solving the
conjecture.

P r o o f o f t h e s m a l l b a l l c o n j e c t u r e i n d i m e n s i o n d = 2 . For
each k = 0, . . . , n consider the r-functions fk =

∑
|R|=2−n, |R1|=2−k sgn(αR)hR.

Obviously, in two dimensions, the conditions |R| = 2−n and |R1| = 2−k uniquely
define the shape of a dyadic rectangle. We are now ready to construct the test
function as a Riesz product:

Ψ :=
n∏

k=1

(
1 + fk

)
. (4.7)

First of all, notice that Ψ is non-negative. Indeed, since fk’s only take the values
±1, each factor above is equal to either 0 or 2. Thus, we can say even more
than Ψ ≥ 0: the only possible values of Ψ are 0 and 2n+1. Next, we observe that∫
Ψ(x)dx = 1. This can be explained as follows. Expand the product in (4.7). The

leading term is equal to 1. All the other terms are products of Haar functions;
therefore, by the product rule, they themselves are Haar functions and have
integral zero. So, Ψ is a non-negative function with integral 1. In other words,
it has L1 norm 1: ‖Ψ‖1 = 1.

A similar argument applies to the inner product of
∑

|R|=2−n αRhR and Ψ.

Multiplying out the product in (4.7) and using the product rule, one can see
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that

Ψ = 1 +
∑

R∈Dd: |R|=2−n

sgn(αR)hR + Ψ>n, (4.8)

where Ψ>n is a linear combination of Haar functions supported by rectan-
gles of area less than 2−n. The first and the third term are orthogonal to∑

|R|=2−n αRhR. Hence, using Hölder’s inequality,
∥∥∥∥∥∥

∑

R∈Dd: |R|=2−n

αRhR

∥∥∥∥∥∥
∞

≥
〈

∑

|R|=2−n

αRhR,Ψ

〉

=

〈
∑

|R|=2−n

αRhR,
∑

|R|=2−n

sgn(αR)hR

〉
(4.9)

=
∑

R∈Dd: |R|=2−n

αR · sgn(αR) · ‖hR‖22

= 2−n ·
∑

|R|=2−n

|αR|, (4.10)

and we are done (notice that for d = 2 we have n
d−2
2 = 1). �

P r o o f o f S c hm i d t’ s l o w e r b o u n d f o r t h e s t a r- d i s c r e p a n c y.
We now explain how the same idea can be used to prove a discrepancy estimate.
In place of the r-functions fk used above, we shall utilize the r-functions fk =∑

|R|=2−n εRhR such that 〈DN , fk〉 ≥ c, which were used in Roth’s proof (2.22)

of the L2 estimate (1.5) and whose existence is guaranteed by Lemma 2.1. The
test function is then constructed in a fashion very similar to (4.7):

Φ :=

n∏

k=0

(
1 + γfk

)
− 1 = γ

n∑

k=0

fk + Φ>n, (4.11)

where γ > 0 is a small constant, and Φ>n is in the span of Haar functions with
support of area less than 2−n. In complete analogy with the previous proof, we
have that ‖Φ‖1 ≤ 2. Also,

〈
DN , γ

n∑

k=0

fk

〉
≥ cγ(n+ 1) ≥ C′γ logN. (4.12)

Up to this point the proof repeated the proof of the two-dimensional small ball
conjecture verbatim. In this regard, one can view the small ball inequality as
the linear part of the star-discrepancy estimate. Notice that subtracting 1 in the
definition of Φ eliminated the need to estimate the “constant” term

∫
DN (x)dx.
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All that remains is to show that the higher-order terms Φ>n yield a smaller
input. This can be done by “brute force”. We first prove an auxiliary lemma
valid in every dimension. This lemma is closely related to Lemma 2.1Lemma 4.2. Let f~s be any r-function with parameter ~s. Denote s = ‖~s ‖1. Then,
for some constant βd > 0,

〈DN , f~s〉 ≤ βdN2−s. (4.13)

P r o o f. It follows from (2.11), that the counting part of DN satisfies

|〈Nx1 · xd, f~s〉| . 2s ·N2−2s = N2−s.

As to the counting part, it follows from the proof of Lemma 2.1 that 1[p,~1] is

orthogonal to the functions hR for all R ∈ Dd
~s except for the rectangle R which

contains the point p. It is easy to check that 〈1[p,~1], f~s〉 = 〈1[p,~1], hR〉 . |R| = 2−s.

The estimate for the counting part of DN then follows by summing over all the
points of PN . �

We now estimate the higher order terms in 〈DN ,Φ〉. Write

Φ>n = F2 + F3 + · · ·+ Fn,

where

Fk = γk
∑

0≤j1<j2<···<jk≤n

fj1 · fj2 . . . fjk .

Notice that, due to the product rule, the product fj1 · fj2 . . . fjk is an r-function
with parameter ~s = (n − j1, jk), so s = n − j1 + jk. We reorganize he sum
according to the parameter s, n+1 ≤ s ≤ 2n. To obtain a term which yields an
r-function corresponding to a fixed value of s, we need to have jk = j1+s−n ≤ n.
This can be done in 2n− s+1 ways (j1 = 0, . . . , 2n− s). For each such choice of

j1 and jk we can choose the “intermediate” k−2 values in
(
s−n−1
k−2

)
ways. Notice

that we must have 2 ≤ k ≤ s− n+ 1. We obtain

〈DN ,Φ>n〉 =
n∑

k=2

〈DN , Fk〉 =
2n∑

s=n+1

(2n− s+ 1)

s−n+1∑

k=2

(
s− n− 1

k − 2

)
· γk · β2N2−s

≤ β2n

2n∑

s=n+1

γ2(1 + γ)s−n−1 N 2−s ≤ 1

4
β2γ

2n

∞∑

s=n+1

(
1 + γ

2

)s−n−1

=
γ2β2

2(1− γ)
n,

where we used that N ≤ 2n−1. Since n ≤ log2 N +2, by making γ very small we
can assure that this quantity is less than 1

2C
′γ logN , a half of (4.12). We finally
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obtain that:

‖DN‖∞ ≥ 1

2
〈DN ,Φ〉 ≥ 1

2

(
C′γ logN − 1

2
C′γ logN

)
& logN, (4.14)

which finishes the proof of Schmidt’s bound. �

We would like to point out that it is not surprising that the Riesz product
approach is successful in these problems. As discussed earlier, the extremal values
of the discrepancy function (as well as of hyperbolic Haar sums) are achieved on
a very thin set. Riesz products are known to capture such sets extremely well.
In fact, we can see that Temlyakov’s test function Ψ = 2n+11E , where E is the
set on which all the functions fk are positive, and in particular the L∞ norm
is attained. We shall make a further remark about the structure of this set E
in § 6.

To reinforce the potency of the powerful blend of Roth’s method and the
Riesz product techniques, we describe the proof of the L1 lower bound (1.14) for
the discrepancy function contained in the same fascinating paper by Halász [39]
(while the L∞ bound was already known, this result was completely new at the
time). This argument introduces another brilliant idea: using complex numbers.
The test function is constructed as follows:

Γ :=

n∏

k=0

(
1 +

iγ√
logN

fk

)
− 1 =

iγ√
logN

n∑

k=0

fk + Γ>n , (4.15)

where a small constant γ > 0 and the “−1” in the end play the same role as in
the previous argument, and Γ>n is the sum of the higher-order terms. Then one
can see that

‖Γ‖∞ ≤
(
1 +

γ2

logN

)n
2

+ 1 ≤ eγ
2/2 + 1 . 1. (4.16)

Just as before, one can show that the input of Γ>n will be small provided that γ
is small enough. Hence,

‖DN‖1 & |〈DN ,Γ〉| & γ√
logN

〈DN ,

n∑

k=0

fk〉 &
n+ 1√
logN

≈
√
logN. (4.17)

The absolute efficiency of Riesz products in the two-dimensional case of these
problems is justified by the fact that the condition |R| = 2−n effectively leaves
only one free parameter (e.g., the value of |R1| defines the shape of the rectangle)
and creates lacunarity (|R1| = 2−k, k = 0, 1, . . . , n). Historically, Riesz products
were specifically designed to work in such settings (lacunary Fourier series, see,
e.g., [89], [60, 1918]). From the probabilistic point of view, Riesz products work
best when the factors behave similarly to independent random variables, which
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relates perfectly to our problems for d = 2, since the functions fk actually are
independent random variables. The failure of the product rule explains the loss
of independence in higher dimensions. This approach towards Conjecture 4.1 is
taken in [15].

While the failure of the product rule or lack of independence are huge obstacles
to the Riesz product method in higher dimensions, they are not intrinsic to our
problems. However, there are direct indications that the small ball inequality is
much more difficult and delicate in dimensions d ≥ 3 than in d = 2. Consider
the signed (αR = ±1) case, see (4.5). In this case, at every point x ∈ [0, 1]d

the sum on the left-hand side has #Hd
n ≈ nd−1 terms, while the right-hand

side of the inequality is nd/2. In dimension d = 2, these two numbers are equal,
which means that the L∞ norm is achieved at those points where essentially
all the terms have the same sign (the function Ψ finds precisely those points).
In dimensions d ≥ 3 on the other hand, nd−1 is much greater than nd/2, while
we know that the conjecture is sharp. This means that for certain choices of
coefficients, very subtle cancellation will happen at all points of the cube, where
even in the worst case one sign will outweigh the other by a very small fraction,
nd/2

nd−1 , of all terms. (Of course, in some specific cases, say αR = 1 for all R,

we shall have nd−1 as the lower bound.)

An alternative viewpoint stems from the close examination of the structure of
the two-dimensional Riesz products Ψ. Consider again the signed case αR = ±1
and denote Hn =

∑
|R|=2−n αRhR. It can be shown that ‖Hn‖1 ≈ ‖Hn‖2 ≈ n1/2.

Indeed, Hölder’s inequality implies that

‖Hn‖2 ≤ ‖Hn‖1/31 · ‖Hn‖2/34 .

It is easy to see that ‖Hn‖2 ≈ ‖Hn‖4 ≈ n(d−1)/2 = n1/2 (the latter computation
for the L4 norm is carried out using the Littlewood-Paley inequalities and is
almost identical to (3.12)). The estimate for the L1 norm of Hn then follows.
Equality (4.8), on the other hand, implies that the L1 norm of Hn − (−Ψ>n) is
at most 1 + ‖Ψ‖1 = 2, i.e., Hn, a hyperbolic sum of Haars of order n, can be
well approximated in the L1 norm by a linear combination of Haar functions of
higher order. In fact, the Small Ball Conjecture 4.1 would follow if we can prove
that for any choice of αR = ±1 we have

distL1


 ∑

R: |R|=2−n

αRhR, H>n


 . n

d−2
2 ,

where H>n is the span of Haar functions supported by rectangles of size
|R| < 2−n.
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Before proceeding to a discussion of the recent progress in the multidimen-
sional case, we would like to briefly explain the connections of Conjecture 4.1 to
other areas of mathematics. While the connection of the small ball conjecture
to discrepancy function is indirect, it does have important formal implications
in probability and approximation theory.

Approximation theory: Entropy of mixed smoothness classes 1. Let
MW p([0, 1]d) be the space of functions on [0, 1]d with mixed derivative

∂d f
∂x1∂x2...∂xd

in Lp and consider its unit ball B(MW p). It is compact in the

L∞ metric and its compactness may be quantified through the device of cover-
ing numbers. Define N(ε, p, d) to be the least number N of L∞ balls of radius
ε needed to cover the unit ball B(MW p). The task at hand is to determine the
correct order of growth of these numbers as ε ↓ 0.Conjeture 4.3. For d ≥ 2, we have logN(ε, 2, d) ≃ ε−1(log 1/ε)d−1/2,
as ε ↓ 0.

The case d = 2 follows from the work of Talagrand [79], and the upper bound
is known in full generality [35]. It is well known [81] that inequalities akin to the
small ball conjecture (4.2) imply lower bounds on the covering numbers.Probability. The small ball problem for the Brownian sheet is con-
cerned with finding the exact behavior of the small deviation probability

P
(
‖B‖C([0,1]d) < ε

)
,

where B is the Brownian sheet, i.e., a centered multiparameter Gaussian process

characterized by the covariance relation EXs ·Xt =
∏d

j=1min(sj , tj).

Kuelbs and Li [47] have discovered a tight connection between the small ball
probabilities and the properties of the reproducing kernel Hilbert space, which
in the case of the Brownian sheet is WM 2([0, 1]d). Their result, applied to the
setting of the Brownian sheet in [35], yields an equivalent conjecture:Conjeture 4.4. In dimensions d ≥ 2, for the Brownian sheet B we have

− logP
(
‖B‖C([0,1]d) < ε

)
≃ ε−2(log 1/ε)2d−1, ε ↓ 0.

In d ≥ 3, the upper bounds are established, see [35]. The lower bound for
d = 2 has been obtained by Talagrand [79] using (4.2). The idea lies in em-
ploying an orthogonal decomposition of B with coefficients being independent
standard Gaussians. Inequality (4.2) then allows one to pass from B to sums
of absolute values of standard Gaussian random variables, which is a familiar
object in probability theory. A detailed account of small ball probabilities for
Gaussian processes can be found in [53]. It is worth mentioning that Conjecture
4.4 explains the nomenclature small ball inequality.
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5. Higher dimensions

For a long time there have been virtually no improvements over the L2 bound
neither in the small ball conjecture, nor in the star-discrepancy bound. In the

seminal 1989 paper on discrepancy [7], J. Beck gains a factor of (log logN)
1
8−ε

over Roth’s L2 bound. A corresponding logarithmic improvement for the small
ball inequality can also be extracted from his argument. In 2008, largely building
upon Beck’s work and enhancing it with new ideas and methods, the author, M.
Lacey, and A. Vagharshakyan [11], [12], obtained the first significant improve-
ment over the ‘trivial’ estimate in all dimensions greater than two:Theorem 5.1. In all dimensions d ≥ 3 there exists η(d) > 0 such that for all
choices of coefficients we have the inequality:

n
d−1
2 −η(d)

∥∥∥∥∥∥

∑

R: |R|=2−n

αRhR

∥∥∥∥∥∥
∞

& 2−n
∑

R: |R|=2−n

|αR|. (5.1)

P r o o f. The proof of this result was then modified to the discrepancy framework
(in a way analogous to the one described in the previous section) to obtain (1.9).
The inequality (5.1) also directly translates into improved lower bounds in both
Conjectures 4.3 and 4.4.

Since complete technical details of the proof of (5.1), which can be found in
[11, 12, 13] as well as Lacey’s notes on the subject [50], would take up more
space than the rest of this survey, we shall simply present the main ideas of the
argument and the heuristics behind them. Then an interested reader can follow
the complete proof in the listed references.

Following the idea of Beck, the test function is constructed as a “short” Riesz
product. For ~r ∈ Hd

n, we consider the r-functions f~r =
∑

R∈Dd
~r
sgn(αR)hR. Let

q be an integer such that q ≈ anε for small constants a, ε > 0. Divide the
set {0, 1, . . . , n} into q disjoint (almost) equal intervals of length about n/q: I1,
I2, . . . , Iq numbered in increasing order. Let Aj := {~r ∈ Hd

n | r1 ∈ Ij}. The
cardinality of Aj is then #Aj ≈ nd−1/q. Indeed, the first coordinate r1 can be
chosen in n/q ways, the next d− 2—roughly in n ways each, and the last one is
fixed due to the condition ‖~r ‖1 = n. We construct the function Fj =

∑
~r∈Aj

f~r.

Due to orthogonality, ‖Fj‖2 ≈ #Aj ≈ n(d−1)/2/
√
q. We now introduce the

“false” L2 normalization: ρ̃ = aq1/4n−(d−1)/2. We are now ready to define the
Riesz product

Ψ :=

q∏

j=1

(1 + ρ̃Fj). (5.2)
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Let us explain the effects that this construction creates and compare it to the
two-dimensional Temlyakov’s test function (4.7). First of all, the grouping of
r-functions by the values of the first coordinate is reminiscent of the construction
in (4.7). Here, rather than specifying the value of |R1|, we indicate the range
of values that it may take. This idea allows us to preserve some lacunarity in
the Riesz product while keeping its size under control. In particular, if i < j,
then the Haar functions involved in Fj , in the first coordinate, are supported
on intervals strictly smaller than those that support the Haar functions in Fi.
It follows that for any k ≤ q and 1 ≤ j1 < j2 < · · · < jk ≤ q

∫

[0,1]d
Fj1(x) · · ·Fjk(x) = 0, (5.3)

since the integral in the first coordinate is already zero (all the Haar functions
are distinct). In particular, ∫

[0,1]d
Ψ(x)dx = 1, (5.4)

as (5.3) implies that all the higher order terms have mean zero. By comparison,
Beck’s [7] construction of the short Riesz product was probabilistic, which made
it much more difficult to collect definitive information about the interaction of
different factors in the product.

Secondly, recall that the Riesz product in (4.7) was non-negative allowing one
to replace the L1 norm with the integral which is much easier to compute. While
in our case positivity everywhere is too much to hope for, it can be shown that
the product is positive with large probability. The “false” L2 normalization ρ̃
makes the L2 norm of ρ̃Fj small: ‖ρ̃Fj‖2 ≈ q−1/4 ≈ n−ε/4 ≪ 1. Thus (1 + ρ̃Fj)
is positive on a set of large measure, therefore, so is the product (5.2). This
heuristic is quantified in (5.9).

However, we cannot take Ψ to be our test function since we do not know
exactly how it interacts with

∑
|R|=2−n αRhR. As explained in the remarks after

the product rule (4.6), problems arise when the rectangles supporting the Haar
functions coincide in one of the coordinates, in other words, when for two vectors
~r, ~s ∈ Hd

n and for some k = 1, . . . , d, we have rk = sk. We say that a coincidence
occurs in this situation. We say that a collection of vectors {~rj}mj=1 ⊂ Hd

n is
strongly distinct if no coincidences occur between the elements of the collection,
i.e., for all 1 ≤ i, j ≤ m, 1 ≤ k ≤ d, we have ri,k 6= rj,k. We can then write

Ψ = 1 + Ψsd + Ψ¬sd, (5.5)

where

Ψsd =

q∑

k=1

ρ̃ k
∑

1≤j1<j2<·<jk≤q

(
∑̃

f~rj1 · · · f~rjk

)
, (5.6)
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and the tilde above the innermost sum indicates that the sum is extended over
all collections of vectors {~rjt ∈ Ajt : t = 1, . . . , k} which are strongly distinct.
To put it simpler, Ψ¬sd consists of the terms that involve coincidences, and
Ψsd—of the ones that do not.

The function Ψsd is then taken to be the test function. Since all the coin-
cidences are eliminated, the product rule (4.6) is applicable and an argument
similar to (4.9)–(4.10) can be carried out, provided we can show that ‖Ψsd‖1 ≤ 1.

An enormous part of of the proof in [11, 12] is devoted to the study of analytic
and combinatorial aspects of the coincidences, i.e.,the behavior of Ψ¬sd. An
important starting point is the following non-trivial lemma, which as a tribute
to J. Beck’s ideas we call the Beck gain:Lemma 5.2 (Beck Gain). For every p ≥ 2 we have the following inequality

∥∥∥∥∥∥∥∥

∑

~r 6=~s∈H
d
n

r1=s1

f~r · f~s

∥∥∥∥∥∥∥∥
p

. p
2d−1

2 n
2d−3

2 . (5.7)

The important point of this lemma is the precise power of n in the estimate. Let
us explain that the exponent 2d−3

2 is very natural. Indeed, d-dimensional vectors
~r and ~s have d parameters each. The condition ‖~r‖1 = ‖~s‖1 = n eliminates
one free parameter in each vector. Additionally, the coincidence r1 = s1 freezes
one more parameter. Hence, the total number of free parameters in the sum is
2d − 3 and each can take roughly n values. Thus the total number of terms is
of the order of n2d−3 and (5.7) essentially says that they behave as if they were
orthogonal. The power of p doesn’t seem to be sharp (perhaps, 2d−3

2 should also
be the correct exponent of p), but it is important for further estimates that this
dependence is polynomial in p.

One can also view it in the following way. It is not hard to show using
Littlewood-Paley inequalities that ‖∑~r 6=~s∈Hd

n
f~r · f~s ‖p . nd−1. Therefore, by

imposing the condition r1 = s1 one gains
√
n in the estimate. This lemma, al-

beit in a weaker form (just for p = 2 and with a larger power of n) appeared in
the aforementioned paper of Beck [7]. In his argument, in order to compute the
L2 norm, Beck expands the square of the sum and notices that the integral of
each term is zero unless there is a coincidence in each coordinate. Careful com-
binatorial analysis of these coincidences then produces the desired inequality.
The extension and generalization obtained in [11, 12] is achieved by replacing
the process of expanding the square by the applications of the Littlewood-Paley
square function (3.2), which is a natural substitution in harmonic analysis, when
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one wants to pass from L2 to Lp, p 6= 2. Every application of the Littlewood-
Paley inequality (3.4) yields a constant Bp ≈ √

p, see [11, Lemma 8.2], [12,
Lemma 5.2] for complete details. The lemma was initally proved in d = 3 [11]
and then extended to d ≥ 3 [12] by a tricky induction argument.

Furthermore, one needs to analyze more complicated instances of coincidences
which arise in Ψ¬sd. Their high combinatorial complexity in large dimensions
aggravates the difficulty of the problem. Further success of the Riesz product
method requires inequalities of the type:

∥∥∥
∑

f ~r1 · · · f ~rk

∥∥∥
p
. pαMn

M
2 , (5.8)

where the sum is extended over all k-tuples ~r1, . . . , ~rk with a specified configu-
ration of coincidences and M is the number of free parameters imposed by this
configuration; α > 0 is a constant which is conjectured to be 1

2 . Estimates of
this type suggest that free parameters behave orthogonally even for longer coinci-
dences. When k = 2 (the graph describing the coincidence consists of two vertices
and one edge), estimate (5.8) turns precisely into inequality (5.7) of Lemma 5.7.
In [12] a partial result with a larger power of n is obtained for k > 2. Roughly
speaking, these inequalities are proved by choosing a large matching (disjoint
collection of edges) in the associated graph and applying the Beck gain (5.7) to
each simple coincidence, see [12, Theorem 8.3].

In the end, one arrives to the following estimates (see Lemma 4.8 in [12]):Lemma 5.3. We have these estimates:

µ
(
{Ψ < 0}

)
. exp(−A

√
q) ; (5.9)

‖Ψ‖2 . exp(a′
√
q) ; (5.10)∫

Ψ(x)dx = 1 ; (5.11)

‖Ψ‖1 . 1 ; (5.12)

‖Ψ¬sd‖1 . 1 ; (5.13)

‖Ψsd‖1 . 1 , (5.14)

where 0 < a′ < 1 is a small constant, A > 1 is a large constant, and µ is the
Lebesgue measure.

Some remarks are in order. The first two inequalities rely on Beck gain (5.7).
Inequality (5.9) is a quantification of the fact discussed earlier that, due to the
false L2 normalization ρ̃, Ψ is negative on a very small set (a weaker version can
be proved without referring to Beck gain). The L2 bound (5.10) can be explained
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heuristically: if Fj ’s were independent random variables, we would immediately
obtain (5.10):

∫ q∏

j=1

(1 + ρ̃Fj)
2 dx =

q∏

j=1

∫
(1 + ρ̃Fj)

2 dx ≤
q∏

j=1

(1 + ρ̃2‖Fj‖22)

≤
(
1 +

a2√
q

)q

≤ ea
2√q.

While they are not independent, one applies a conditional expectation argument
and Beck gain (5.7) (the lack of independence is the result of coincidences).
Equality (5.11) has already been explained, see (5.4), and estimate (5.12) easily
follows from (5.9)–(5.11) using Cauchy-Schwarz inequality:

‖Ψ‖1 =

∫
Ψ(x)dx− 2

∫

{Ψ<0}
Ψ(x)dx ≤ 1 + 2µ

(
{Ψ < 0}

)1/2 · ‖Ψ‖2

. 1 + exp(−A
√
q/2 + a′

√
q) . 1.

Estimate (5.13) is the result of the analysis of coincidences and (5.14) is implied
by the previous two since Ψsd = Ψ− 1−Ψ¬sd.

Finally, we obtain, as in (4.9)-(4.10):
∥∥∥∥∥∥

∑

R∈Dd: |R|=2−n

αRhR

∥∥∥∥∥∥
∞

&

〈
∑

|R|=2−n

αRhR,Ψ
sd

〉

=

〈
∑

|R|=2−n

αRhR, ρ̃
∑

|R|=2−n

sgn(αR)hR

〉

= ρ̃
∑

R∈Dd: |R|=2−n

αR · sgn(αR) · ‖hR‖22

≈ n− d−1
2 + ε

4 2−n ·
∑

|R|=2−n

|αR|, (5.15)

so, (5.1) holds with η = ε/4. �

To finish this discussion, we mention that the signed small ball inequality, i.e.,
a version with αR = ±1 for each R, see (4.5) may be viewed as a toy model of
Conjecture 4.1. It avoids numerous technicalities, while preserving most of the
complications arising from the combinatorial complexity of higher dimensional
dyadic boxes. In [13], the same authors came up with a significant simplification
of the arguments in [11, 12] for the signed case (in fact, it only required the
simplest estimate for coincidences (5.7), and not the more complicated (5.8)). It
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yielded the bound
∥∥∑

|R|=2−n αRhR

∥∥
∞ & n

d−1
2 +η for αR = ±1 in all dimensions

and allowed them to obtain an explicit value of the gain η(d) = 1
8d − ε.

In [15], Bilyk, Lacey, Parissis, and Vagharshakayan initiated a different ap-
proach to the proof of the signed small ball inequality. While in dimension d = 2,
the small ball inequality (4.2) can be proved as a consequence of the indepen-
dence of the random variables f~r, in higher dimensions due to coincidences inde-
pendence no longer holds. This shortcoming can by partially compensated for by
delicate conditional expectation arguments. The proof of the three-dimensional
inequality in [15] yields the best currently known gain: η(3) = 1

8 . Unfortunately,
at this time it is not clear how to transfer this method to the discrepancy setting
or extend it to higher dimensions.

6. Low discrepancy distributions: the van der Corput set

All the previous sections of this survey were concerned with the proofs of var-
ious lower bounds for discrepancy. In the last section we would like to illustrate
how Roth’s idea of incorporating dyadic harmonic analysis into discrepancy the-
ory helps in proving some upper discrepancy estimates. We recall a very standard
construction, the so-called “digit-reversing” van der Corput set [31] (also known
as the Hammersley point set):

Vn =
{
(0.x1x2 . . . xn, 0.xnxn−1 . . . x1) : xk = 0, 1; k = 1, . . . , n

}
, (6.1)

where the coordinates are written as binary fractions. This set has 2n points
and its star-discrepancy is optimal in the order of magnitude: ‖DVn

‖∞ ≤ n +
1 ≈ logN . The crucial property of this set, which allows one to deduce such a
favorable discrepancy bound is the fact that it forms a binary net: any dyadic
rectangle R of area |R| = 2−n contains precisely one point of Vn, and hence the
discrepancy of Vn with respect to such rectangles is zero.

Various norms of the discrepancy function of variations of this set have been
studied by many authors: [10],[14], [28], [31], [36], [41], [43], [45], [51], [62] to
name just a few. It is well known that, while Vn has optimal star-discrepancy,
its L2 discrepancy is also of the order logN as opposed to the optimal

√
logN .

The problem actually lies in the fact that
∫
DVn

(x)dx = n
8 + o (n) ≈ logN

as observed in [41, 28, 10, 43]. In other words, in any reasonable orthogonal
decomposition of DVn

the zero-order coefficient is already too big. There are
several standard remedies which allow one to overcome this problem.
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i) Random shifts: Roth [62, 64] showed probabilistically that there exists a
shift of Vn modulo 1 which achieves optimal L2 discrepancy; a deterministic
example was constructed in [10].

ii) Symmetrization: this idea was introduced by Davenport [33] to con-
struct the first example of a set with optimal order of L2 discrepancy, see
also [28].

iii) Digit shifts: this idea that goes back to [41],[22] works extremely well
for the van der Corput set. We alter Vn as follows:

Vσ
n =

{(
0.x1x2 . . . xn, 0.(xn ⊕ σn)(xn−1 ⊕ σn−1) . . . (x1 ⊕ σ1)

)
:

xk = 0, 1; k = 1, . . . , n
}
, (6.2)

where σ = (σk)
n
k=1 ∈ {0, 1}n is fixed and ⊕ denotes addition modulo 2,

i.e., after flipping the digits we also change some of them (those for which
σk = 1).

This procedure has been thoroughly studied for the van der Corput set: it is
known to improve its distributional quality [45, 36]. In particular, when approx-
imately half of the digits are shifted, i.e.,

∑
σk ≈ n

2 , this set has optimal L2

discrepancy [41, 46, 14].

The nice dyadic structure of this set makes it perfectly amenable to the meth-
ods of harmonic analysis. For example, in [10] it is analyzed using Fourier series,
in [51, 28] (see also the book [34]) the authors exploit Walsh functions, while
the estimates in [14, 43] are based on Haar coefficients. We will concentrate on
the latter results since they directly relate to Roth’s method and complement
previously discussed lower bounds.

The author, Lacey, Parissis, and Vagharshakyan have shown that the BMO
(3.25) and exp(Lα) (3.27) lower estimates in dimension d = 2 are sharp. In
particular, for the digit-shifted van der Corput set Vσ

n with
∑

σk ≈ n
2 we have

‖DVσ
n
‖exp(Lα) . (logN)1−

1
α , α ≥ 2, while ‖DVn

‖BMO .
√
logN for the standard

van der Corput set. These inequalities were based on estimates of the Haar
coefficients of the discrepancy function, namely

∣∣∣
〈
DVσ

n
, hR

〉∣∣∣ . min
{
1/N, |R|

}
.

While this estimate for small rectangles is straightforward (the counting and
linear part can be bounded separately), coefficients corresponding to large rect-
angles involve subtle cancellations suggested by the structure and self-similarities
of Vσ

n . The BMO and exp(Lα) can the be obtained by applying arguments
of Littlewood-Paley type. Almost simultaneously, Hinrichs [43] estimated the
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Besov norm of the same digit-shifted van der Corput set using a very similar
method. In fact, he went much further and computed all the Haar coefficients of
DVσ

n
exactly. This led to showing that the lower Besov space estimate (3.1) of

Triebel [86] is sharp in d = 2, more precisely ‖DVσ
n
‖Sr

pqB([0,1]d) . N r (logN)
1
q

for 1 ≤ p, q ≤ ∞, 0 ≤ r < 1
p .

We close our exposition with an amusing observation which pinpoints yet
another connection between the small ball inequality (4.2) and discrepancy.
Consider the two-dimensional case and assume that all the coefficients αR are
non-negative. Recall Temlyakov’s test function (4.7):

Ψ =

n∏

k=1

(1 + fk),

where, since sgn(αR) = +1, the r-functions fk =
∑

|R|=2−n, |R1|=2−k hR are ac-

tually Rademacher functions. As discussed in § 4 right after (4.14), Ψ = 2n+11E ,
where E = {x ∈ [0, 1]2 : fk(x) = +1, k = 0, 1, . . . , n}.

We shall describe the geometry of the set E. Evidently, it consists of 2n+1

dyadic squares of area 2−2(n+1). We characterize the locations of the lower left
corners of these squares. If t ∈ [0, 1] and a dyadic interval I of length 2−k

contains t, then hI(t) = −1 if the (k + 1)st binary digit of t is 0, and hI(t) = 1
if it is 1. Thus fk(x1, x2) = +1 exactly when the (k + 1)st digit of x1 and the
(n − k + 1)st digit of x2 are the same. Therefore, (x1, x2) ∈ E when this holds
for all k = 0, 1, . . . , n, i.e., the first n + 1 binary digits of x2 are formed as
the reversed sequence of the first n + 1 digits of x1—but this is precisely the
definition of the van der Corput set Vn+1! So,

E = Vn+1 +
[
0, 2−(n+1)

)
×
[
0, 2−(n+1)

)
.
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