Uniform Distribution Theory 6 (2011), no.1, 101-125

ON TWO-DIMENSIONAL SEQUENCES COMPOSED BY ONE-DIMENSIONAL UNIFORMLY DISTRIBUTED SEQUENCES

Jana Fialová* — Oto Strauch**

ABSTRACT. Let x_n and y_n , n = 1, 2, ..., be sequences in the unit interval [0, 1) and let F(x, y) be a continuous function defined on $[0, 1]^2$. In this paper we consider limit points of sequence $\frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n)$, N = 1, 2, ... A basic idea is to apply distribution functions g(x, y) of two-dimensional sequence (x_n, y_n) , n = 1, 2, ... It can be shown that every limit point has the form $\int_0^1 \int_0^1 F(x, y) d_x d_y g(x, y)$. If, moreover, both sequences x_n and y_n are uniformly distributed, then distribution functions g(x, y) are called copulas and we find extremes of $\int_0^1 \int_0^1 F(x, y) d_x d_y g(x, y)$ assuming that the differential $d_x d_y F(x, y)$ has constant signum and also for F(x, y) = f(x)y where f(x) is a piecewise linear function.

Communicated by Werner Georg Nowak

1. Introduction

This paper is motivated by [PS09] where the sequence $\frac{1}{N}\sum_{n=1}^{N} |x_n - y_n|$ was considered and it was proved that if x_n and y_n , n = 1, 2, ... are uniformly distributed (u.d.) in [0, 1), then

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} |x_n - y_n| \le \frac{1}{2}.$$
 (1)

²⁰¹⁰ Mathematics Subject Classification: 11K31, 40A05.

Keywords: Uniform distribution, distribution functions, uniform distribution preserving map, copula.

^{*}Supported by the VEGA Grant No. 2/0206/10.

^{**}Supported by the VEGA Grant No. 2/0206/10 and No. 1/0753/10.

Thus putting $y_n = x_{n+1}$, n = 1, 2, ... in the above inequality the authors found a new necessary condition

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} |x_{n+1} - x_n| \le \frac{1}{2}$$
(2)

for u.d. of sequence x_n (for definitions consult, e.g., [KN06], [DT97] or [SP05]).

The aim of this paper is to study limit points of the sequence

$$\frac{1}{N}\sum_{n=1}^{N}F(x_n, y_n), \quad N = 1, 2, \dots$$
(3)

where F(x, y) is arbitrary continuous function defined on $[0, 1]^2$ and for an arbitrary sequences $x_n, y_n, n = 1, 2, ...$ in [0, 1). We use distribution functions (d.f.s) g(x, y) of a two-dimensional sequence $(x_n, y_n), n = 1, 2, ...$ since every limit point of (3) is of the form

$$\int_0^1 \int_0^1 F(x,y) \mathrm{d}_x \mathrm{d}_y g(x,y). \tag{4}$$

Firstly, we study the lower and upper bounds of limit points of (3) assuming that the sequences x_n and y_n , n = 1, 2, ... are u.d. in [0, 1). In this case, the d.f. g(x, y) in (4) of a two-dimensional sequence (x_n, y_n) is called a copula.

In (3) it can be also used a sequence $(x_n, \Psi(x_n))$, n = 1, 2, ... where x_n is u.d. in [0, 1) and $\Psi : [0, 1] \to [0, 1]$ is a so-called uniformly distribution preserving map. Thus, the limit points of (3) have the form $\int_0^1 F(x, \Psi(x)) dx$. In particular, for F(x, y) = f(x)y we have

$$\int_0^1 f(x)\Psi(x)\mathrm{d}x.$$
 (5)

A more general problem than (5) was introduced by S. Steinerberger [S09, p. 127]: He evaluates extremes of the integrals

$$\int_{0}^{1} f_{1}(\Phi(x)) f_{2}(\Psi(x)) \mathrm{d}x$$
 (6)

where f, g are Riemann integrable functions and $\Phi, \Psi : [0, 1] \to [0, 1]$ are u.d.p. maps. He solved (6) by applying some Hardy-Littlewood inequality (see later).

Our paper is structured as follows:

In Section 3 we provide the maximum and the minimum of limit points of (3) under the assumptions that $d_x d_y F(x, y) > 0$ and that the sequences x_n and y_n are uniformly distributed in [0, 1).

In Section 5 we extend the results of section 3 to the sequences x_n and y_n having a.d.f.s $g_1(x)$ and $g_2(x)$, respectively.

Section 6 provides a necessary condition for a copula g(x, y) for which the integral $\int_0^1 \int_0^1 F(x, y) d_x d_y g(x, y)$ is extremal.

In Section 7 the maximal and minimal values of $\int_0^1 f_1(\Phi(x)) f_2(\Psi(x)) dx$ are obtained over u.d.p. functions Φ, Ψ . As an application we find u.d.p. map $\Phi(x)$ which maximizes $\int_0^1 f(x)\Phi(x)dx$ for piecewise linear function $f:[0,1] \to [0,1]$.

2. Basic definitions and results

• Denote the step d.f.

$$F_N(x,y) = \frac{\#\{n \le N; (x_n, y_n) \in [0, x) \times [0, y)\}}{N},$$
(7)

and let $G((x_n, y_n))$ be a set of all possible limits $F_{N_k}(x, y) \to g(x, y)$ which exist for all points (x, y) of continuity of g(x, y). These g(x, y) are called d.f.s of sequence (x_n, y_n) , $n = 1, 2, \ldots$ Recall that if $G((x_n, y_n))$ is a singleton, i.e., $G((x_n, y_n)) = \{g(x, y)\}$, then g(x, y) is called an asymptotic d.f. (a.d.f.) of (x_n, y_n) , $n = 1, 2, \ldots$

• If both sequences x_n and y_n , n = 1, 2, ... are u.d. in [0, 1), then the twodimensional sequence (x_n, y_n) is not necessarily u.d. but every d.f. $g(x, y) \in G((x_n, y_n))$ satisfies

(i) g(x, 1) = x for $x \in [0, 1]$ and

(ii) g(1, y) = y for $y \in [0, 1]$.

The d.f. g(x, y) which satisfies (i) and (ii) is called a *copula*. For the fuller treatment of theory of copulas we refer the reader to [N99].

• A map $\Psi : [0,1] \to [0,1]$ is called *uniform distribution preserving* (u.d.p.) if for any u.d. sequence $x_n, n = 1, 2, ...$ in [0,1) the sequence $\Psi(x_n)$ is also u.d. Basic properties: A map $\Psi(x)$ is u.d.p. if and only if for every continuous $f : [0,1] \to \mathbb{R}$ we have $\int_0^1 f(\Psi(x)) dx = \int_0^1 f(x) dx$. Every u.d.p. map is Jordan measurable. Other properties can be found in [SN10] and [SP05, 2.5.1].

• The Riemann-Stieltjes integral $\int_0^1 \int_0^1 f(x, y) d_x d_y g(x, y)$ is defined as the limit

$$\sum_{k=1}^{m} \sum_{l=1}^{n} f(\alpha_k, \beta_l) \big(g(x_k, y_l) + g(x_{k+1}, y_{l+1}) - g(x_k, y_{l+1}) - g(x_{k+1}, y_l) \big) \rightarrow \int_0^1 \int_0^1 f(x, y) \mathrm{d}_x \mathrm{d}_y g(x, y)$$
(8)

if diameters of $[x_k, x_{k+1}] \times [y_l, y_{l+1}]$ tend to zero for partition $0 = x_0 < x_1 < \cdots < x_m = 1$ of x-axis, $0 = y_0 < y_1 < \cdots < y_n = 1$ of y-axis and for $(\alpha_k, \beta_l) \in [x_k, x_{k+1}] \times [y_l, y_{l+1}]$. This integral exists for continuous f(x, y) and g(x, y) with bounded variation, see W.I. Smirnov [S88, Par. 23]. Let \Box denote the rectangle $[x_k, x_{k+1}] \times [y_l, y_{l+1}]$ and denote

$$\Box g(x,y) = g(x_k, y_l) + g(x_{k+1}, y_{l+1}) - g(x_k, y_{l+1}) - g(x_{k+1}, y_l).$$

If diameter $\Box \to 0$, then we find the differential $d_x d_y g(x, y)$ as

$$d_x d_y g(x, y) = g(x, y) + g(x + dx, y + dy) - g(x, y + dy) - g(x + dx, y).$$

• g(x, y) is a d.f. of a sequence (x_n, y_n) , $n = 1, 2, ..., (x_n, y_n) \in [0, 1)^2$ if and only if the following three conditions are satisfied

- (i) $d_x d_y g(x, y) \ge 0$ for every $(x, y) \in (0, 1)^2$.
- (ii) g(1,1) = 1, g(x,0) = 0, g(0,y) = 0 for $x, y \in [0,1]$.
- (iii) g(x, 1) and g(1, y) are one-dimensional d.f.

We establish the following two basic expressions of limit points of (3).

THEOREM 1. For every continuous F(x, y) the set of limit points of (3) coincides with

$$\left\{\int_{0}^{1}\int_{0}^{1}F(x,y)\mathrm{d}_{x}\mathrm{d}_{y}g(x,y);g(x,y)\in G((x_{n},y_{n}))\right\}.$$
(9)

Proof. By the Riemann-Stieltjes integration we have

$$\frac{1}{N}\sum_{n=1}^{N}F(x_n, y_n) = \int_0^1 \int_0^1 F(x, y) \mathrm{d}_x \mathrm{d}_y F_N(x, y).$$
(10)

a) Now, if $F_{N_k}(x, y) \to g(x, y)$ weakly as $k \to \infty$, then by the second Helly theorem (see [SP05, p. 4–5, Th. 4.1.0.11]) the equation (10) implies

$$\frac{1}{N_k} \sum_{n=1}^{N_k} F(x_n, y_n) \to \int_0^1 \int_0^1 F(x, y) \mathrm{d}_x \mathrm{d}_y g(x, y) \quad \text{as } k \to \infty.$$
(11)

b) If $\frac{1}{N_k} \sum_{n=1}^{N_k} F(x_n, y_n) \to A$ as $k \to \infty$, then by the first Helly theorem (see [SP05, p. 4–5, Th. 4.1.0.11]) there exists a subsequence N'_k of N_k such that for some d.f. g(x, y) of (x_n, y_n) we have $F_{N'_k}(x, y) \to g(x, y)$ and then by the second Helly theorem we have $A = \int_0^1 \int_0^1 F(x, y) d_x d_y g(x, y)$.

From a) and b) there follows the desired property.

In following Theorem 2 we apply the equation:

$$\int_{0}^{1} \int_{0}^{1} F(x,y) d_{x} d_{y} g(x,y) = F(1,1) - \int_{0}^{1} g(1,y) d_{y} F(1,y) - \int_{0}^{1} g(x,1) d_{x} F(x,1) + \int_{0}^{1} \int_{0}^{1} g(x,y) d_{x} d_{y} F(x,y)$$
(12)

which we prove in following lemma.

LEMMA 1. Let F(x, y) be a continuous function defined on $[0, 1]^2$. Then for arbitrary N-term sequence $(x_1, y_1), \ldots, (x_N, y_N)$ in $[0, 1)^2$ with the step d.f. $F_N(x, y)$ we have

$$\int_{0}^{1} \int_{0}^{1} F(x,y) d_{x} d_{y} F_{N}(x,y) = F(1,1) - \int_{0}^{1} F_{N}(1,y) d_{y} F(1,y) - \int_{0}^{1} F_{N}(x,1) d_{x} F(x,1) + \int_{0}^{1} \int_{0}^{1} F_{N}(x,y) d_{x} d_{y} F(x,y).$$
(13)

Proof. Multiple both sides by N and employ an induction. For N = 1 equation (13) follows directly from computation. Assume that for N the equation holds and add a new point (x_{N+1}, y_{N+1}) to $(x_1, y_1), \ldots, (x_N, y_N)$, exchange $F_N(x, y)$ by $F_{N+1}(x, y)$. We have (N+1)F(1, 1) = NF(1, 1) + F(1, 1) and

$$\begin{split} (N+1) \int_{0}^{1} \int_{0}^{1} F(x,y) \mathrm{d}_{x} \mathrm{d}_{y} F_{N+1}(x,y) = & N \int_{0}^{1} \int_{0}^{1} F(x,y) \mathrm{d}_{x} \mathrm{d}_{y} F_{N}(x,y) \\ & + F(x_{N+1},y_{N+1}), \\ & -(N+1) \int_{0}^{1} F_{N+1}(x,1) \mathrm{d}_{x} F(x,1) = - N \int_{0}^{1} F_{N}(x,1) \mathrm{d}_{x} F(x,1) \\ & - (F(1,1) - F(x_{N+1},1)), \\ & -(N+1) \int_{0}^{1} F_{N+1}(1,y) \mathrm{d}_{y} F(1,y) = - N \int_{0}^{1} F_{N}(1,y) \mathrm{d}_{y} F(1,y) \\ & - (F(1,1) - F(1,y_{N+1})), \\ & (N+1) \int_{0}^{1} \int_{0}^{1} F_{N+1}(x,y) \mathrm{d}_{x} \mathrm{d}_{y} F(x,y) = N \int_{0}^{1} \int_{0}^{1} F_{N}(x,y) \mathrm{d}_{x} \mathrm{d}_{y} F(x,y) \\ & + (F(1,1) + F(x_{N+1},y_{N+1}) - F(x_{N+1},1) - F(1,y_{N+1})). \end{split}$$

Summing up

$$F(1,1) - (F(1,1) - F(x_{N+1},1)) - (F(1,1) - F(1,y_{N+1})) + (F(1,1) + F(x_{N+1},y_{N+1}) - F(x_{N+1},1) - F(1,y_{N+1}))$$

we obtain $F(x_{N+1}, y_{N+1})$ and it is easily seen that (13) is valid also for N+1. \Box

If $F_N(x, y) \to g(x, y)$ as $N \to \infty$ in Lemma 1 we obtain (12) which directly implies Theorem 2.

THEOREM 2. Let both x_n and y_n be u.d. in [0,1). Then the set of limit points of (3) can be expressed as

$$F(1,1) - \int_{0}^{1} y \mathrm{d}_{y} F(1,y) - \int_{0}^{1} x \mathrm{d}_{x} F(x,1) + \left\{ \int_{0}^{1} \int_{0}^{1} g(x,y) \mathrm{d}_{x} \mathrm{d}_{y} F(x,y); g(x,y) \in G((x_{n},y_{n})) \right\},$$
(14)

where + in (14) is defined as $x + A = \{x + a; a \in A\}$.

3. Extremes of
$$\lim_{k\to\infty} \frac{1}{N_k} \sum_{n=1}^{N_k} F(x_n, y_n)$$

THEOREM 3. Let F(x, y) be a Riemann integrable function defined on $[0, 1]^2$ and assume that $d_x d_y F(x, y) > 0$ for every $(x, y) \in (0, 1)^2$. Then for every u.d. sequences $x_n, y_n \in [0, 1), n = 1, 2, ...$ we have

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) \le \int_0^1 F(x, x) \mathrm{d}x,\tag{15}$$

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) \ge \int_0^1 F(x, 1-x) \mathrm{d}x.$$
(16)

Furthermore, for a sequence (x_n, y_n) , n = 1, 2, ... we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) = \int_0^1 F(x, x) \mathrm{d}x$$

if and only if (x_n, y_n) has the a.d.f. $g(x, y) = \min(x, y)$ and we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) = \int_0^1 F(x, 1-x) dx$$

if and only if $g(x, y) = \max(x + y - 1, 0)$.

If $d_x d_y F(x, y) < 0$, the right hand sides of (15) and (16) are exchanged.

Proof. We apply the Fréchet-Hoeffding bounds [N99, p. 9]

$$\max(x+y-1,0) \le g(x,y) \le \min(x,y)$$
 (17)

which holds for every $(x, y) \in [0, 1]^2$ and for every copula g(x, y) in (14). The assumption $d_x d_y F(x, y) > 0$ implies

$$\int_{0}^{1} \int_{0}^{1} \max(x+y-1,0) \mathrm{d}_{x} \mathrm{d}_{y} F(x,y) \leq \int_{0}^{1} \int_{0}^{1} g(x,y) \mathrm{d}_{x} \mathrm{d}_{y} F(x,y)$$
$$\leq \int_{0}^{1} \int_{0}^{1} \min(x,y) \mathrm{d}_{x} \mathrm{d}_{y} F(x,y).$$

Since every copula is continuous, the left inequality is attained if and only if $g(x, y) = \max(x + y - 1, 0)$ and the right one if and only if $g(x, y) = \min(x, y)$.

Directly from the definition of a.d.f., for u.d. sequence x_n it follows that

(i) the sequence (x_n, x_n) , n = 1, 2, ... has the a.d.f. $g(x, y) = \min(x, y)$ and (ii) the sequence $(x_n, 1 - x_n)$, n = 1, 2, ... has the a.d.f. $g(x, y) = \max(x + y - 1, 0)$. From it follows

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, x_n) = \int_0^1 F(x, x) dx = \int_0^1 \int_0^1 F(x, y) d_x d_y \min(x, y),$$
(18)

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, 1 - x_n) = \int_0^1 F(x, 1 - x) dx$$
$$= \int_0^1 \int_0^1 F(x, y) d_x d_y \max(x + y - 1, 0).$$
(19)

And desired bounds follows from (18) and (19) using (17).

4. Examples

Firstly, we prove the result (1) appeared in [PS09].

EXAMPLE 1. Putting F(x, y) = |x - y| we have F(1, 1) = 0, F(1, x) = 1 - x, F(y, 1) = 1 - y, compute for y > x, $d_x d_y |y - x| = (y + dy - (x + dx)) = (y - x) - (y - (x + dx)) - (y + dy - x) = 0$, and for y = x, dy = dx, $d_x d_y |y - x| = |x + dx - (x + dx)| + |x - x| - |(x + dx) - x| - |x - (x + dx)| = -2dx$ then we have $\int_0^1 \int_0^1 |x - y| d_x d_y g(x, y) = \int_0^1 g(x, 1) dx + \int_0^1 g(1, y) dy - 2 \int_0^1 g(x, x) dx.$ (20)

Thus for a copula g(x, y), g(x, 1) = x, g(1, y) = y we have

$$\int_0^1 \int_0^1 |x - y| \mathrm{d}_x \mathrm{d}_y g(x, y) = 1 - 2 \int_0^1 g(x, x) \mathrm{d}x.$$
(21)

Finally, the lower bound in (17) for copulas g(x, y) gives F. Pillichshammer's and S. Steinerberger's result [PS09] in the form

$$\int_{0}^{1} \int_{0}^{1} |x - y| \mathrm{d}_{x} \mathrm{d}_{y} g(x, y) \le \int_{0}^{1} \int_{0}^{1} |x - y| \mathrm{d}_{x} \mathrm{d}_{y} \max(x + y - 1, 0) = \frac{1}{2}.$$
 (22)

F. Pillichshammer and S. Steinerberger compute in [PS09] also the limit $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} |x_{n+1} - x_n|$ for the van der Corpute sequence $x_n = \gamma_q(n)$. We give an alternative proof via d.f.s. in the following example.

EXAMPLE 2. For the van der Corput sequence $x_n = \gamma_q(n), n = 0, 1, ...$ in base q we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} |x_{n+1} - x_n| = \frac{2(q-1)}{q^2}.$$
 (23)

Proof. Every point $(\gamma_q(n), \gamma_q(n+1)), n = 0, 1, 2, \dots$ lies on a line segment

$$Y = X - 1 + \frac{1}{q^k} + \frac{1}{q^{k+1}}, \quad X \in \left[1 - \frac{1}{q^k}, 1 - \frac{1}{q^{k+1}}\right]$$
(24)

for some k = 0, 1, ... and let T be the set of all points $(x, y) \in [0, 1]^2$ which satisfy (24).

Since $\gamma_q(n)$ is u.d. the sequence $(\gamma_q(n), \gamma_q(n+1))$ has a.d.f. g(x, y) which is a copula

$$g(x,y) = |\operatorname{Project}_x(([0,x) \times [0,y)) \cap T)|, \tag{25}$$

where $\operatorname{Project}_x$ is a projection of two dimensional set to the x-axis. Thus g(x, y) can be computed explicitly as

$$g(x,y) = \begin{cases} 0 & \text{if } (x,y) \in A, \\ 1 - (1-y) - (1-x) = x + y - 1 & \text{if } (x,y) \in B, \\ y - \frac{1}{q^{i}} & \text{if } (x,y) \in C_{i}, \\ x - 1 + \frac{1}{q^{i-1}} & \text{if } (x,y) \in D_{i}, \end{cases}$$
(26)

 $i = 1, 2, \dots$

ON TWO-DIMENSIONAL SEQUENCES

Hence

$$g(x,x) = \begin{cases} 0, & \text{if } x \in \left[0,\frac{1}{q}\right], \\ x - \frac{1}{q}, & \text{if } x \in \left[\frac{1}{q}, 1 - \frac{1}{q}\right], \\ 2x - 1, & \text{if } x \in \left[1 - \frac{1}{q}, 1\right] \end{cases}$$
(27)

and by (21)

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} |\gamma_q(n) - \gamma_q(n+1)| = 1 - 2 \int_0^1 g(x, x) \mathrm{d}x = \frac{2(q-1)}{q^2}.$$

5. Generalization

Now, we can generalize the result of Theorem 3 to the sequences x_n and y_n which are not necessarily u.d. but have a.d.f. $g_1(x)$ and $g_2(x)$, respectively. In the following theorem we use the inverse function $g^{-1}(x)$ of the d.f. $g(x) = g_1(x)$

or $g(x) = g_2(x)$ also for the case if the d.f. g(x) is constant on the interval $I = (\alpha, \beta)$ with value c and to the left of α and to the right of β the d.f. g(x) increases simultaneously, then we put

$$g^{-1}(c) = \beta \tag{28}$$

because in this case the $g^{-1}(z) < x \Leftrightarrow z < g(x)$ also holds for z = c.

THEOREM 4. Let $x_n \in [0,1)$ be a sequence with an a.d.f. $g_1(x)$ and $y_n \in [0,1)$ with an a.d.f. $g_2(x)$. Let us assume that F(x,y) is a continuous function such that $d_x d_y F(x,y) > 0$ for every $(x,y) \in (0,1)^2$. Then we have

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) \le \int_0^1 F(g_1^{-1}(x), g_2^{-1}(x)) \mathrm{d}x, \tag{29}$$

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) \ge \int_0^1 F(g_1^{-1}(x), g_2^{-1}(1-x)) \mathrm{d}x.$$
(30)

Furthermore, for the sequence (x_n, y_n) , n = 1, 2, ... we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) = \int_0^1 F(g_1^{-1}(x), g_2^{-1}(x)) \mathrm{d}x \tag{31}$$

if and only if (x_n, y_n) has the a.d.f. $g(x, y) = \min(g_1(x), g_2(y))$ and we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) = \int_0^1 F(g_1^{-1}(x), g_2^{-1}(1-x)) \mathrm{d}x$$
(32)

if and only if $g(x, y) = \max(g_1(x) + g_2(y) - 1, 0)$.

If $d_x d_y F(x, y) < 0$ the right hand sides of (29) and (30) are exchanged.

Proof. Let g(x, y) be a d.f. of a sequence (x_n, y_n) , i.e., there exists a sequence $N_k \to \infty$ such that $F_{N_k}(x, y) \to g(x, y)$ and then

$$\lim_{k \to \infty} \frac{1}{N_k} \sum_{n=1}^{N_k} F(x_n, y_n) \to \int_0^1 \int_0^1 F(x, y) \mathrm{d}_x \mathrm{d}_y g(x, y).$$

Furthermore, we have $g(x,1) = g_1(x)$ and $g(1,y) = g_2(y)$. Then by the Sklar theorem [N99, p.15, Th.2.3.3] for any such d.f. g(x,y) there exists a copula c(x,y) such that

$$g(x, y) = c(g_1(x), g_2(y))$$

for every $(x, y) \in [0, 1]^2$. Applying the Fréchet-Hoeffding bounds (17) we find

$$\max(g_1(x) + g_2(y) - 1, 0) \le g(x, y) \le \min(g_1(x), g_2(y)).$$
(33)

Applying (12) we find

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) \le \int_0^1 \int_0^1 F(x, y) \mathrm{d}_x \mathrm{d}_y \min(g_1(x), g_2(y)),$$
$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) \ge \int_0^1 \int_0^1 F(x, y) \mathrm{d}_x \mathrm{d}_y \max(g_1(x) + g_2(y) - 1, 0).$$

Now, let z_n , n = 1, 2, ... be a u.d. sequence in [0, 1). Then we have (i) $(g_1^{-1}(z_n), g_2^{-1}(z_n))$ has a.d.f. $g(x, y) = \min(g_1(x), g_2(y))$ and (ii) $(g_1^{-1}(z_n), g_2^{-1}(1-z_n))$ has a.d.f. $g(x, y) = \max(g_1(x) + g_2(y) - 1, 0)$.

By the Helly theorem for the sequences (i) and (ii) we have (31) and (32)

$$\lim_{k \to \infty} \frac{1}{N_k} \sum_{n=1}^{N_k} F(g_1^{-1}(z_n), g_2^{-1}(z_n)) \to \int_0^1 F(g_1^{-1}(x), g_2^{-1}(x)) dx$$
$$= \int_0^1 \int_0^1 F(x, y) d_x d_y \min(g_1(x), g_2(y)),$$
$$\lim_{k \to \infty} \frac{1}{N_k} \sum_{n=1}^{N_k} F(g_1^{-1}(z_n), g_2^{-1}(1-z_n)) \to \int_0^1 F(g_1^{-1}(x), g_2^{-1}(1-x)) dx$$
$$= \int_0^1 \int_0^1 F(x, y) d_x d_y \max(g_1(x) + g_2(y) - 1, 0).$$

What is left to show is the proof of (i) and (ii). Assume that $g_1(x)$ and $g_2(x)$ are strictly increasing.

For (i) we note that $g_1^{-1}(z_n) < x \Leftrightarrow z_n < g_1(x)$ and $g_2^{-1}(z_n) < y \Leftrightarrow z_n < g_2(y)$ and thus $(g_1^{-1}(z_n), g_2^{-1}(z_n)) \in [0, x) \times [0, y) \Leftrightarrow z_n \in [0, \min(g_1(x), g_2(y))).$

For (ii) we note that $g_1^{-1}(z_n) < x \Leftrightarrow z_n < g_1(x)$ and $g_2^{-1}(1-z_n) < y \Leftrightarrow 1-z_n < g_2(y), 1-z_n < g_2(y) \Leftrightarrow 1-g_2(y) < z_n$ and thus $(g_1^{-1}(z_n), g_2^{-1}(1-z_n)) \in [0, x) \times [0, y) \Leftrightarrow z_n \in (1-g_2(y), g_1(x))$. Then the density of such z_n is $\max(g_1(x) - (1-g_2(x)), 0)$.

Finally, the uniqueness of extremal d.f. g(x, y) follows from the existence of common point (x, y) of continuity for any two d.f.s g(x, y).

6. Extremes of $\int_0^1 \int_0^1 F(x,y) d_x d_y g(x,y)$

In Section 2 we saw that the extreme limit points of (3) $\frac{1}{N} \sum_{n=1}^{n} F(x_n, y_n)$ are the same as the extremes of (9) $\int_0^1 \int_0^1 F(x, y) d_x d_y g(x, y)$. In Section 3 we

found the extremes of (9) for F(x, y) with $d_x d_y F(x, y)$ of constant signum. In this section we study extremes of (9) for F(x, y) without this condition. We only can find a criterion of necessary conditions of copula g(x, y) which maximizes (9). The minimum can be studied similarly.

First of all, we reformulate Theorems 3 and 4 into following two theorems.

THEOREM 5. Let F(x, y) be a Riemann integrable function defined on $[0, 1]^2$. Assume that $d_x d_y F(x, y) > 0$ for $(x, y) \in (0, 1)^2$. Then

$$\max_{\substack{g(x,y)-copula}} \int_0^1 \int_0^1 F(x,y) d_x d_y g(x,y) = \int_0^1 F(x,x) dx,$$
$$\min_{\substack{g(x,y)-copula}} \int_0^1 \int_0^1 F(x,y) d_x d_y g(x,y) = \int_0^1 F(x,1-x) dx$$

where the maximum is attained in $g(x, y) = \min(x, y)$ and the minimum in $g(x, y) = \max(x + y - 1, 0)$, uniquely.

THEOREM 6. Let us assume that F(x, y) is a continuous function such that $d_x d_y F(x, y) > 0$ for every $(x, y) \in (0, 1)^2$. Then for the extremes of integral $\int_0^1 \int_0^1 F(x, y) d_x d_y g(x, y)$ for g(x, y) for which $g(x, 1) = g_1(x)$ and $g(1, y) = g_2(y)$ we have

$$\max_{g(x,y)} \int_0^1 \int_0^1 F(x,y) d_x d_y g(x,y) = \int_0^1 F(g_1^{-1}(x), g_2^{-1}(x)) dx,$$

$$\min_{g(x,y)} \int_0^1 \int_0^1 F(x,y) d_x d_y g(x,y) = \int_0^1 F(g_1^{-1}(x), g_2^{-1}(1-x)) dx,$$

where the maximum is attained in $g(x, y) = \min(g_1(x), g_2(y))$ and the minimum in $g(x, y) = \max(g_1(x) + g_2(y) - 1, 0)$, uniquely.

6.1. Criterion

THEOREM 7. Let us assume that a copula g(x, y) maximizes the integral $\int_0^1 \int_0^1 F(x, y) d_x d_y g(x, y)$ and let $[X_1, X_2] \times [Y_1, Y_2]$ be an interval in $[0, 1]^2$ such that the differential

$$g(X_2, Y_2) + g(X_1, Y_1) - g(X_2, Y_1) - g(X_1, Y_2) > 0.$$

If for every interior point (x, y) of $[X_1, X_2] \times [Y_1, Y_2]$ the differential $d_x d_y F(x, y)$ has constant signum, then:

(i) if $d_x d_y F(x, y) > 0$, then

$$g(x,y) = \min(g(x,Y_2) + g(X_1,y) - g(X_1,Y_2), g(x,Y_1) + g(X_2,y) - g(X_2,Y_1))$$
(34)

(ii) if
$$d_x d_y F(x, y) < 0$$
, then

$$g(x, y) = \max(g(x, Y_2) + g(X_2, y) - g(X_2, Y_2), g(x, Y_1) + g(X_1, y) - g(X_1, Y_1))$$
(35)
for every $(x, y) \in [X_1, X_2] \times [Y_1, Y_2].$

Proof. The basic idea of the proof is to extend the interval $[X_1, X_2] \times [Y_1, Y_2]$ with F(x, y) linearly to $[0, 1]^2$ with $F^*(x, y)$. Then it is possible to use Theorem 4 and find extremes of $\int_0^1 \int_0^1 F^*(x, y) d_x d_y g^*(x, y)$. By inverse transformation we find desired extremal g(x, y) on $[X_1, X_2] \times [Y_1, Y_2]$.

1⁰. Let us start with a linear map $[X_1, X_2] \times [Y_1, Y_2] \rightarrow [0, 1]^2$ defined by

$$\frac{x - X_1}{X_2 - X_1} = x', \quad \frac{y - Y_1}{Y_2 - Y_1} = y' \tag{36}$$

with inverse

$$x = x'(X_2 - X_1) + X_1, \quad y = y'(Y_2 - Y_1) + Y_1.$$
 (37)

By this map we transform F(x, y) into its image $F^*(x', y')$.

$$F^{*}(x',y') = [F(x,y)]_{\substack{x=x'(X_{2}-X_{1})+X_{1}, \\ y=y'(Y_{2}-Y_{1})+Y_{1}}} = F(x'(X_{2}-X_{1})+X_{1},y'(Y_{2}-Y_{1})+Y_{1})$$
(38)

for $(x', y') \in [0, 1]^2$. We have

$$d_{x'}d_{y'}F^*(x',y') = d_xd_yF(x,y)(X_2 - X_1)(Y_2 - Y_1).$$
(39)

So the differential of F(x, y) has the same signum as the differential of $F^*(x', y')$.

For the definition of $g^*(x', y')$ we use the auxiliary function $\tilde{g}(x, y)$ defined as follows: Let us assume that among $(x_1, y_1) \dots, (x_N, y_N)$ there are *M*-points in $[X_1, X_2] \times [Y_1, Y_2]$ with the local step d.f.

$$\tilde{F}_M(x,y) = \frac{1}{M} \#\{n \le N; (x_n, y_n) \in [X_1, x) \times [Y_1, y)\}$$

and assume $\tilde{F}_M(x,y) \to \tilde{g}(x,y)$ a.e. on $[X_1, X_2] \times [Y_1, Y_2]$.

Figure 2: Linear map $(x, y) \rightarrow (x', y')$.

Since

$$\tilde{F}_M(x,y) = \frac{F_N(x,y) + F_N(X_1,Y_1) - F_N(x,Y_1) - F_N(X_1,y)}{F_N(X_2,Y_2) + F_N(X_1,Y_1) - F_N(X_2,Y_1) - F_N(X_1,Y_2)},$$

we have

$$\tilde{g}(x,y) = \frac{g(x,y) + g(X_1,Y_1) - g(x,Y_1) - g(X_1,y)}{g(X_2,Y_2) + g(X_1,Y_1) - g(X_2,Y_1) - g(X_1,Y_2)}.$$
(40)

Now, we put

$$g^*(x',y') = [\tilde{g}(x,y)]_{\substack{x=x'(X_2-X_1)+X_1, \\ y=y'(Y_2-Y_1)+Y_1}} = \tilde{g}(x'(X_2-X_1)+X_1,y'(Y_2-Y_1)+Y_1)$$
(41)

for $x', y' \in [0, 1]^2$. Since

$$\frac{1}{M}\sum_{n=1}^{M}F(x_n, y_n) = \frac{1}{M}\sum_{n=1}^{M}F^*(x'_n, y'_n),$$
(42)

$$\frac{1}{M} \sum_{n=1}^{M} F(x_n, y_n) \to \iint_{[X_1, X_2] \times [Y_1, Y_2]} F(x, y) \mathrm{d}_x \mathrm{d}_y \tilde{g}(x, y), \tag{43}$$

$$\frac{1}{M} \sum_{n=1}^{M} F^*(x'_n, y'_n) \to \int_0^1 \int_0^1 F^*(x', y') \mathrm{d}_{x'} \mathrm{d}_{y'} g^*(x', y') \tag{44}$$

we get that the integrals in (43) and (44) coincide. By (39) the differential of $F^*(x', y')$ has a constant signum on the open unit square. From Theorem 4 it follows that the integral (44) is maximal iff:

(i) $d'_x d'_y F^*(x', y') > 0$ implies $g^*(x', y') = \min(g^*(x', 1), g^*(1, y'))$ and (ii) $d'_x d'_y F^*(x', y') < 0$ implies $g^*(x', y') = \max(g^*(x', 1) + g^*(1, y') - 1, 0).$

From the maps $g^*(x', 1) \longleftrightarrow \tilde{g}(x, Y_2), g^*(1, y') \longleftrightarrow \tilde{g}(X_2, y)$ and from (42), it follows that the integral (43) is maximal if and only if:

- (i) $d_x d_y F(x, y) > 0$ implies $\tilde{g}(x, y) = \min(\tilde{g}(x, Y_2), \tilde{g}(X_2, y))$ and
- (ii) $d_x d_y F(x, y) < 0$ implies $\tilde{g}(x, y) = \max(\tilde{g}(x, Y_2) + \tilde{g}(X_2, y) 1, 0).$

Here from (40) we have

$$\tilde{g}(x, Y_2) = \frac{g(x, Y_2) + g(X_1, Y_1) - g(x, Y_1) - g(X_1, Y_2)}{g(X_2, Y_2) + g(X_1, Y_1) - g(X_2, Y_1) - g(X_1, Y_2)},$$

$$\tilde{g}(X_2, y) = \frac{g(X_2, y) + g(X_1, Y_1) - g(X_2, Y_1) - g(X_1, y)}{g(X_2, Y_2) + g(X_1, Y_1) - g(X_2, Y_1) - g(X_1, Y_2)}.$$
(45)

Using (45) in (i) and (ii) we find (34) and (35).

For a fixed F(x, y), the criterion in Theorem 7 can be fulfilled by several copulas which form local extremes of $\int_0^1 \int_0^1 F(x, y) d_x d_y g(x, y)$. In order to find global extremes we need to choose optimal $g(x, Y_i)$ and $g(X_i, y)$ in Theorem 7. This problem is in general still unsolved. In the following theorem we give a solution for a special case.

THEOREM 8. Let us divide $[0,1]^2$ into two parts $[0,1] \times [Y,1]$ and $[0,1] \times [0,Y]$ and define continuous F(x,y) by a composition

$$F(x,y) = \begin{cases} F_1(x,y), & \text{if } (x,y) \in [0,1] \times [Y,1], \\ F_2(x,y), & \text{if } (x,y) \in [0,1] \times [0,Y], \end{cases}$$

where $d_x d_y F_1(x, y) > 0$ for interior points of $[0, 1] \times [Y, 1]$ and $d_x d_y F_1(x, y) < 0$ for interior points of $[0, 1] \times [0, Y]$. Then we have

$$\max_{g(x,y)\text{-}copula} \int_0^1 \int_0^1 F(x,y) \mathrm{d}_x \mathrm{d}_y g(x,y)$$

=
$$\max_{h(x)} \left(\int_0^1 F_1(x,x-h(x)+Y)(1-h'(x)) \mathrm{d}x + \int_0^1 F_2(x,Y-h(x))h'(x) \mathrm{d}x \right),$$
(46)

where h'(x) is the derivative of h(x) and the maximum in (46) is over nondecreasing h(x), h(0) = 0, h(1) = Y and $\max(x + Y - 1, 0) \le h(x) \le \min(x, Y)$.

Proof. As in the proof of Theorem 7 we start with the two linear maps (see Fig. 3):

Figure 3: Linear maps $[0,1] \times [Y,1] \rightarrow [0,1]^2$ and $[0,1] \times [0,Y] \rightarrow [0,1]^2$.

$$[0,1] \times [Y,1] \to [0,1]^2$$
, where $x' = x$, $y' = \frac{y-Y}{1-Y}$, (47)

$$[0,1] \times [0,Y] \to [0,1]^2$$
, where $x' = x$, $y' = \frac{y}{Y}$. (48)

Then from (40) and from the properties g(0,0) = g(0,y) = g(x,0) = 0, g(1,1) = 1, g(1,Y) = Y of copulas g(x,y) it follows that

$$\tilde{g}_1(x,y) = \frac{g(x,y) - g(x,Y)}{1 - Y}, \quad \tilde{g}_2(x,y) = \frac{g(x,y)}{Y}.$$
(49)

Using the transformations (47) and (48) we find

$$g_1^*(x',y') = \left[\tilde{g}_1(x,y)\right]_{\substack{x=x',\\y=y'(1-Y)+Y}} = \frac{g(x',y'(1-Y)+Y) - g(x',Y)}{1-Y} \tag{50}$$

$$g_2^*(x',y') = [\tilde{g}_2(x,y)]_{\substack{x=x',\\y=y'Y}} = \frac{g(x',Y)}{Y}.$$
(51)

Put g(x, Y) = h(x). Since g(x, y) is a copula and for every copula $\max(x+y-1, 0) \le g(x, y) \le \min(x, y)$, we have h(0) = 0, h(1) = Y, h(x) is nondecreasing and $\max(x+Y-1, 0) \le h(x) \le \min(x, Y)$. From (50) and (51) we obtain

$$g_1^*(x',1) = \frac{x' - h(x')}{1 - Y}, \quad g_1^*(1,y') = y', \tag{52}$$

$$g_2^*(x',1) = \frac{h(x')}{Y}, \quad g_2^*(1,y') = y'.$$
 (53)

Then by Theorem 6 the distribution function $g_1^*(x', y')$ maximizes the integral $\int_0^1 \int_0^1 F_1^*(x', y') d_{x'} d_{y'} g(x', y')$ and $g_2^*(x', y')$ maximizes the integral $\int_0^1 \int_0^1 F_2^*(x', y') d_{x'} d_{y'} g(x', y')$ for fixed (52) and (53) iff

$$g_1^*(x',y') = \min\left(\frac{x' - h(x')}{1 - Y}, y'\right),\tag{54}$$

$$g_2^*(x',y') = \max\left(\frac{h(x')}{Y} + y' - 1, 0\right).$$
(55)

Now, from (49) it follows

$$g(x,y) = \begin{cases} \tilde{g}_1(x,y)(1-Y) + h(x), & \text{if } (x,y) \in [0,1] \times [Y,1], \\ \tilde{g}_2(x,y)Y, & \text{if } (x,y) \in [0,1] \times [0,Y]. \end{cases}$$
(56)

Using the inverse transformations of (47) and (48) we find

$$\tilde{g}_{1}(x,y) = \left[g_{1}^{*}(x',y')\right]_{\substack{x'=x,\\y'=\frac{y-Y}{1-Y}}} = \min\left(\frac{x-h(x)}{1-Y},\frac{y-Y}{1-Y}\right)$$
$$\tilde{g}_{2}(x,y) = \left[g_{2}^{*}(x',y')\right]_{\substack{x'=x,\\y'=\frac{y}{Y}}} = \max\left(\frac{h(x)}{Y} + \frac{y}{Y} - 1,0\right).$$
(57)

By inserting (57) into (56) we obtain

$$g(x,y) = \begin{cases} \min(x - h(x), y - Y) + h(x), & \text{if } y \in [Y,1], \\ \max(h(x) + y - Y, 0), & \text{if } y \in [0,Y] \end{cases}$$
(58)

for every $x \in [0, 1]$. It is easily seen that g(x, y) has nonzero differential only on the curves y = x - h(x) + Y and y = Y - h(x) where

$$d_x d_y g(x, y) = \begin{cases} (1 - h'(x)) dx, & \text{if } y = x - h(x) + Y, \\ h'(x) dx, & \text{if } y = Y - h(x). \end{cases}$$
(59)

Finally, (59) implies

$$\int_{0}^{1} \int_{Y}^{1} F_{1}(x, y) \mathrm{d}_{x} \mathrm{d}_{y} g(x, y) = \int_{0}^{1} F_{1}(x, x - h(x) + Y)(1 - h'(x)) \mathrm{d}x$$
$$\int_{0}^{1} \int_{0}^{Y} F_{2}(x, y) \mathrm{d}_{x} \mathrm{d}_{y} g(x, y) = \int_{0}^{1} F_{2}(x, Y - h(x)) h'(x) \mathrm{d}x.$$

REMARK 9. Rewrite (46) in the form $\int_0^1 G(x, h, h') dx$. Then for the desired optimal h(x) we can apply the Euler differential equation to the variation method: If the integral $\int_0^1 G(x, h, h') dx$ attains on $h_0(x)$ a local extreme over all continuous h(x) with continuous derivative h'(x), $h(0) = h_0(0) = 0$, $h(1) = h_0(1) = 1$, then $h_0(x)$ satisfies

$$\frac{\partial G}{\partial h} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial G'}{\partial h} = 0.$$
(60)

For an application see the following example.

EXAMPLE 3. Put $Y = \frac{1}{2}$ and define for $x \in [0, 1]$

$$F(x,y) = \begin{cases} F_1(x,y) = 2\left(y - \frac{1}{2}\right)x, & \text{if } y \in \left[\frac{1}{2},1\right], \\ F_2(x,y) = 2\left(\frac{1}{2} - y\right)x, & \text{if } y \in \left[0,\frac{1}{2}\right]. \end{cases}$$
(61)

Then the integral in (46) has the form

$$\int_{0}^{1} F_{1}(x, x - h(x) + Y)(1 - h'(x))dx + \int_{0}^{1} F_{2}(x, Y - h(x))h'(x)dx$$
$$= \frac{1}{6} + 2\int_{0}^{1} (xh(x) - h^{2}(x))dx.$$
(62)

By the Euler equation (60) we have

$$\frac{\partial(xh-h^2)}{\partial h} = x - 2h(x) = 0$$

which gives $h(x) = \frac{x}{2}$. Such h(x) is nondecreasing, satisfies $\max(x + \frac{1}{2} - 1, 0) \le h(x) \le \min(x, \frac{1}{2})$ and thus the global extreme is

$$\max_{g(x,y)\text{-copula}} \int_0^1 \int_0^1 F(x,y) \mathrm{d}_x \mathrm{d}_y g(x,y) = \frac{1}{6} + 2 \cdot \frac{1}{12} = \frac{1}{3}$$

7. Extremes of $\int_0^1 f_1(\Phi(x)) f_2(\Psi(x)) dx$

The problem presented in this section was also considered by S. Steinerberger in [S09] from where Theorem 10 is adapted. We are interested in finding extremes of (3) for $F(x, y) = f_1(x)f_2(x)$ and for u.d. sequences $x_n = \Phi(z_n)$ and $y_n = \Psi(z_n)$, where $\Phi(x)$ and $\Psi(x)$ are u.d.p. functions and z_n is a u.d. sequence.

DEFINITION 1. Let $f:[0,1] \to \mathbb{R}$ be a Lebesgue measurable function, $g_f(x) = |f^{-1}([0,x))|$ be its d.f. and put $f^*(x) = g_f^{-1}(x)$. Here, if $g_f(x)$ is constant equal to c on interval (α,β) (maximal with respect to inclusion) then we put $g_f^{-1}(c) = \beta$ as in (28).

THEOREM 10. Let f_1 and f_2 be Riemann integrable functions on [0,1]. Let $\Phi(x)$ and $\Psi(x)$ be arbitrary u.d.p. transformations. Then

$$\int_{0}^{1} f_{1}^{*}(x) f_{2}^{*}(1-x) \mathrm{d}x \le \int_{0}^{1} f_{1}(\Phi(x)) f_{2}(\Psi(x)) \mathrm{d}x \le \int_{0}^{1} f_{1}^{*}(x) f_{2}^{*}(x) \mathrm{d}x \quad (63)$$

and these bounds are best possible. Also, every number within these bounds is attained by some u.d.p. functions $\Phi(x), \Psi(x)$.

In Steinerberger's proof the Hardy-Littlewood inequality in rearrangement theory was used [HL28], [HL30] (see [HLP34, Th. 378]):

$$\int_0^1 f_1(x) f_2(x) \mathrm{d}x \le \int_0^1 f_1^*(x) f_2^*(x) \mathrm{d}x.$$
(64)

From now on let $F(x, y) = f(x) \cdot y$ and we study the limit points of

$$\frac{1}{N}\sum_{n=1}^{N}f(x_n)\cdot y_n,$$

where x_n is a u.d. sequence and a u.d. sequence y_n is given by $y_n = \Phi(x_n)$, where $\Phi(x)$ is a u.d.p. map. This problem is equivalent to calculate

$$\max_{\Phi(x)-\text{u.d.p.}} \int_0^1 f(x)\Phi(x) dx, \quad \min_{\Phi(x)-\text{u.d.p.}} \int_0^1 f(x)\Phi(x) dx.$$
(65)

Theorem 10 implies

THEOREM 11. For every Riemann integrable f(x) we have

$$\max_{\Phi(x)-u.d.p.} \int_0^1 f(x)\Phi(x) dx = \int_0^1 f(x)g_f(f(x)) dx,$$
(66)

$$\min_{\Phi(x)-u.d.p.} \int_0^1 f(x)\Phi(x) \mathrm{d}x = \int_0^1 f(x)(1 - g_f(f(x))) \mathrm{d}x.$$
(67)

Proof.

$$\max_{\Phi(x)-\mathrm{u.d.p.}} \int_0^1 f(x)\Phi(x)\mathrm{d}x = \int_0^1 f^*(x)x\mathrm{d}x = \int_0^1 g_f^{-1}(x)x\mathrm{d}x$$
$$= \int_0^1 g_f^{-1}(g_f(f(x)))g_f(f(x))\mathrm{d}x = \int_0^1 f(x)\Psi(x)\mathrm{d}x.$$
(68)

Analogously,

$$\min_{\Phi(x)-\text{u.d.p.}} \int_0^1 f(x) \Phi(x) dx = \int_0^1 f^*(x) (1-x) dx = \int_0^1 g_f^{-1}(x) (1-x) dx$$
$$= \int_0^1 f(x) (1-\Psi(x)) dx.$$
(69)

Here $\Psi(x) = g_f(f(x))$ is a u.d.p. map since by [SP05, 2.3.7, pp. 2–28] $g_f(f(x_n))$ is u.d. for arbitrary u.d. sequence $x_n, n = 1, 2, ...$

In the following part we will find an explicit form for the u.d.p. function $\Psi(x) = g_f(f(x))$ for pairwise linear functions $f: [0,1] \to [0,1]$.

DEFINITION 2. A function $f : [0,1] \to [0,1]$ is called *piecewise linear* (p.l.) if there exists a system of ordinate intervals J_j , j = 1, 2, ..., k, which are disjoint and whose union is the unit interval [0,1] with the following property: For every J_j there exists a related system of abscissa intervals $I_{j,i}$, $i = 1, 2, ..., l_j$ such that $f(x)|_{I_{j,i}}$ is an increasing or a decreasing diagonal of $I_{j,i} \times J_j$.

So every p.l. function can be defined by the sets J_j and $I_{j,i}$ and the signum of derivative on each $I_{j,i} \times J_j$, see, for example Fig. 4.

THEOREM 12. Let $f : [0,1] \rightarrow [0,1]$ be a p.l. function with the ordinate decomposition J_j , j = 1, 2, ..., k and the abscissa decomposition $I_{j,i}$, $i = 1, 2, ..., l_j$. Define a p.l. function $\Psi(x)$ in the same abscissa decomposition $I_{j,i}$ but in a new ordinate decomposition J'_i with lengths

$$|J'_j| = \sum_{i=1}^{l_j} |I_{j,i}|, \quad j = 1, 2, \dots, k,$$
(70)

and with the same ordering as J_j , j = 1, 2, ..., k. Put the graph of $\Psi(x)|_{I_{j,i}}$ on $I_{j,i} \times J'_j$ as an increasing (decreasing) diagonal if and only if $f(x)|_{I_{j,i}}$ is an increasing (decreasing) diagonal. Note that if f(x) is constant on the interval $I_{j,i}$, then J_i is a point and the graph $\Psi(x)|_{I_{j,i}}$ can be defined arbitrarily: either an increasing or a decreasing diagonal in $I_{j,i} \times J'_i$.

Then $\Psi(x)$ is a u.d.p. map and

$$\int_0^1 f(x)\Psi(x)\mathrm{d}x = \max_{\Phi(x)\text{-}u.d.p.} \int_0^1 f(x)\Phi(x)\mathrm{d}x.$$

For example

Figure 5: The best u.d.p. approximation.

Sketch of proof. According to Theorem 11 it suffices to prove that $\Psi(x)$ defined in Theorem 12 is equal to $g_f(f(x))$.

Figure 6: The equality between $\Psi(x)$ and $g_f(f(x))$.

Transform the p.l. function f(x) in the following way: the intervals $I_{j,i}$ are rearranged such that for the same j the intervals $I_{j,i}$ are fused into I_j and these are ordered according to j from the left to the right. This can be done also backwards, so Fig. 6 shows that the function $g_f(f(x))$ is the same as the function $\Psi(x)$. Note that for such reorganized f(x) the function $g_f(x)$ is still the same one.

In the original proof of Theorem 12 presented in the Strobl UDT2010 conference, there was used the following basic property of an extreme.

THEOREM 13. For an arbitrary Riemann integrable $f: [0,1] \to \mathbb{R}$ we have

$$\int_0^1 f(x)\Psi(x)\mathrm{d}x = \max_{\Phi(x)\text{-}u.\,d.\,p.}\int_0^1 f(x)\Phi(x)\mathrm{d}x$$

if and only if

$$\int_0^1 (f(x) - \Psi(x))^2 dx = \min_{\Phi(x) - u.d.p.} \int_0^1 (f(x) - \Phi(x))^2 dx$$

We will call such u.d.p. $\Psi(x)$ the best u.d.p. approximation of f(x).

Proof. Let $\Psi_1(x), \Psi_2(x)$ be two u.d.p. functions and f(x) be given. Then

$$\int_{0}^{1} (f(x) - \Psi_{1}(x))^{2} dx < \int_{0}^{1} (f(x) - \Psi_{2}(x))^{2} dx \Leftrightarrow$$
$$\int_{0}^{1} f(x)\Psi_{1}(x) dx > \int_{0}^{1} f(x)\Psi_{2}(x) dx.$$

Here the following property of u.d.p. functions is used

$$\int_0^1 \Psi_1^2(x) \mathrm{d}x = \int_0^1 \Psi_2^2(x) \mathrm{d}x = \int_0^1 x^2 \mathrm{d}x = \frac{1}{3}.$$

Using Theorem 13, for some special cases, it can be proved that $\Psi(x)$ is the best u.d.p. approximation of a p.l. function f(x). Here we add some consequences of Theorem 13, 12 and 11:

COROLLARY 1. If f(x) is a u.d.p. function, then $g_f(x) = x$ and

$$\max_{\Phi(x)-u.d.p.} \int_0^1 f(x)\Phi(x)dx = \int_0^1 f^2(x)dx = \frac{1}{3}.$$
(71)

COROLLARY 2. The best u.d.p. approximation of a p.l. function f(x) is independent of the lengths of the ordinate intervals J_j . Therefore for a given u.d.p. function $\Psi(x)$ there are infinite many functions f(x) for which $\Psi(x)$ is the best u.d.p. approximation, e.g., see Fig. 7.

Figure 7: Functions with the same $\Psi(x)$.

COROLLARY 3. For a u.d.p. function $\Psi(x)$ in Theorem 12, $\Psi(x)|_{I_{j,i}}$ can be expressed as

$$\Psi(x) = \frac{|J'_j|}{|J_j|} f(x) + t'_{j-1} - t_{j-1} \frac{|J'_j|}{|J_j|},$$

where $|J'_j| = \sum_{i=1}^{l_j} |I_{j,i}|$ and t'_j is given recurrently as $t'_0 = 0$ and $t'_j = t'_{j-1} + |J'_j|$. So the integral $\int_0^1 f(x)\Psi(x)dx$ can be calculated directly from $J_j = (t_{j-1}, t_j)$ and $J'_j = (t'_{j-1}, t'_j)$ as

$$\int_{0}^{1} f(x)\Psi(x)dx = \sum_{j=1}^{k} |J_{j}'| \left(t_{j-1}t_{j-1}' + \frac{1}{2}t_{j-1}|J_{j}'| + \frac{1}{2}t_{j-1}'|J_{j}| + \frac{1}{3}|J_{j}||J_{j}'| \right).$$
(72)

COROLLARY 4. Let
$$f: [0,1] \rightarrow [0,1]$$
 be a Riemann integrable function. Then

$$\max_{\Phi(x)-u.d.p.} \int_0^1 f(x)\Phi(x) \mathrm{d}x = \int_0^1 x g_f(x) \mathrm{d}g_f(x) = \frac{1}{2} \left(1 - \int_0^1 g_f^2(x) \mathrm{d}x \right).$$
(73)

Proof. Here as in Definition 1, $g_f(x) = |f^{-1}[0,x)|$ for $x \in [0,1]$. For every u.d. sequence x_n , n = 1, 2, ... the sequence $f(x_n)$ has a.d.f. $g_f(x)$ and then $g_f(f(x_n))$ is a u.d. sequence. By the Helly theorem we have two alternatives

$$\frac{1}{N}\sum_{n=1}^{N} f(x_n)g_f(f(x_n)) \to \int_0^1 xg_f(x) \mathrm{d}g_f(x)$$
(74)

$$\rightarrow \int_0^1 f(x)g_f(f(x))\mathrm{d}x.$$
(75)

Applying per-partes method of integration on (74) we find

$$\int_{0}^{1} x g_{f}(x) \mathrm{d}g_{f}(x) = 1 - \int_{0}^{1} g_{f}^{2}(x) \mathrm{d}x - \int_{0}^{1} x g_{f}(x) \mathrm{d}g_{f}(x)$$
(73) follows.

from which (73) follows.

ACKNOWLEDGMENTS. The authors thank an anonymous referee for a careful reading of this paper and many useful remarks which greatly improved the presentation of the results.

REFERENCES

- [DT97] DRMOTA, M. TICHY, R.F.: Sequences, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, Heidelberg, 1997.
- [HL28] HARDY, G.H. LITTLEWOOD, J.M.: Some properties of fractional integrals (1), Math. Zeitschr. 27 (1928), 556–606.
- [HL30] HARDY, G.H. LITTLEWOOD, J.M.: On certain inequalities connected with the calculus of variations, J. London Math. Soc. 5 (1930), 34–39.
- [HLP34] HARDY, G.H. LITTLEWOOD, J.M. POLYA, G.: Inequalities, Cambridge Univ. Press, London, 1934.
- [KN06] KUIPERS, L. NIEDERREITER, H.: Uniform Distribution of Sequences, John Wiley & Sons, New York, 1974. Reprint edition Dover Publications, Inc. Mineola, New York, 2006.
- [N99] NELSEN, R.B.: An Introduction to Copulas. Properties and Applications, Lecture Notes in Statistics 139 Springer-Verlag, New York, 1999.

- [PS09] PILLICHSHAMMER, F. STEINERBERGER, S.: Average distance between consecutive points of uniformly distributed sequences, Unif. Distrib. Theory 4 (2009), no. 1, 51–67.
- [S88] SMIRNOW, W.I.: Course in Higher Mathematics. Part V, University Books for Mathematics, Vol. 6 (German) VEB Deutscher Verlag der Wissenschaften, Berlin, 1988.
- [S09] STEINERBERGER, S.: Uniform distribution preserving mappings and variational problems, Unif. Distrib. Theory 4 (2009), no. 1, 117–145.
- [SP05] STRAUCH, O. PORUBSKÝ, Š.: Distribution of Sequences: A Sampler, Peter Lang, Frankfurt am Main, 2005.
- [SN10] STRAUCH, O. NAIR, K.: Unsolved Problems, in: Unsolved Problems Section on the homepage of Uniform Distribution Theory, http://udt.mat.savba.sk/udt_unsolv.htm http://www.boku.ac.at/MATH/udt/unsolvedproblems.pdf

Received December 30, 2010 Accepted March 25, 2011 Jana Fialová Oto Strauch Mathematical Institute Slovak Academy of Sciences Štefánikova 49 SK-814 73 Bratislava SLOVAKIA

E-mail: jana.fialova@mat.savba.sk oto.strauch@mat.savba.sk