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EQUIDISTRIBUTION IN THE d-DIMENSIONAL

a-ADIC SOLENOIDS

Roman Urban

ABSTRACT. Given a probability measure µ on the d-dimensional a-adic sole-
noid Ωd

a and an endomorphism T of Ωd
a, we consider the relation between uniform

distribution of the sequence Tnx for µ-almost all x ∈ Ωd
a and the behavior of µ

relative to the translations by some rational subgroups of Ωd
a. The main result

of this note is an extension of the corresponding result for the d-dimensional torus
Td due to B. Host [6].

Communicated by Radhakrishnan Nair

1. Introduction

Given a probability measure µ on the d-dimensional torus Td and an endo-
morphism T of Td, B. Host considered the relation between uniform distribution
of the sequence Tnt for µ-almost all t ∈ Td and the behavior of µ relative to the
translations by some rational subgroups of Td. The main aim of this note is to ex-
tend Host’s theorems (see [6, Therem 1 and Theorem 2]) and their proofs to the
d-dimensional a-adic solenoid. The d-dimensional a-adic solenoid is a compact
group which can be considered as an generalization of Td (see [1, 4]).

By P ⊂ N we denote the set of primes. For a prime number p ∈ P let Qp

(Zp, respectively) denote the p-adic field of rational numbers (the ring of p-
adic integers, respectively) with the p-adic norm | · |p. We write Q∞ for R and
| · |∞ for the usual absolute value. Let a ∈ N be a square-free number, that is
a is a product of different prime numbers, i.e., a = p1p2 . . . ps. For any positive
integer d let Ωd

a be a quotient group of the additive group Rd ×Qd
p1

× . . .×Qd
ps
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by a discrete subgroup

Bd =
{

(b,−b, . . . ,−b) : b ∈ Z[1/a]d
}

,

where Z[1/a] is the ring obtained from Z by adjoining 1/a. Thus,

Ωd
a = Rd ×Qd

p1
× · · · ×Qd

ps

/

Bd.

The quotient group Ωd
a is a compact Abelian group called the d-dimensional

a-adic solenoid (see [4]).

The ring End(Ωd
a) of continuous endomorphisms of Ωd

a is isomorphic
to M(d,Z[1/a]), where M(d,R) denotes the ring of d× d matrices over a ring R.
The action of the matrix C ∈ M(d,Z[1/a]) on

∏s
j=0Q

d
pj

is given by

C(x0, x1, . . . , xs) = (Cx0, Cx1, . . . , Cxs),

(x0, x1, . . . , xs) ∈
∏s

j=0Q
d
pj
, and the vectors xk ∈ Qd

pk
, k = 0, . . . , s, are consid-

ered as column vectors.

If C is an endomorphism of Ωd
a, then the dual endomorphism Ĉ is given

by the same matrix acting from the right on Z[1/a]d.

Let T ∈ M(d,Z[1/a]). According to [5, 6], we say that the sequence Tnx,
x ∈ Ωd

a is equidistributed in probability for the measure µ if, for every weak-∗
neighborhood U of the Lebesgue measure,

lim
N→∞

µ

{

x ∈ Ωd
a :

1

N

N−1
∑

n=0

δTnx 6∈ U

}

= 0.

For integer q > 1, define the following subgroup Dq of Ωd
a,

Dq =

{(

j1
qn

, . . . ,
jd
qn

,
−j1
qn

, . . . ,
−jd
qn

, . . . ,
−j1
qn

, . . . ,
−jd
qn

)

+Bd :

0 ≤ j1, . . . , jd ≤ qn, n ≥ 1

}

. (1.1)

Let

Dq,k =

{(

j1
qk

, . . . ,
jd
qk

,
−j1
qk

, . . . ,
−jd
qk

, . . . ,
−j1
qk

, . . . ,
−jd
qk

)

+Bd :

0 ≤ j1, . . . , jd ≤ qk
}

. (1.2)

Then

Dq =
⋃

k≥1

Dq,k.
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Define the following measures

ωk =
∑

x∈Dq,k

δx ∗ µ.

Let

ϕk(x) =
dµ(x)

dωk(x)
(1.3)

be the Radon-Nikodym derivative.

We say that the probability measure µ on Ωd
a is Dq-conservative if for every

Borel set E with µ(E) > 0, there exists y ∈ Dq, y 6= 0, with µ(E∩ (y+E)) > 0.

We say that µ is Dq-conservative with exponential decay if

lim inf
k→∞

−
1

k
logϕk(x) > 0, µ-a.e.

The main result of this note is the following.Theorem 1.4. Let T∈M(d,Z[1/a]), where a = p1p2 . . . ps is a product of differ-

ent primes. Let Dq be the subgroup of Ωd
a, defined in (1.1), with q=qα1

1 . . . q
αm
m >1,

where qi ∈ P, αi ≥ 1.

Assume that

(i) for every integer r > 1 the characteristic polynomial of T r is irreducible

over Q,

(ii) for j = 1, . . . , s, |q|pj
= 1,

(iii) for j = 1, . . . ,m, | detT |qj = 1.

Then

(1) if the probability measure µ on Ωd
a is Dq-conservative, then the sequence

Tnx is equidistributed in probability for µ;

(2) if the probability measure µ on Ωd
a is Dq-conservative, with exponential

decay then for µ-a.e. x ∈ Ωd
a the sequence Tnx is equidistributed.Remark. Condition (i) implies that detT 6= 0, that is T ∈ GL(d,R).Remark. It should be emphasized that when an appropriate formulation, given

in Theorem 1.4 above, of the extension of Host’s results [6, Theorem 1 and Theo-
rem 2] is found then the proof is relatively easy. It amounts to some modifications
of the original proofs which are necessary in the new more general setting.
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2. Lemmas

For a given positive integer q we denote by Ωd
a(q) the subgroup of Ωd

a consisting
of all elements whose order divides q.Lemma 2.1. For every q ∈ N, the subgroup

Ωd
a(q) ≃ Z[1/a]d/qZ[1/a]d ≃

(

Z[1/a]/qZ[1/a]
)d

is finite.

P r o o f. (See [1] Lemma II.13) It is enough to show that Z[1/a]d/qZ[1/a]d is a

finite group. Let γ1, . . . , γc ∈ Z[1/a]d be different elements of Z[1/a]d/qZ[1/a]d.
Consider for n = 0, 1, 2, . . . the following subgroups

Gn = Z[1/a]d ∩
1

n!
Zd of Z[1/a]d.

Clearly, Gn is a rank d subgroup of 1
n!Z

d and so Gn ≃ Zd. Since Gn ⊂ Gn+1

and
⋃∞

n=0Gn = Ωd
a, there exists k ∈ N such that for every 1 ≤ i ≤ c, we have

γi ∈ Gk. The elements γ1, . . . , γc belong to different classes modulo qGk. Since
Zd/qZd has order qd we get c ≤ qd. �Remark. It was pointed out by the referee that there is a simple formula for the
cardinality c of the group Z[1/a]d/qZ[1/a]d. More specifically, the cardinality of
Z[1/a]d/qZ[1/a]d is the number of points fixed by the endomorphism x 7→ (1−q)x
on Z[1/a]d. There is a well-known formula for the cardinality of the later set,
given for example in [2, Lemma 5.2], from which it follows that

c =



|q|∞
∏

p|a

|q|p





d

≤ qd.

This formula can be view via an adelic covering lemma that makes this just
a volume calculation in some finite product of p-adic fields (see [2]).

Let a be a product of different prime numbers a = p1p2 . . . ps, pj ∈ P, and let
T = (tij) ∈ M(d,Z[1/a]) ∩GL(d,R). Set

r = 2 + d(d− 1)/2, (2.2)

and consider, for an integer q satisfying (ii) of Theorem 1.4, the matrix

T̃ ∈ M
(

d,Z[1/a]/qrZ[1/a]
)

,

with entries

t̃ij = tij mod qrZ[1/a] = tij + qrZ[1/a].
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EQUIDISTRIBUTION IN SOLENOIDSLemma 2.3. Let T ∈ M(d,Z[1/a]) ∩ GL(d,R), r ≥ 1. Let q = qα1

1 qα2

2 . . . qαm
m ,

qi ∈ P, αi ∈ N. Assume that for 1 ≤ i ≤ m, | detT |qi = 1. Then there exists a

number τ ∈ N such that

T τ ≡ Id mod qrZ[1/a]d,

where Id stands for the identity d× d-matrix.

P r o o f. By Lemma 2.1 the matrix T̃ acts naturally on the finite module
(

Z[1/a]/qrZ[1/a]
)d

over the finite ring Z[1/a]/qrZ[1/a].

Thus we have an action of the semigroup N on
(

Z[1/a]/qrZ[1/a]
)d
, given by

k.x = T kx, k ∈ N, x ∈
(

Z[1/a]/qrZ[1/a]
)d
. Since | detT |qi = 1, for 1 ≤ i ≤ m,

we conclude that det T̃ is invertible in Z[1/a]/qrZ[1/a], hence

T̃ ∈ GL
(

d,Z[1/a]/qrZ[1/a]
)

.

Thus {T̃ k : k ∈ N} is a semigroup contained in the finite group

GL
(

d,Z[1/a]/qrZ[1/a]
)

;

it follows that {T̃ k : k ∈ N} is a group. Thus there exists a τ such that T̃ τ = Id,
and the lemma is proved. �

Denote
I(N) = {0, 1, . . . , N − 1}d.

Let us fix some ε ∈ (0, 1), and let α be an integer so large that the set

Λ =
{

n ∈ Nd : ni 6= nj mod pα for all i 6= j and all prime divisors p of q
}

(2.4)

satisfies

Card(I(N) ∩ Λ) ≥ (1− εd)Nd for all N large enough.

Let p ∈ P ∪ {∞}, and let A = (aij) ∈ M(d,Qp) and x = (x1, . . . , xd)
t ∈ Qd

p be
a column vector. Here and in what follows all vectors are column vectors unless
explicitly written as transposed. We define the norms of A and x by

‖A‖p = max
i,j

|aij |p and ‖x‖p = max
j

|xj |p.

Given q ∈ Z, q ≥ 2, andm,n ∈ Zd, we writem = n mod q if for every 1 ≤ j ≤ d,
mj = nj mod q.

Let A ∈ M(d,Zp) and ‖Id−A‖p ≤ p−1. It is known (see e.g., [3], [8]) that the
following series

logA :=

∞
∑

n=1

−
1

n
(Id −A)n
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converges in M(d,Qp) and logA ∈ M(d,Zp). Moreover, if A ∈ M(d,Zp) and
‖A‖p ≤ p−2, then one can define expA as a series

expA :=

∞
∑

n=0

1

n!
An

converging in M(d,Qp), and one has expA ∈ M(d,Zp).

Let M be the transpose matrix of T τ, where τ is as in Lemma 2.3, that is
M = (T τ )t. Now we are able to generalize the proof of the fundamental bound
from [6, § 4] to our setting and get the following result.Lemma 2.5. Under the assumptions of Theorem 1.4 there exists an integer

l > 0 such that for k ≥ l, m, n ∈ Λ, and b ∈ Z[1/a]d if m = n mod ql and
∑d

i=1M
mib =

∑d
i=1M

nib mod ql+kZ[1/a], then m = n mod qk.

P r o o f. We follow [6]. By Lemma 2.3 each entry of the matrix Id − T τ is equal
to 0 modulo qrZ[1/a]. Thus, also (Id−M )ij = 0 mod qrZ[1/a]. Hence, the ijth

entry of the matrix Id − M belongs to qrZ[1/a], i.e., is equal to qr
kij

p
α1ij
1

... p
αsij
s

for some kij and α1ij, . . . , αsij ∈ Z. Using the assumption (ii) of Theorem 1.4,
for every prime divisor p of q we have

‖Id −M‖p = max
i,j

|(Id −M )ij|p = max
i,j

∣

∣

∣

∣

qr
kij

p
α1ij

1 . . . p
αsij

s

∣

∣

∣

∣

p

= p−r|kij |p ≤ p−r ≤ p−2.

Hence, the following matrices are well defined

A = p−r log(M ) ∈ M(d,Zp)

and

Mx := exp(xprA) ∈ M(d,Zp) for x ∈ Zp.

For a given non-zero element b ∈ Z[1/a]d we define

Fp : Zd
p → Zd

p, Fp(x) =

d
∑

i=1

Mxib.

Let

V (x) =
∏

1≤i<j≤d

(xj − xi) and δp =

∣

∣

∣

∣

∣

D det(A)

d−1
∏

i=0

pri

i!

∣

∣

∣

∣

∣

p

,

where D ∈ Qp is the determinant of the vectors b, Ab, . . . , Ad−1b in Qd
p.

By [6, Lemma 1], D 6= 0 (here the assumption (i) of Theorem 1.4 is used).
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EQUIDISTRIBUTION IN SOLENOIDS

We need the following lemma.Lemma 2.6 ([6, Lemma 3]). Let x ∈ Zd
p and xi 6= xj for i 6= j. Then for all

y ∈ Zd
p such that ‖y‖p < pr−2δp|V (x)|p we have

‖Fp(x+ y)− Fp(x)‖p ≥ p−rδp|V (x)|p‖y‖p.

Now we proceed as in [6, Section 4.3]. We have Fp(n) ∈ Z[1/a]d for n ∈ Nd.

We have |V (n)|p ≥ p−d(d−1)α/2 for all n ∈ Λ and every prime divisor p of q

(p = qi) by (2.4). We take β > 0 such that β ≥ 2 − r −
log δp
log p + d(d−1)

2 α for all

p = qi, i = 1, . . . ,m. It follows from Lemma 2.6 that for all p = qi,m, n ∈ Λ and
‖m− n‖p ≤ p−β imply

‖Fp(m)− Fp(n)‖p ≥ p−β−2r+2‖m− n‖p.

Notice that m = n mod qk means that ‖m− n‖p ≤ p−k. Similarly, using (ii) of
Theorem 1.4 we see that the condition

d
∑

i=1

Mmib =

d
∑

i=1

Mnib mod ql+kZ[1/a]

means that

‖Fp(m)− Fp(n)‖p ≤ p−l−k.

Hence, Lemma 2.5 follows. �

3. Proof of Theorem 1.4

Every x ∈ Qp can be uniquely expressed as a convergent, in | · |p-norm, sum
(Hensel representation),

x =

∞
∑

k=t

xkp
k, for some t ∈ Z and xk ∈ {0, 1, . . . , p− 1}.

The fractional part of x ∈ Qp, denoted by {x}p is 0 if the number t in the Hensel
representation is greater than or equal to 0, and equal to

∑

k<0 xkp
k, if t < 0.

We write {x} for the usual fractional part of x ∈ R.

Recall that, for p ∈ P∪ {∞}, Q̂p is topologically isomorphic with Qp and the

action of the character χx ∈ Q̂p corresponding to x ∈ Qp is

χx(y) = exp
(

2πi{xy}p
)

.
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We use the notation p0 = ∞. Let S = {p0, p1, . . . , ps}. Denote by Qd
S =

∏s
j=0Q

d
pj

the “covering space” of Ωd
a. Since Ω̂d

a = Z[1/a]d the characters of Ωd
a

are indexed by vectors b ∈ Z[1/a]d and are of the form

χb(x+B) =

s
∏

j=0

e2πi{〈b,xj〉}pj, x = (x0, . . . , xs) ∈ Qd
S.

For a given non-zero b ∈ Z[1/a]d, let

SN (x) =
1

N

N−1
∑

n=0

χb(T
nx)

and

Sτ
N (x) =

1

N

N−1
∑

n=0

χb(T
nτx) =

1

N

N−1
∑

n=0

χMnb(x),

where M is the transpose matrix of T τ and τ is as in Lemma 2.3.

We have
(

Sτ
N (x)

)d
=

1

Nd

∑

n∈I(N)

χ∑
d
j=1

Mnj b(x),

where I(N) = {0, 1, . . . , N − 1}d. Let

S̃τ
N (x) =

1

Nd

∑

n∈I(N)∩Λ

χ∑
d
j=1

Mnj b(x),

where Λ is defined in (2.4). Then, for N large enough,

∣

∣

∣(Sτ
N (x))

d
− S̃τ

N (x)
∣

∣

∣ ≤ εd. (3.1)Lemma 3.1. There exists a constant C > 0 such that for all k ≥ 2l, where l is
from Lemma 2.5, and for all N ≥ qk,

∫

Ωd
a

∣

∣S̃τ
N (x)

∣

∣

2

ϕk(x)
dµ(x) ≤ C,

where ϕk is defined in (1.3).

P r o o f. We note that card(Dq,k) = qdk. Using the orthogonality of characters,
i.e., the fact that for every non-zero element b ∈ Z[1/a]d,

∑

x∈Dq,k
χb(x) = 0,
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we get, in the same way as in [6, § 2.3], the following estimate

∫

Ωd
a

∣

∣S̃τ
N (x)

∣

∣

2

ϕk(x)
dµ(x) ≤ qdk

∑

j∈(Z[1/a]/qkZ[1/a])d

(

1

Nd
card

{

n ∈ I(N) ∩ Λ :

d
∑

i=1

Mnjb = j mod qkZ[1/a]

})2

which together with Lemma 2.5 gives, as in [6], the required bound with

C = (q2l + ql)2d. �

P r o o f o f T h e o r e m 1.4 (1). By the classical results on uniformly distributed
sequences in compact groups [7] we have to show that for every non-zero

b ∈ Z[1/a]d, lim
N→∞

SN (x) = 0 in µ− probability.

As in [6] it is enough to prove that

lim
N→∞

Sτ
N (x) = 0 in µ− probability.Lemma 3.2. A probability measure µ on Ωd

a is Dq-conservative if and only if

ϕk(x) → 0 µ− a.e. as k tends to+∞.

P r o o f. It is the same as the proof of the corresponding result for the 1-dimen-
sional torus [5, Lemma 2]. �

Now we proceed as in [6]. By Lemma 3.2 for every ε > 0, there exists a Borel
subset

E ⊂ Ωd
a with µ(E) > 1− ε and k > 0

such that
ϕk(x) < ε2d+1 for all x ∈ E.

By Lemma 3.1 we have, for N sufficiently large,
∫

E

∣

∣S̃τ
N (x)

∣

∣

2
dµ(x) ≤ ε2d+1

∫

E

∣

∣S̃τ
N (x)

∣

∣

2

ϕk(x)
dµ(x) ≤ ε2d+1C.

Hence, by (3.1),

µ
{

x :
∣

∣Sτ
N (x)

∣

∣ ≥ 2ε
}

≤µ
{

x :
∣

∣S̃τ
N (x)

∣

∣ ≥ εd
}

≤ε+ ε−2d

∫

E

∣

∣S̃τ
N (x)

∣

∣

2
dµ(x)

≤(1 + C)ε,

for N sufficiently large, and part (1) of Theorem 1.4 is proved. �

29



ROMAN URBAN

P r o o f o f T h e o r e m 1.4(2). We have to show that limN→∞ Sτ
N (x) = 0

for µ-a.e. x. The proof given in [6] works in this case again. We include here
the main steps for the convenience of the reader.

The measure µ is Dq-conservative with exponential decay. Hence, for every
ε > 0, we can find η > 0 and the set F with µ(F ) > 1− ε

2 , such that

lim inf
k→∞

−
1

k
logϕk(x) > η for x ∈ F.

Hence, there is a set E with µ(E) > 1− ε and K ∈ N, K ≥ 2l, where l is from
Lemma 2.5, such that

ϕk(x) < e−kη for x ∈ E and k ≥ K.

Using Lemma 3.1, similarly as in the proof of part (1) above, we get
∫

E

∣

∣S̃N (x)
∣

∣

2
≤ Ce−kη for k ≥ K and N ≥ qk,

and consequently, taking k = [logN/ log q],
∫

E

∣

∣S̃N (x)
∣

∣

2
≤ CeηN−η/ log q for N sufficiently large.

This shows that if mη/ log q > 1, then limN→∞ S̃Nm = 0 a.e. on E. This implies,
in a standard way, that for µ-a.e. x ∈ E, lim supN→∞ |SN (x)| ≤ ε, and the result
follows. �Aknowledgements. The author wishes to thank an anonymous referee
for several remarks that improved the overall presentation of the result. In par-
ticular, for bringing to our attention reference [2].
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