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A NOTE ON THE EXTREME DISCREPANCY OF

THE HAMMERSLEY NET IN BASE 2

Peter Kritzer

ABSTRACT. In this note, we study lower bounds on the extreme discrepancy
of the Hammersley net in base 2. The Hammersley net in base 2 can be interpreted
as a finite two-dimensional analogue of the well known (one-dimensional) van der
Corput sequence in base 2. For the van der Corput sequence it is known that its
star discrepancy equals its extreme discrepancy. In this paper, we prove the rather

surprising fact that the same does not hold for the Hammersley net, by giving
lower bounds on its extreme discrepancy. We furthermore state a few remarks
on upper bounds and conclude with a conjecture.

Communicated by Michel Drmota

1. Introduction and notation

In this paper, we study a special, but very well known type of a finite two-
dimensional point set in the unit square [0, 1)2, namely the Hammersley point
set in base 2. By “point set”, here and in the following, we do not mean a proper
set but a finite or infinite sequence of points, i.e., points may occur repeatedly.

The Hammersley point set is in some sense a finite two-dimensional analogue
of the so-called van der Corput sequence in base 2. The van der Corput sequence
is defined as follows.Definition 1. Let n ≥ 0 be an integer and let n0+n12+n22

2+ · · · , ni ∈ {0, 1}
for i ≥ 0, be its unique base 2 representation. The radical inverse function
(to the base 2) of n is defined by φ(n) =

∑∞

i=0
ni

2i+1 . The van der Corput sequence
V in base 2 is defined as the sequence

(xn)n≥0 =
(
φ(n)

)
n≥0

.
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Note that the van der Corput sequence is a digital (0, 1)-sequence over Z2

in the sense of Niederreiter, see [13, 14] for further details, and [5] for a recent
overview of related results. If one wants to have a (finite) two-dimensional version
of the van der Corput sequence, it is near at hand to study the well known
Hammersley point set, which is defined as follows.Definition 2. Let an integer m ≥ 1 be given. The Hammersley point set in
base 2 with 2m points in [0, 1)2 is the finite sequence (xn)

2m−1
n=0 , where

xn =
( n

2m
, φ(n)

)
.

We denote this point set by Hm.

Note that Hm is the prototype of a digital (0,m, 2)-net over Z2, see again
[13, 14], which is why it is frequently referred to as Hammersley net. Alter-
natively, Hm is sometimes also called Roth net, but we shall use the term
Hammersley net in the following.

In our paper, we study the discrepancy of the Hammersley point set, in par-
ticular we deal with its extreme and its star discrepancy. For defining these
two types of discrepancy, we need a discrepancy function, which measures the
relative difference between the number of points in a given subinterval of the
s-dimensional unit cube [0, 1)s and its volume. For the following definitions, we
denote by 0 the zero vector, and for real vectors

α = (α1, α2, . . . , αs), β = (β1, β2, . . . , βs) ∈ [0, 1)s,

we denote by [α,β) the cartesian product of [α1, β1), [α2, β2), . . . , [αs, βs).

We define a local discrepancy function as follows.Definition 3. Let s ≥ 1. For α,β ∈ [0, 1]s and a point set P = (pn)
N−1
n=0 ⊆

[0, 1)s, let ∆(P,α,β) denote the discrepancy function of P evaluated at α and
β, which is defined as

∆(P,α,β) = AN

(
P, [α,β)

)
−Nλs

(
[α,β)

)
,

where AN (P, [α,β)) denotes the number of points of P in [α,β), and λs denotes
the s-dimensional Lebesgue measure.

Using the discrepancy function, we now define the star discrepancy and the
extreme discrepancy.Definition 4. Let P = (pn)

N−1
n=0 be a point set of N points in the s-dimensional

unit cube, [0, 1)s. The star discrepancy of P is defined as

D∗
N (P ) := sup

β∈[0,1]s

∣∣∣∣
∆(P,0,β)

N

∣∣∣∣ .
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For an infinite sequence, D∗
N denotes the discrepancy of the first N points of the

sequence.Definition 5. Let P = (pn)
N−1
n=0 be a point set of N points in the s-dimensional

unit cube, [0, 1)s. The extreme discrepancy of P is defined as

DN (P ) := sup
α,β∈[0,1]s

∣∣∣∣
∆(P,α,β)

N

∣∣∣∣ .

Again, for an infinite sequence, DN denotes the discrepancy of the first N points
of the sequence.

Note that the discrepancy of a point set gives information on its quality of
uniform distribution. The lower the discrepancy of a point set, the more evenly
its points are distributed in the unit cube. On the other hand, high discrepancy
indicates a relatively uneven distribution of points. Since the van der Corput se-
quence and the Hammersley point set are very well known examples of point sets
in [0, 1) and [0, 1)2, respectively, much is known about their distribution prop-
erties. In particular, their star discrepancies have been studied frequently, see,
e.g., [1]–[4], [6]–[12], and the references therein. It is known (see [2, 8, 12]) that
the local discrepancy function of the Hammersley net is always non-negative,
and the star discrepancy of Hm for m ≥ 2 can be calculated explicitly by

2mD∗
2m(Hm) =

m

3
+

13

9
− (−1)m

4

9 · 2m
. (1)

Furthermore, it has been shown in [4] that Hm has essentially the worst star
discrepancy among all (0,m, 2)-nets in base 2.

For the van der Corput sequence, it is known that its local discrepancy is also
never negative, and its star discrepancy satisfies the upper bound

ND∗
N (V ) ≤

log2 N

3
+ 1 (2)

for all N ≥ 1, where log2 is the logarithm to the base 2. In this note, we will
mostly be interested in the “leading term” in discrepancy bounds, i.e., in the
case of Equations (1) and (2), we are most interested in the coefficient that goes
with the logarithm of the number of points. Note that from Equations (1) and
(2) it follows that, for both the Hammersley net as well as the first points of the
van der Corput sequence, the leading term in the star discrepancy is at most

log2 K

3
,

where K is the number of points involved. Note also that, due to results in [9],
it is known that the van der Corput sequence has the worst star discrepancy
among all (0, 1)-sequences in base 2.
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Regarding the one-dimensional sequence V , it has been shown by Béjian and
Faure (see [1]) that its star discrepancy always equals its extreme discrepancy,
i.e.,

ND∗
N (V ) = NDN (V ) (3)

for all N ≥ 1. So also for NDN(V ) the leading term in the discrepancy bound
is (log2 N)/3.

As there are many similarities between V and Hm, their discrepancies, and
their roles among (0, 1)-sequences and (0,m, 2)-nets, respectively, one would sus-
pect that an analogue of Equation (3) also holds for Hm. In this paper, we show
the rather surprising fact that this is not the case. The rest of this note is
organized as follows. In Section 2, we show a lower bound on the extreme dis-
crepancy of Hm, thereby proving that the analogue of (3) does not hold for Hm.
In Section 3, we discuss possible issues with an upper bound on D2m(Hm) and
conclude with a conjecture.

2. Lower bounds on the extreme discrepancy of the

Hammersley net

In this section, we establish useful lower bounds on the extreme discrepancy
D2m of Hm. To this end, we need some notation.

For a given real number µ ∈ [0, 1) and m ≥ 1, we say that µ is m-bit, if µ is
of the form

µ =
µ1

2
+

µ2

22
+

µ3

23
+ · · ·+

µm

2m
,

with µ1, µ2, . . . , µm ∈ {0, 1}. Furthermore, we denote the base 2 representation
of µ ∈ [0, 1) as

µ = 0.µ1µ2 . . . µm.

Whenever we speak of an m-bit number we mean, in the following, that at most
the first m digits in its base 2 expansion are different from zero.

Our lower bound on the extreme discrepancy of Hm is obtained by explicitly
giving intervals where the local discrepancy function attains a certain value.
We need to distinguish three cases, depending on the remainder when m is
divided by 3.
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We first show the following result.Proposition 1. Let k ≥ 1 and let m = 3k. Furthermore, let α(1), α(2), β(1), β(2)

have the following base 2 representation:

α(1) = β(1) = 0. 001001001 . . .001001︸ ︷︷ ︸
m bits

,

α(2) = β(2) = 0. 110110110 . . .110111︸ ︷︷ ︸
m bits

.

Then we have

∆

(
Hm,

(
α(1), β(1)

)
,
(
α(2), β(2)

))
=

10m

21
+

4

49
−

22−m

49
.

P r o o f. Let k,m, and α(1), α(2), β(1), β(2) be as above. First of all, we note that

∆

(
Hm,

(
α(1), β(1)

)
,
(
α(2), β(2)

))

= ∆
(
Hm,0,

(
α(2), β(2)

))
−∆

(
Hm,0,

(
α(1), β(2)

))

−∆
(
Hm,0,

(
α(2), β(1)

))
+∆

(
Hm,0,

(
α(1), β(1)

))
. (4)

We make use of a formula for the discrepancy function ∆ for m-bit α and β,
established in [12],

∆
(
Hm,0, (α, β)

)
=

m−1∑

u=0

‖2uβ‖
(
αm−u ⊕ αm+1−j(u,α,β,m)

)
.

Here ‖·‖ denotes the distance to the nearest integer, i.e., ‖x‖ = min{x−⌊x⌋, 1−
(x − ⌊x⌋)}, ⊕ means addition modulo 2, and αi, βi are the i-th digits of α
and β, respectively, in their base 2 representation (we set αm+k = 0, k ≥ 1).
Furthermore, the function j(u, α, β,m) is defined as follows:

j(u, α, β,m) =





0 if u = 0,

0 if αm+1−j = βj , 1 ≤ j ≤ u,

max{1 ≤ j ≤ u : αm+1−j 6= βj} otherwise.

Let us first study ∆
(
Hm,0,

(
α(2), β(2)

))
. It is easily checked that we have

j
(
0, α(2), β(2),m

)
= j

(
1, α(2), β(2),m

)
= j

(
2, α(2), β(2),m

)
= 0

in this case. Furthermore, one obtains

j
(
3l, α(2), β(2),m

)
= 3l, 1 ≤ l ≤ k − 1

and

j
(
3l + 1, α(2), β(2),m

)
= j

(
3l+ 2, α(2), β(2),m

)
= 3l + 1, 1 ≤ l ≤ k − 1.
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Considering the form of α(2), then one obtains immediately

α
(2)
m−u ⊕ α

(2)

m+1−j

(
u,α(2),β(2),m

) = 1, ∀u ∈ {0, . . . ,m− 1}.

Hence,

∆

(
Hm,0,

(
α(2), β(2)

))
=

m−1∑

u=0

∥∥∥2uβ(2)
∥∥∥ .

Now note that

β
(2) =

k−2
∑

l=0

(

1

23l+1
+

1

23l+2

)

+
1

23k−2
+

1

23k−1
+

1

23k
.

Hence, for u ∈ {0, 1, . . . ,m− 1}, u ≡ 0 (mod 3),

∥

∥

∥
2uβ(2)

∥

∥

∥
=

∥

∥

∥

∥

∥

k−u/3−2
∑

l=0

(

1

23l+1
+

1

23l+2

)

+
1

23(k−u/3)−2
+

1

23(k−u/3)−1
+

1

23(k−u/3)

∥

∥

∥

∥

∥

.

As a consequence,
m−1
∑

u=0
u≡0 (mod 3)

∥

∥

∥2
u
β
(2)
∥

∥

∥ =

k
∑

r=1

(

1−

(

r−2
∑

l=0

(

1

23l+1
+

1

23l+2

)

+
1

23r−2
+

1

23r−1
+

1

23r

))

.

Similarly, it is easy to see that
m−1
∑

u=0
u≡1 (mod 3)

∥

∥

∥
2uβ(2)

∥

∥

∥
=

k
∑

r=2

(

1−

(

1

2
+

r−2
∑

l=1

(

1

23l
+

1

23l+1

)

+
1

23r−3
+

1

23r−2
+

1

23r−1

))

+
1

4
.

Furthermore, we obtain
m−1
∑

u=0
u≡2 (mod 3)

∥

∥

∥
2uβ(2)

∥

∥

∥
=

k
∑

r=2

(

r−2
∑

l=1

(

1

23l−1
+

1

23l

)

+
1

23r−4
+

1

23r−3
+

1

23r−2

)

+
1

2
.

This yields

∆

(

Hm,0,

(

α
(2)

, β
(2)

))

=

m−1
∑

u=0

∥

∥

∥
2uβ(2)

∥

∥

∥
=

2m

7
+

1

49
−

2−m

49
.
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Let us now study ∆

(

Hm,0,
(

α(1), β(2)
)

)

. In this case, it is easy to check that

αm−u ⊕ αm+1−j(u,α(1),β(2),m) = 1

if and only if u ≡ 0 (mod 3). Hence,

∆

(

Hm,0,
(

α
(1)

, β
(2)
)

)

=
m−1
∑

u=0
u≡0 (mod 3)

∥

∥

∥
2uβ(2)

∥

∥

∥
.

From above, it is easily derived that

∆

(

Hm,0,
(

α
(1)

, β
(2)
)

)

=
m

21
−

1

49
+

2−m

49
.

Furthermore, it turns out that

∆

(

Hm,0,
(

α
(2)

, β
(1)
)

)

=
m−1
∑

u=0
u≡0 (mod 3)

∥

∥

∥
2uβ(1)

∥

∥

∥
.

Since β(2) = 1− β(1) and since ‖x‖ = ‖1− x‖, it follows that

∆

(

Hm,0,
(

α
(2)

, β
(1)
)

)

= ∆

(

Hm,0,
(

α
(1)

, β
(2)
)

)

.

A similar observation yields

∆

(

Hm,0,
(

α
(1)

, β
(1)
)

)

= ∆

(

Hm,0,
(

α
(2)

, β
(2)
)

)

.

From this we obtain

∆

(

Hm,
(

α
(1)

, β
(1)
)

,
(

α
(2)

, β
(2)
)

)

=
10m

21
+

4

49
−

22−m

49
.

�

Similarly to Proposition 1, we have the following two propositions, the proofs
of which are carried out analogously to the proof of Proposition 1.Proposition 2. Let k≥1 and let m=3k+1. Furthermore, let γ(1), γ(2), δ(1), δ(2)

have the following base 2 representation:

γ(1) = 0. 001001001 . . . 001001︸ ︷︷ ︸
m−1 bits

1,

γ(2) = 0. 110110110 . . . 110111︸ ︷︷ ︸
m−1 bits

0,

δ(1) = 0.1 001001001 . . . 001001︸ ︷︷ ︸
m−1 bits

,

δ(2) = 0.1 110110110 . . . 110111︸ ︷︷ ︸
m−1 bits

.
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Then we have

∆

(
Hm,

(
γ(1), δ(1)

)
,
(
γ(2), δ(2)

))
=

10m

21
−

11

294
−

3 · 21−m

49
.Proposition 3. Let k≥1 and let m=3k+2. Furthermore, let κ(1), κ(2), η(1), η(2)

have the following base 2 representation:

κ(1) = 0. 001001001 . . . 001001︸ ︷︷ ︸
m−2 bits

01,

κ(2) = 0. 110110110 . . . 110︸ ︷︷ ︸
m−2 bits

11,

η(1) = 0.01 001001001 . . . 001001︸ ︷︷ ︸
m−2 bits

,

η(2) = 0.10 110110110 . . . 110111︸ ︷︷ ︸
m−2 bits

.

Then we have

∆

(
Hm,

(
κ(1), η(1)

)
,
(
κ(2), η(2)

))
=

10m

21
−

2

147
+

3 · 22−m

49
.

We sum up in the following theorem.Theorem 1. For m ≥ 3, the extreme discrepancy of the Hammersley net Hm

with 2m points is bounded below by

2mD2m(Hm) ≥
10m

21
+ c, (5)

where c is a constant not depending on m.

P r o o f. By Propositions 1, 2, and 3, it follows immediately that Equation (5)
holds if we only consider intervals that are bounded by m-bit numbers. On the
other hand, all the points of Hm are m-bit, and the one-dimensional projections
do not have any double points. Therefore, as pointed out in, e.g., [12], it is easily
seen that the local discrepancy function evaluated at arbitrary numbers in [0, 1),
differs from the discrepancy function evaluated at the nearest m-bit numbers by
at most a constant. �Remark 1. Theorem 1 implies that an equivalent of Equation (3) does not hold
for the Hammersley net. Indeed we see from Theorem 1 that the leading term
in the extreme discrepancy of Hm is at least 10m/21, and it cannot be m/3,
as one might suspect from the results for the van der Corput sequence.

16



A NOTE ON THE EXTREME DISCREPANCY OF THE HAMMERSLEY NET IN BASE 2

3. Remarks on upper bounds

In Section 2, we have dealt with lower bounds on the extreme discrepancy of
the Hammersley net. A natural question is to consider upper bounds. As it has
turned out in our research so far, the problem of finding strong upper bounds
is considerably harder than finding lower bounds. Nevertheless, let us give some
remarks on upper bounds of the extreme discrepancy of Hm here. There is a
general relation between the extreme and the star discrepancy of any point set
P of N points in the s-dimensional unit cube (see, e.g., [5, 14]), which is

DN (P ) ≤ 2sD∗
N (P ),

such that we would deduce

D2m(Hm) ≤ 4D∗
2m(Hm).

However, since it is well known that the local discrepancy function of Hm is
always non-negative (see, e.g., [2]), we immediately obtain

D2m(Hm) ≤ 2D∗
2m(Hm)

from Equation (4). Thus, using Equation (1), we obtain

2mD2m(Hm) ≤
2m

3
+

26

9
− (−1)m

8

9 · 2m
.

Furthermore, we have the following conjecture.Conje
ture 1. The maximum

max
σ(1),σ(2)

τ(1),τ(2)

m−bit

∣∣∣∣∆
(
Hm,

(
σ(1), τ (1)

)
,
(
σ(2), τ (2)

))∣∣∣∣

is attained for

• α(1), α(2), β(1), β(2) as given in Proposition 1 if m ≡ 0 (mod 3),

• γ(1), γ(2), δ(1), δ(2) as given in Proposition 2 if m ≡ 1 (mod 3),

• κ(1), κ(2), η(1), η(2) as given in Proposition 3 if m ≡ 2 (mod 3).

Note that it would follow from Conjecture 1 that D2m(Hm) ≤ 10m/21+ c̃ for
some constant c̃ that does not depend onm. However, the proof of this conjecture
seems to be technically very difficult. Indeed, in [12], the star discrepancy of Hm

was analyzed, and the authors of [12] studied the problem of maximizing the
expression

∆

(
Hm,0,

(
α, β

))
=

m−1∑

u=0

‖2uβ‖
(
αm−u ⊕ αm+1−j(u,α,β,m)

)

for m-bit α and β.
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If, however, we would like to consider the extreme discrepancy instead of the
star discrepancy, this would mean we would have to maximize a term involving
four sums of the above form, with each m-bit number occurring in two sums at
the same time. As the derivation of the results for the star discrepancy in [12]
was technically very involved, we actually think that a similar method of proof
for the extreme discrepancy seems hardly possible, so one most likely will have
to resort to different techniques for estimating the local discrepancy function,
which is a problem left open for future research.A
knowledgements. The author gratefully acknowledges the support of the
Austrian Science Fund (Project P21943 and S9609). Furthermore he would like
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