

ELENA ZHABITSKAYA

ABSTRACT. Consider the representation of a rational number as a continued fraction, associated with "centered" Euclidean algorithm. We prove a new formula for the limit distribution function for sequences of rationals with bounded sum of partial quotients.

Communicated by Arturas Dubickas

Dedicated to the memory of Professor Edmund Hlawka

1. Introduction and main results

The classical Euclidean algorithm for $a \in \mathbb{Z}$ and $b \in \mathbb{N}$ uses the division of the form

$$a = bq + r$$
, $q \in \mathbb{Z}$, $b > 0$, $0 \leqslant r < b$.

It leads to a continued fraction expansion of a real number

$$x = [a_0; a_1, a_2, \dots, a_m, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_m + \dots}}},$$
 (1)

where $a_0 \in \mathbb{Z}$, $a_j \in \mathbb{N}$ for $j \geqslant 1$. Numbers a_i are called partial quotients of fraction (1).

For $x \in \mathbb{Q}$ the representation (1) is finite. We assume for the uniqueness that the last partial quotient a_l is greater than or equal 2. Let

$$S^{[0]}(a/b) := a_0 + a_1 + \ldots + a_l.$$

 $2010 \; {\rm Mathematics} \; {\rm Subject} \; {\rm Classification:} \; 11 \\ {\rm J}70.$

Keywords: Continued fraction, "centered" Euclidean algorithm.

Research is supported by RFBR grant no. 09-01-00371-a.

Define the set

$$\mathcal{F}_n := \left\{ x \in \mathbb{Q}, x \in [0, 1] : S^{[0]}(x) \leqslant n + 1 \right\}.$$
 (2)

The limit distribution function

$$F^{[0]}(x) := \lim_{n \to \infty} \frac{\sharp \left\{ \xi \in \mathcal{F}_n : \xi \leqslant x \right\}}{\sharp \mathcal{F}_n}, \qquad x \in [0, 1]$$

is the famous Minkowski's question mark function ?(x). Properties of ?(x) were investigated, for example, in [1], [14] and [2].

There are different kinds of Euclidean algorithms. For example, "by-excess" Euclidean algorithm uses the division "by-excess"

$$a = bq + r, \quad -b < r \le 0,$$

This algorithm leads to regular reduced continued fraction ([3], [5]) expansion of a real number x, that is

$$x = [[a_0; a_1, a_2, \dots, a_m, \dots]] = a_0 - \frac{1}{a_1 - \frac{1}{a_2 - \dots - \frac{1}{a_m - \dots}}},$$
(3)

where $a_0 \in \mathbb{Z}$, $a_j \ge 2$ for $j \ge 1$. Numbers a_i are called partial quotients of fraction (3).

For a rational x representation (3) is finite. For rational x we denote the sum of partial quotients in the representation of x in the form (3) by $S^{[1]}(x)$. We put

$$\Xi_n:=\left\{x\in\mathbb{Q},x\in[0,1]:S^{[1]}(x)\leqslant n+2\right\}$$

Consider the limit distribution function

$$F^{[1]}(x) := \lim_{n \to \infty} \frac{\sharp \{ \xi \in \Xi_n : \xi \leqslant x \}}{\sharp \Xi_n}, \qquad x \in [0, 1],$$

In 1995 R. F. Tichy and J. Uitz [8] considered a one parameter family $g_{\lambda}(x)$, $\lambda \in (0,1), x \in [0,1]$, of singular functions. Functions $F^{[0]}$, $F^{[1]}$ belong to this family with $\lambda = \frac{1}{2}$ and $\lambda = \frac{3-\sqrt{5}}{2}$, correspondingly. Similar functions $\kappa(x,\alpha)$, $x \in [0,\infty), \lambda \in (0,1)$, were introduced by A. Denjoy [1] much more earlier, in 1938. For $x \in [0,1]$ functions $\kappa(x,\alpha)$ and $g_{\lambda}(x)$ are related in the following way:

$$\kappa(x,\alpha) = 1 - (1 - \alpha)g_{1-\alpha}(x).$$

In the same paper A. Denjoy proved that

$$\kappa(x,\alpha) = \alpha^{a_0} - \alpha^{a_0} (1-\alpha)^{a_1} + \alpha^{a_0+a_2} (1-\alpha)^{a_1+a_3} - \cdots,$$

where $a_0, a_1, \ldots, a_m, \ldots$ are partial quotients of representation (1) of number x. Similar formula for $g_{\lambda}(x), x \in (0, 1)$ is given in the paper [5]:

$$g_{\lambda}(x) = \lambda^{a_{1}-1} - \lambda^{a_{1}-1} (1-\lambda)^{a_{2}} + \lambda^{a_{1}-1} (1-\lambda)^{a_{2}} \lambda^{a_{3}} - \cdots$$

$$\sum_{\substack{1 \le i \le m \\ i \equiv 1 \bmod 2}} a_{i} - 1 \sum_{\substack{1 \le i \le m \\ i \equiv 0 \bmod 2}} a_{i}$$

$$\cdots + (-1)^{m+1} \lambda^{\frac{1}{i} \equiv 1 \bmod 2} (1-\lambda)^{\frac{1}{i} \equiv 0 \bmod 2} + \cdots (4)$$

For $\lambda = \frac{1}{2}$ formula (4) gives a well-known result by R. Salem [7], namely

$$g_{1/2}(x) = ?(x) = \frac{1}{2^{a_1-1}} - \frac{1}{2^{a_1+a_2-1}} + \frac{1}{2^{a_1+a_2+a_3-1}} - \cdots$$

Let us consider a "centered" version of the Euclidean algorithm. This algorithm uses "centered" division

$$a = bq + r, \quad -\frac{b}{2} < r \leqslant \frac{b}{2} \tag{5}$$

and leads to the following representation of a real number x:

$$x = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_l}{a_l}, \cdots\right] = a_0 + \frac{\varepsilon_1}{a_1 + \frac{\varepsilon_2}{a_2 + \cdots + \frac{\varepsilon_l}{a_l + \cdots}}}.$$
 (6)

This representation is known as a continued fraction with minimal remainders. Numbers a_i are called partial quotients of fraction (6). Here $a_0 \in \mathbb{Z}$, $\varepsilon_i = \pm 1$ and $a_j \ge 2$, $a_j + \varepsilon_{j+1} > 2$ for $j \ge 1$. For rational x, if $a_s = 2$ is the last partial quotient, then $\varepsilon_s = 1$ for uniqueness of the representation. Such fractions can be found in the book [6] by O. Perron.

Statistical properties of various Euclidean algorithms were investigated by B. Vallee and V. Baladi in papers [11], [12], [13]. The most precise asymptotic formulae for the mean length for the classical Euclidean algorithm and the centered Euclidean algorithm are proved in papers [9], [10] by A. V. Ustinov. A similar formula for "by-excess" Euclidean algorithm was obtained in author's paper [5].

For rational x let us denote by S(x) the sum of partial quotients of representation (6), and put

$$\mathcal{Z}_n := \left\{ x \in \mathbb{Q} \cap [0, 1] : S(x) \leqslant n + 1 \right\}. \tag{7}$$

In present paper we investigate the limit distribution function

$$F(x) := \lim_{n \to \infty} \frac{\sharp \left\{ \xi \in \mathcal{Z}_n : \xi \leqslant x \right\}}{\sharp \mathcal{Z}_n}, \qquad x \in [0, 1].$$

The main result is the following theorem.

THEOREM 1. Let $x \in [0,1]$ be represented in the form (6), then

$$F(x) = a_0 - c\lambda \left(\frac{E_1}{\lambda^{A_1}} + \frac{E_2}{\lambda^{A_2}} + \dots + \frac{E_j}{\lambda^{A_j}} + \dots \right), \tag{8}$$

where

$$E_j = \prod_{1 \le i \le j} (-\varepsilon_i), \quad A_j = \sum_{0 \le i \le j} a_i, \quad c = 1/(\lambda - 1),$$

and λ is the unique real root of the equation

$$\lambda^3 - \lambda^2 - \lambda - 1 = 0.$$

For rational x the sum in formula (8) is finite.

In this paper we also prove

THEOREM 2. Let for $x \in [0,1]$ the derivative F'(x) (finite or infinite) exists. Then either F'(x) = 0 or $F'(x) = \infty$.

As function F(x) is monotonic, then by Lebesgue's theorem, the derivative F'(x) exists and is finite almost everywhere (in the sense of Lebesgue measure). Therefore F'(x) = 0 almost everywhere. In other words, F(x) is a singular function.

In the proof of Theorem 1 we need the following result.

PROPOSITION 1. For $x \in [0, 1/2]$ the function F(x) satisfies the following functional equation

$$F(1-x) = 1 - \frac{F(x)}{\lambda}. (9)$$

The proof of Proposition 1 is given in section 3. Theorem 1 uses Proposition 1 and it's proof is given in section 4. The proof of Theorem 2 is in section 5.

2. Properties of a continued fraction with minimal remainders

It follows immediately from the definition of continued fraction with minimal remainders (6), that

- $a_i \geqslant 2$ for $i \geqslant 1$,
- If $a_i = 2$, then $\varepsilon_{i+1} = 1$ for $i \ge 1$,
- If the last partial quotient $a_l = 2$, then $\varepsilon_l = 1$.

Let $x = [b_0; b_1, \ldots, b_s, \ldots]$ be represented in the form of ordinary continued fraction (1). We describe the algorithm for converting this fraction into a fraction of the form (6) (see [6]).

Fraction (1) is constructed by the classical Euclidean algorithm

$$r_0 = \frac{b}{a}, \quad r_{i+1} = \frac{1}{r_i} - b_i, \quad b_i = \left[\frac{1}{r_i}\right], \quad 0 \leqslant r_i < 1.$$

The remainder r_{i+1} is less then $\frac{1}{2}$ if and only if $b_{i+1} > 1$. So while $b_{i+1} > 1$ partial quotients of the classical Euclidean algorithm coincide with partial quotients of "centered" Euclidean algorithm.

For the first i such that $b_{i+1} = 1$, we use the identity

$$b_i + \frac{1}{1 + \frac{1}{b_{i+2} + \alpha}} = b_i + 1 - \frac{1}{b_{i+2} + 1 + \alpha}, \quad \alpha \geqslant 0.$$

And since $\frac{1}{b_{i+1}+1} < \frac{1}{2}$, we have

$$[b_0; b_1, \dots, b_i, 1, b_{i+2}] = \left[b_0; \frac{1}{b_1}, \dots, \frac{1}{b_i + 1}, \frac{-1}{b_{i+2} + 1}\right]$$

Then we apply the same procedure to the "tail"

$$b_{i+2} + 1 + \frac{1}{b_{i+3} + \dots + \frac{1}{b_{s} + \dots}}$$

of the fraction (1).

We define the convergents of the continued fraction with minimal remainders of the number $x = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_l}{a_l}, \cdots\right]$ as

$$\frac{P_n}{Q_n} = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_n}{a_n}\right], \quad (P_n, Q_n) = 1, \quad n \geqslant 1.$$

To get a recurrence formulas for P_n/Q_n , $n \ge 0$ we put formally

$$\frac{P_{-1}}{Q_{-1}} = \frac{1}{0}, \quad \frac{P_0}{Q_0} = \frac{a_0}{1}.$$

Then for $\varepsilon_{n+1} = 1$ we have

$$\frac{P_{n+1}}{Q_{n+1}} = \frac{a_n P_n + P_{n-1}}{a_n Q_n + Q_{n-1}},$$

otherwise,

$$\frac{P_{n+1}}{Q_{n+1}} = \frac{a_n P_n - P_{n-1}}{a_n Q_n - Q_{n-1}}.$$

3. Definition and properties of sets \mathcal{Z}_n

We define a sequence of sets \mathcal{X}_k by

$$\mathcal{X}_k = \{ x \in \mathbb{Q} \cap [0, 1] : S(x) = k + 1 \}, \quad n \geqslant 1.$$

It is clear that

$$\mathcal{Z}_n = \bigcup_{1 \le k \le n} \mathcal{X}_k,$$

where \mathcal{Z}_n is defined by (7). Suppose that the elements of \mathcal{Z}_k are arranged in the increasing order. The number of elements of \mathcal{Z}_n , \mathcal{X}_n we denote by Z_n , X_n , respectively.

In particular,

$$\mathcal{X}_1 = \left\{ \frac{1}{2} \right\}, \quad \mathcal{X}_2 = \left\{ \frac{1}{3} \right\}, \quad \mathcal{X}_3 = \left\{ \frac{1}{4}, \frac{2}{5}, \frac{2}{3} \right\}, \quad \mathcal{X}_4 = \left\{ \frac{1}{5}, \frac{2}{7}, \frac{3}{7}, \frac{3}{5}, \frac{3}{4} \right\}.$$

$$X_1 = X_2 = 1, \quad X_3 = 3, \quad X_4 = 5.$$

So

Lemma 1. For $n \ge 1$ we have

$$X_{n+3} = X_{n+2} + X_{n+1} + X_n.$$

Proof. We construct one-to-one correspondence Φ between elements of sets $\mathcal{X}_{n+2} \cup \mathcal{X}_{n+1} \cup \mathcal{X}_n$ and \mathcal{X}_{n+3} .

Let

$$x \in \mathcal{X}_{n+2} \cup \mathcal{X}_{n+1} \cup \mathcal{X}_n, x = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_l}{a_l}\right],$$

we define $\Phi(x): \mathcal{X}_{n+2} \cup \mathcal{X}_{n+1} \cup \mathcal{X}_n \to \mathcal{X}_{n+3}$ in the following way:

• If $x \in \mathcal{X}_{n+2}$, then

$$\Phi(x) = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_{l-1}}{a_{l-1}}, \frac{\varepsilon_l}{a_l+1} \right] \in \mathcal{X}_{n+3}.$$

• If $x \in \mathcal{X}_{n+1}$, then

$$\Phi(x) = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_l}{a_l}, \frac{1}{2}\right] \in \mathcal{X}_{n+3}.$$

• If $x \in \mathcal{X}_n$ and $a_l > 2$, then

$$\Phi(x) = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_l}{a_l}, \frac{-1}{3}\right] \in \mathcal{X}_{n+3}.$$

• If $x \in \mathcal{X}_n$ and $a_l = 2$, then

$$\Phi(x) = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_{l-2}}{a_{l-2}}, \frac{\varepsilon_{l-1}}{a_{l-1}+1}, \frac{-1}{2}, \frac{1}{2}\right] \in \mathcal{X}_{n+3}.$$

The correspondence $\Phi(x)$ is injective by the construction. Let us show that it is surjective. For any $y \in \mathcal{X}_{n+3}$, $y = \left[a_0; \frac{\varepsilon_1}{a_1}, \dots, \frac{\varepsilon_l}{a_l}\right]$ we find the preimage x of y.

• If $a_l > 3$ or $a_l = 3$ and $\varepsilon_l = 1$, then

$$x = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_{l-1}}{a_{l-1}}, \frac{\varepsilon_l}{a_l - 1}\right] \in \mathcal{X}_{n+2}.$$

• If $a_l = 2$ and either $a_{l-1} > 2$ or $a_{l-1} = 2$ and $\varepsilon_{l-1} = 1$, then

$$x = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_{l-1}}{a_{l-1}}\right] \in \mathcal{X}_{n+1}.$$

• If $a_l = 3$, $\varepsilon_l = -1$, then $a_{l-1} > 2$, therefore,

$$x = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_{l-1}}{a_{l-1}}\right] \in \mathcal{X}_n.$$

• If $a_l = a_{l-1} = 2$, $\varepsilon_{l-1} = -1$, then $a_{l-2} > 2$, therefore,

$$x = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_{l-3}}{a_{l-3}}, \frac{\varepsilon_{l-2}}{a_{l-2}-1}, \frac{1}{2}\right] \in \mathcal{X}_n.$$

Lemma is proved.

Corollary 1. For $n \ge 1$ we have

$$Z_{n+3} = Z_{n+2} + Z_{n+1} + Z_n + 2. (10)$$

Proof. By the definition of \mathcal{Z}_n and Lemma 1, we get

$$Z_{n+2} + Z_{n+1} + Z_n = (X_1 + \dots + X_{n+2}) + (X_1 + \dots + X_{n+1}) + (X_1 + \dots + X_n)$$

$$= X_1 + X_2 + X_3 + X_4 + \dots + X_{n+3} + (X_1 - X_3)$$

$$= Z_{n+3} - 2.$$

We remind the definition of the Stern-Brocot sequences \mathcal{F}_n , n = 0, 1, 2, ...Consider two-point set $\mathcal{F}_0 = \left\{\frac{0}{1}, \frac{1}{1}\right\}$. Let

$$n \ge 0$$
 and $\mathcal{F}_n = \{0 = x_{0,n} < x_{1,n} < \dots < x_{N(n),n} = 1\},$

where

$$x_{j,n} = p_{j,n}/q_{j,n}, \quad (p_{j,n}, q_{j,n}) = 1, \quad j = 0, \dots, N(n) \quad \text{and} \quad N(n) = 2^n + 1.$$

Then

$$\mathcal{F}_{n+1} = \mathcal{F}_n \cup Q_{n+1}$$
 with $Q_{n+1} = \{x_{j-1,n} \oplus x_{j,n}, j = 1, \dots, N(n)\}$.

Here

$$\frac{a}{b} \oplus \frac{c}{d} = \frac{a+b}{c+d}$$

is the mediant of fractions $\frac{a}{b}$ and $\frac{c}{d}$.

So the first sequences are

$$Q_1 = \left\{\frac{1}{2}\right\}, \quad Q_2 = \left\{\frac{1}{3}, \frac{2}{3}\right\}, \quad Q_3 = \left\{\frac{1}{4}, \frac{2}{5}, \frac{3}{5}, \frac{3}{4}\right\}.$$

It is clear that for any rational number q there exists such number n that $q \in Q_n$. Note that sum $S^{[0]}(x)$ of partial quotients of ordinary continued fraction of a number $x \in Q_n$ equals to n+1. Formula (2) gives an equivalent definition of \mathcal{F}_n .

It is convenient to represent sequences \mathcal{F}_n by means of the binary tree $\mathcal{D}^{[0]}$ (Figure 1). This tree is called Stern-Brocot's tree. Nodes of the tree are labeled

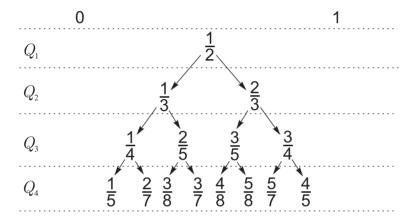


Figure 1.

by rationals from (0,1) and partitioned into levels by the following rule: the *n*th level consists of nodes labeled by numbers x, such that $S^{[0]}(x) = n + 1$ (i.e., the *n*th level consists of nodes, labeled by numbers from Q_n).

It is possible to distribute nodes of the tree into levels by another way. For example, we can use a rule: the nth level consists of nodes labeled by numbers x, such that sum $S^{[1]}(x)$ of partial quotients of regular reduced continued fraction of number x equals n+1. Then we get tree $\mathcal{D}^{[1]}$ (Figure 2) from paper [4].

Now let us distribute nodes of the tree into levels by the following rule: the *n*th level consists of nodes labeled by numbers x, such that S(x) = n + 1 (i.e., $x \in \mathcal{X}_n$). We denote this tree by \mathcal{D} (Figure 3).

Any node ξ of the tree \mathcal{D} is a root of a subtree, which we denote by $\mathcal{D}^{(\xi)}$. Nodes of $\mathcal{D}^{(\xi)}$ are also partitioned into levels: ξ itself belongs to the level 1, and a node of the tree $\mathcal{D}^{(\xi)}$, labeled by number x belongs to the level $S(x) - S(\xi) + 1$ in the tree $\mathcal{D}^{(\xi)}$. The number of nodes of $\mathcal{D}^{(\xi)}$ from the level 1 to the level n we denote by $\mathcal{D}_n^{(\xi)}$.

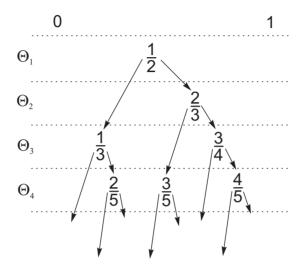


Figure 2.

Let us consider more detailed structure of the tree \mathcal{D} . From every node ξ of \mathcal{D} we issue two arrows: the left one and the right one. The left one goes to the node labeled by x^l and the right one goes to node labeled by x^r . Note that if $\xi = x \oplus y$, where x, y are consecutive elements of \mathcal{F}_n , then $\xi^l = x \oplus \xi$, $\xi^r = \xi \oplus y$.

REMARK 1. Let

$$\xi \in \mathcal{X}_n$$
 and $\xi = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_l}{a_l}\right] = x \oplus y,$

where x, y – neighboring elements of \mathcal{F}_n , S(x) < S(y). If $a_l > 2$, then

$$x \oplus \xi = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_{l-1}}{a_{l-1}}, \frac{\varepsilon_l}{a_l+1}\right] \in X_{n+1},$$
$$y \oplus \xi = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_{l-1}}{a_{l-1}}, \frac{\varepsilon_l}{a_l-1}, \frac{1}{2}\right] \in X_{n+1},$$

If $a_l = 2$, then $\varepsilon_l = 1$ and

$$x \oplus \xi = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_{l-1}}{a_{l-1}}, \frac{1}{3}\right] \in X_{n+1},$$
$$y \oplus \xi = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_{l-1}}{a_{l-1}}, \frac{\varepsilon_{l-1}}{a_{l-1} + 1}, \frac{-1}{3}\right] \in X_{n+2}.$$

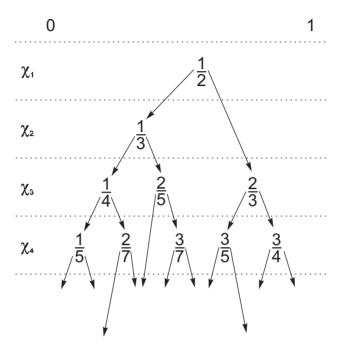


FIGURE 3.

From Remark 1 we deduce the following statement.

LEMMA 2. Let
$$\xi = \left[a_0; \frac{\varepsilon_1}{a_1}, \cdots, \frac{\varepsilon_l}{a_l}\right]$$
, then
$$D_n^{(\xi)} = \begin{cases} D_n^{(1/2)} & \text{if } a_l = 2\\ D_n^{(1/3)} & \text{if } a_l > 2. \end{cases}$$
(11)

Note that $D_n^{(1/2)}=Z_n$. For brevity we put $Y_n=D_n^{(1/3)}$. So $Y_1=1,\quad Y_2=2,\quad Y_3=3.$

For Z_n we have recurrence formula (10). It is easy to prove a similar formula for Y_n :

$$Y_{n+3} = Y_{n+2} + Y_{n+1} + Y_n + 2. (12)$$

Lemma 3. Let λ be the unique real root of the equation

$$\lambda^{3} - \lambda^{2} - \lambda - 1 = 0$$
, and $c = 1/(\lambda - 1)$. (13)

Then

$$\lim_{n\to\infty}\frac{Y_n}{Y_{n+1}}=\lim_{n\to\infty}\frac{Z_n}{Z_{n+1}}=\frac{1}{\lambda},\quad \lim_{n\to\infty}\frac{Y_n}{Z_n}=c.$$

Proof. Equation (12) can be reduced to a homogeneous one by the substitution $Y'_n = Y_n + 1$:

$$Y'_{n+3} = Y'_{n+2} + Y'_{n+1} + Y'_n.$$

The characteristic equation is

$$\lambda^3 - \lambda^2 - \lambda = 1.$$

This equation has the unique real root $\lambda \approx 1,839292$ and two complex roots λ_1, λ_2 , such that

$$|\lambda_1| = |\lambda_2| < 1.$$

So

$$Y_n + 1 = Y_n' = C_1 \lambda^n + C_2 \lambda_2^n + C_3 \lambda_3^n,$$

$$Z_n + 1 = Z_n' = D_1 \lambda^n + D_2 \lambda_2^n + D_3 \lambda_3^n$$

with certain constants C_1 , C_2 , C_3 , D_1 , D_2 , D_3 . Put $c = C_1/D_1$. From construction of the tree \mathcal{D} it is clear that

$$Z_n = Y_{n-1} + Y_{n-2} + 1.$$

Dividing both parts of this equality by Z_n and taking the limit we get

$$1 = \lim_{n \to \infty} \frac{C_1 \left(\lambda_1^{n-1} + \lambda_1^{n-2}\right) + C_2 \left(\lambda_2^{n-1} + \lambda_2^{n-2}\right) + C_3 \left(\lambda_3^{n-1} + \lambda_3^{n-2}\right) + 1}{D_1 \lambda_1^n + D_2 \lambda_2^n + D_3 \lambda_3^n + 1} = \frac{C_1 + C_1 \lambda_2}{D_1 \lambda_2^n}.$$

Since λ is the root of equation (13), we get the following relation between c and λ :

$$c = \frac{\lambda^2}{1+\lambda} = \frac{1}{\lambda-1} \approx 1,1915. \tag{14}$$

Lemma is proved.

4. Properties of the limit distribution function F(x) of sequence \mathcal{Z}_n

In this section we prove some auxiliary results about function F(x).

Lemma 4. Let x, y be consecutive elements of the sequence \mathcal{Z}_n . Then

$$F(y) - F(x) = \lim_{n \to \infty} \frac{D_{n+2-S(x \oplus y)}^{(x \oplus y)}}{D_n^{(1/2)}}.$$

Proof. Note that nodes of tree $\mathcal{D}^{(x \oplus y)}$ are labeled exactly by the numbers from the set $\{\xi \in \mathbb{Q} : x < \xi < y\}$. So

$$F(y) - F(x) = \lim_{n \to \infty} \frac{\sharp \{ \xi \in \mathcal{Z}_n : x < \xi \leqslant y \}}{Z_n} = \lim_{n \to \infty} \frac{D_{n+2-S(x \oplus y)}^{(x \oplus y)}}{D_n^{(1/2)}}.$$

Lemma 5. Let x, y be consecutive elements of Z_n , S(x) < S(y), and let a_l be the last partial quotient in continued fraction with minimal remainders representation of the number $x \oplus y$.

If $a_l = 2$, then

$$F(x \oplus y) - F(x) = \frac{c}{\lambda} \left(F(y) - F(x) \right), \tag{15}$$

$$F(x \oplus y) - F(y) = \frac{c}{\lambda^2} \left(F(x) - F(y) \right). \tag{16}$$

If $a_l > 2$, then

$$F(x \oplus y) - F(x) = \frac{1}{\lambda} \left(F(y) - F(x) \right), \tag{17}$$

$$F(x \oplus y) - F(y) = \frac{1}{c\lambda} \left(F(x) - F(y) \right). \tag{18}$$

Proof. We suppose that x < y (in case x > y the proof is similar). According to Lemma 4 one has

$$F(x \oplus y) - F(x) = \lim_{n \to \infty} \frac{D_{n+2-S((x \oplus y)^l)}^{((x \oplus y)^l)}}{D_n},$$

$$F(y) - F(x \oplus y) = \lim_{n \to \infty} \frac{D_{n+2-S((x \oplus y)^r)}^{((x \oplus y)^r)}}{D_n}.$$

By Remark 1, if $a_l = 2$, then the last partial quotients of continued fractions with minimal remainders of numbers $(x \oplus y)^l$, $(x \oplus y)^r$ are greater than 2 and

$$S((x\oplus y)^l)=S(x\oplus y)+1, \qquad S((x\oplus y)^r)=S(x\oplus y)+2.$$

So

$$\frac{F(x \oplus y) - F(x)}{F(y) - F(x \oplus y)} = \lim_{n \to \infty} \frac{D_{n+2-S((x \oplus y)^l)}^{((x \oplus y)^l)}}{D_{n+2-S((x \oplus y)^r)}^{((x \oplus y)^r)}} = \lim_{n \to \infty} \frac{Y_{n+1-S(x \oplus y)}}{Y_{n-S(x \oplus y)}} = \lambda, \quad (19)$$

i.e., $F(x \oplus y)$ divides the segment [F(x), F(y)] in the relation $\lambda : 1$. Taking into account that

$$\frac{c}{\lambda^2} + \frac{c}{\lambda} = 1$$

we get formulas (15), (16).

If $a_l > 2$, then by Remark 1 the last partial quotient of the continued fraction with minimal remainders for the number $(x \oplus y)^r$ is 2. For the number $(x \oplus y)^l$ the last partial quotient is greater than 2 and

$$S((x \oplus y)^l) = S((x \oplus y)^r) = S(x \oplus y) + 1.$$

Therefore

$$\frac{F(x \oplus y) - F(x)}{F(y) - F(x \oplus y)} = \lim_{n \to \infty} \frac{D_{n+2-S(x \oplus y)^l}^{((x \oplus y)^l)}}{D_{n+2-S(x \oplus y)^r)}^{((x \oplus y)^r)}} = \lim_{n \to \infty} \frac{Y_{n+1-S(x \oplus y)}}{Z_{n+1-S(x \oplus y)}} = c,$$
 (20)

i.e., the number $F(x \oplus y)$ divides the segment [F(x), F(y)] in the relation c:1. Taking into account that

$$\frac{1}{\lambda} + \frac{1}{c\lambda} = 1$$

we get formulas (17), (18). Lemma is proved.

Now we are able to prove Proposition 1.

Proof of Proposition 1. Suppose $x \in [0, 1/2]$. By the definition

$$F(x) = \lim_{n \to \infty} \frac{\sharp \{ \xi \in \mathcal{Z}_n : \xi \leqslant x \}}{Z_n}.$$

So

$$\lim_{n \to \infty} \frac{\sharp \left\{ \xi \in \mathcal{Z}_{n-1} : \xi \leqslant x \right\}}{Z_{n-1}} \frac{Z_{n-1}}{Z_n} = \frac{F(x)}{\lambda}.$$

Taking into account that $S(1-\xi)=1+S(\xi)$ for $\xi\in\mathbb{Q}\cap[0,1/2)$, for $x\in[0,1/2]$ we have

$$\{\xi \in \mathcal{Z}_{n-1} : \xi < x\} = \{1 - \xi = \eta \in \mathcal{Z}_n : 1 - \eta < x\} = \{\eta \in \mathcal{Z}_n : \eta > 1 - x\}.$$

So we get

$$\frac{F(x)}{\lambda} + F(1-x) = \lim_{n \to \infty} \frac{\sharp \{\xi \in \mathcal{Z}_{n-1} : \xi \leqslant x\}}{Z_n} + \lim_{n \to \infty} \frac{\sharp \{\xi \in \mathcal{Z}_n : \xi \leqslant 1 - x\}}{Z_n}$$
$$= \lim_{n \to \infty} \frac{\sharp \{\eta \in \mathcal{Z}_n : \eta > 1 - x\} \cup \{\xi \in \mathcal{Z}_n : \xi \leqslant 1 - x\}}{Z_n} = 1.$$

This equality proves formula (9).

5. Proof of Theorem 1

Let us prove the theorem for rational $x \in [0, 1/2]$ by induction on S(x). The equality

 $F(1/a_1) = \frac{c}{\lambda^{a_1 - 1}},$

follows from formula (15), since $1/a_1 = \underbrace{0 \oplus \cdots \oplus 0 \oplus}_{(a_1-1) \text{ times}} 1$.

Suppose that the formula (8) is proved for

$$x = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_m}{a_m}\right].$$

Then it is enough to prove it for

$$y = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{\varepsilon_m}{a_m + 1}\right]$$

and for

$$z = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_m}{a_m - 1}, \frac{1}{2}\right],$$
 if $a_m > 2$,
$$w = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-2}}{a_{m-2}}, \frac{\varepsilon_{m-1}}{a_{m-1} + 1}, \frac{-1}{3}\right],$$
 if $a_m = 2$.

We see that

$$y = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}\right] \oplus \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{\varepsilon_m}{a_m}\right]$$

and the last partial quotient $a_m + 1$ of continued fraction with minimal remainders expression of number y is greater than 2. From (17) and the inductive assumption we get

$$\begin{split} F(y) = & F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}\right]\right) \\ & + \frac{1}{\lambda} \left(F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_m}{a_m}\right]\right) - F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}\right]\right)\right) \\ = & F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}\right]\right) - \frac{1}{\lambda} c \lambda \frac{E_m}{\lambda^{A_m}} \\ = & F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}\right]\right) - c \lambda \frac{E_m}{\lambda^{A_{m-1} + (a_m + 1)}}. \end{split}$$

If $a_m > 2$, we must prove the formula (8) for z. We see that

$$z = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_m}{a_m}\right] \oplus \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{\varepsilon_m}{a_m - 1}\right]$$

and the last partial quotient of number z is 2. So by (15) we have

$$F(z) = F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{\varepsilon_m}{a_m - 1}\right]\right)$$

$$-\frac{c}{\lambda}\left(F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{\varepsilon_m}{a_m - 1}\right]\right) - F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_m}{a_m}\right]\right)\right)$$

$$= F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{1}{a_m}\right]\right) + \frac{c}{\lambda}c\lambda\left(\frac{E_m}{\lambda^{A_{m-1} + (a_m - 1)}} - \frac{E_m}{\lambda^{A_m}}\right)$$

$$= F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{1}{a_m}\right]\right) - c\lambda\frac{E_m(-1)}{\lambda^{A_{m-1} + (a_m - 1) + 2}}.$$

If $a_m = 2$, we must prove formula (8) for w. We see that

$$w = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{\varepsilon_m}{a_m + 1}\right] \oplus \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_m}{a_m}, \frac{1}{2}\right]$$

and the last partial quotient of number w is greater than 2. So by (17) we have

$$F(w) = F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-2}}{a_{m-2}}, \frac{\varepsilon_{m-1}}{a_{m-1} + 1}\right]\right) + \frac{1}{\lambda} \left(F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{1}{2}\right]\right) - F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-2}}{a_{m-2}}, \frac{\varepsilon_{m-1}}{a_{m-1} + 1}\right]\right)\right), \tag{21}$$

As

$$\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{1}{2}\right] = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}+1}\right] \\
\oplus \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-2}}{a_{m-2}}, \frac{\varepsilon_{m-1}}{a_{m-1}}\right],$$

by (16) we have

$$\begin{split} F\left(\left[0;\frac{1}{a_1},\frac{\varepsilon_2}{a_2},\cdots,\frac{\varepsilon_{m-1}}{a_{m-1}},\frac{1}{2}\right]\right) - F\left(\left[0;\frac{1}{a_1},\frac{\varepsilon_2}{a_2},\cdots,\frac{\varepsilon_{m-2}}{a_{m-2}},\frac{\varepsilon_{m-1}}{a_{m-1}+1}\right]\right) \\ &= \frac{c}{\lambda^2}\bigg(F\left(\left[0;\frac{1}{a_1},\frac{\varepsilon_2}{a_2},\cdots,\frac{\varepsilon_{m-1}}{a_{m-1}}\right]\right) - F\left(\left[0;\frac{1}{a_1},\frac{\varepsilon_2}{a_2},\cdots,\frac{\varepsilon_{m-2}}{a_{m-2}},\frac{\varepsilon_{m-1}}{a_{m-1}+1}\right]\right)\bigg) \\ &= -\frac{c}{\lambda^2}c\lambda E_{m-1}\left(\frac{1}{\lambda^{0\leqslant i\leqslant m-2}}\frac{1}{a_i+a_{m-1}} - \frac{1}{\lambda^{0\leqslant i\leqslant m-2}}\right) \\ &= -c\lambda E_{m-1}\frac{1}{\lambda^{0\leqslant i\leqslant m-1}}\frac{1}{a_i+3}. \end{split}$$

Substituting this result in (21), we finally get

$$F(w) = F\left(\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-2}}{a_{m-2}}, \frac{\varepsilon_{m-1}}{a_{m-1}+1}\right]\right) - c\lambda E_{m-1} \frac{1}{\lambda^{A_{m-1}+4}}.$$

So we have proven Theorem 1 for rational $x \in [0, 1/2]$. For rational $x \in (1/2, 1]$ it follows from formula (9). For irrational $x \in [0, 1]$ we should take into account the continuity of F(x).

6. Singularity of the function F(x)

In this section we prove Theorem 2. First of all let us consider the case $x \in \mathbb{Q}$.

Lemma 6. For rational $x \in [0,1]$ we have F'(x) = 0.

Let us prove that the right derivative $F'_{+}(x)$ exists and $F'_{+}(x) = 0$ (for $F'_{-}(x)$ the prove is similar).

Proof. Let x = a/b, $a, b \in \mathbb{N}$, then there exists such n that $a/b \in \mathcal{X}_n$. Denote by a'/b' the right neighboring to a/b element in \mathcal{Z}_n . Sequence of mediants $y_k = \left\{\frac{ka+a'}{kb+b'}\right\}$, converges to a/b from the right as $k \to \infty$. So for $\xi > x$ sufficiently close to x there exists such m that $x < y_{m+1} \le \xi \le y_m$ and so

$$\frac{|F(\xi) - F(a/b)|}{\xi - a/b} \leqslant \frac{F(y_m) - F(a/b)}{y_{m+1} - a/b}.$$

Remind that $a/b \in \mathcal{Z}_n$, but $a/b \notin \mathcal{Z}_{n-1}$. So S(a/b) > S(a'/b'). By Lemma 5 we see that

$$F(a/b \oplus a'/b') - F(a/b) \leqslant \max\left(\frac{c}{\lambda^2}, \frac{1}{c\lambda}\right) \left(F(a'/b') - F(a/b)\right)$$
$$= \frac{1}{c\lambda} \left(F(a'/b') - F(a/b)\right).$$

Similarly, $S\left(\frac{ka+a'}{kb+b'}\right) > S(a/b), k = 1, \dots, m-1$, and

$$F\left(\frac{(k+1)a+a'}{(k+1)b+b'}\right) - F(a/b) \leqslant \max\left(\frac{c}{\lambda}, \frac{1}{\lambda}\right) \left(F\left(\frac{ka+a'}{kb+b'}\right) - F(a/b)\right)$$
$$\leqslant \frac{c^k}{\lambda^k} \left(F(a/b \oplus a'/b') - F(a/b)\right).$$

So

$$0 \leqslant F'_{+}(x) = \lim_{\xi \to x_{+}} \frac{F(\xi) - F(x)}{\xi - x} \leqslant \lim_{m \to \infty} \frac{F(y_{m}) - F(x)}{y_{m+1} - x}$$
 (22)

$$= \lim_{m \to \infty} \frac{\frac{c^{m-1}}{\lambda^{m+1}} \left(F(a'/b') - F(a/b) \right)}{\frac{1}{((m+1)b+b')b}} = 0.$$

Let $x \notin \mathbb{Q}$. Suppose that F'(x) = a, where a is finite and $a \neq 0$. We should prove that it is not possible. We shall use the Stern-Brocot sequences \mathcal{F}_n .

Given n we can find two consecutive elements $p_n/q_n < p'_n/q'_n$ from the set \mathcal{F}_n such that $p_n/q_n < x < p'_n/q'_n$. In such a way we obtain an infinite sequence of pairs of elements $\{p_n/q_n, p'_n/q'_n\}$, converging to x from the left and from the right, respectively. So

$$\lim_{n \to \infty} \frac{F(p'_n/q'_n) - F(p_n/q_n)}{p'_n/q'_n - p_n/q_n} = a,$$

Put

$$G_n(x) = \frac{F(p'_{n+1}/q'_{n+1}) - F(p_{n+1}/q_{n+1})}{F(p'_n/q'_n) - F(p_n/q_n)} \frac{q_{n+1}q'_{n+1}}{q_nq'_n}.$$

Then

$$G_n(x) = \frac{F(p'_{n+1}/q'_{n+1}) - F(p_{n+1}/q_{n+1})}{p'_{n+1}/q'_{n+1} - p_{n+1}/q_{n+1}} \frac{p'_n/q'_n - p_n/q_n}{F(p'_n/q'_n) - F(p_n/q_n)} \xrightarrow[n \to \infty]{} 1. \quad (23)$$

It is clear that if $x \in (p_n/q_n, p_n/q_n \oplus p'_n/q'_n)$, then the pair

$$\{p_{n+1}/q_{n+1},p_{n+1}'/q_{n+1}'\}$$
 coincides with $\{p_n/q_n,p_n/q_n\oplus p_n'/q_n'\}$.

Also if $x \in (p_n/q_n \oplus p'_n/q'_n, p'_n/q'_n)$, then the pair

$$\{p_{n+1}/q_{n+1}, p'_{n+1}/q'_{n+1}\}$$
 coincides with $\{p_n/q_n \oplus p'_n/q'_n, p'_n/q'_n\}$.

Note that p_n/q_n , p'_n/q'_n are always among the intermediate and convergent fractions to x in the sense of ordinary continued fraction.

Let us show that for an irrational x one can find an infinite subsequence $\{p_{n_k}/q_{n_k},p'_{n_k}/q'_{n_k}\}$ of the sequence $\{p_n/q_n,p'_n/q'_n\}$ with the following property: the last partial quotient in the continued fraction with minimal remainders expression of $p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k}$ is equal to 2.

Let

$$x = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_m}{a_m}, \cdots\right].$$

Then either

$$p_n/q_n \oplus p'_n/q'_n = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{1}{2}\right]$$

or

$$p_n/q_n \oplus p'_n/q'_n = \left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{\varepsilon_m}{b_m}\right]$$

for some natural $m, b_m \leq a_m + 1$. In the first case the pair $\{p_n/q_n, p'_n/q'_n\}$ satisfies the necessary property.

In the other case we consider the pair

$$\{p_{n+1}/q_{n+1}, p'_{n+1}/q'_{n+1}\}$$

and for $p_{n+1}/q_{n+1} \oplus p'_{n+1}/q'_{n+1} \in \{p_{n+2}/q_{n+2}, p'_{n+2}/q'_{n+2}\}$ by Remark 1 we have two possibilities: either

$$\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{\varepsilon_m}{b_m - 1}, \frac{1}{2}\right]$$

or

$$\left[0; \frac{1}{a_1}, \frac{\varepsilon_2}{a_2}, \cdots, \frac{\varepsilon_{m-1}}{a_{m-1}}, \frac{\varepsilon_m}{b_m + 1}\right],\,$$

where $b_m + 1 \leq a_m + 1$. But the last inequality can occur only finitely many times. So for any m we can find a pair $\{p_{n_k}/q_{n_k}, p'_{n_k}/q'_{n_k}\}$ satisfying the necessary property.

In the sequel we consider such a subsequence $\{p_{n_k}/q_{n_k}, p'_{n_k}/q'_{n_k}\}$. From (23), we see that

$$\lim_{k \to \infty} G_{n_k}(x) = 1. \tag{24}$$

For a fixed k we consider following cases:

Case 1: $x \in (p_{n_k}/q_{n_k}, p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k}),$

Case 2: $x \in (p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k}, p'_{n_k}/q'_{n_k}).$

Consider Case 1. As the last partial quotient of $p_n/q_n \oplus p'_n/q'_n$ is equal to 2, Lemma 5 leads to

$$\frac{F(p'_{n_k+1}/q'_{n_k+1}) - F(p_{n_k+1}/q_{n_k+1})}{F(p'_{n_k}/q'_{n_k}) - F(p_{n_k}/q_{n_k})} = \frac{F(p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k}) - F(p_{n_k}/q_{n_k})}{F(p'_{n_k}/q'_{n_k}) - F(p_{n_k}/q_{n_k})}$$

$$= \begin{cases} \frac{c}{\lambda} & \text{if } S(p_{n_k}/q_{n_k}) < S(p'_{n_k}/q'_{n_k}). \\ \frac{c}{\lambda^2} & \text{if } S(p_{n_k}/q_{n_k}) > S(p'_{n_k}/q'_{n_k}). \end{cases} (25)$$

Then there are two possibilities:

- a) $x \in (p_{n_k}/q_{n_k}, (p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k})^l),$
- b) $x \in ((p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k})^l, p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k}),$

where

$$(p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k})^l = p_{n_k}/q_{n_k} \oplus (p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k}), (p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k})^r = (p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k}) \oplus p'_{n_k}/q'_{n_k}.$$

As the last partial quotient of $p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k}$ is equal to 2, then by Remark 1, the last partial quotients of $(p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k})^r$ and $(p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k})^l$ are not equal to 2. As $S(p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k}) > S(p_{n_k}/q_{n_k})$, we deduce from Lemma 5 that

$$\frac{F(p'_{n_k+2}/q'_{n_k+2}) - F(p_{n_k+2}/q_{n_k+2})}{F(p'_{n_k+1}/q'_{n_k+1}) - F(p_{n_k+1}/q_{n_k+1})} = \begin{cases} \frac{1}{\lambda}, & \text{in case a},\\ \frac{1}{c\lambda}, & \text{in case b}. \end{cases}$$
(26)

Consider Case 2. Analogously to the case 1 we get

$$\frac{F(p'_{n_k+1}/q'_{n_k+1}) - F(p_{n_k+1}/q_{n_k+1})}{F(p'_{n_k}/q'_{n_k}) - F(p_{n_k}/q_{n_k})} = \frac{F(p'_{n_k}/q'_{n_k}) - F(p_{n_k}/q'_{n_k})}{F(p'_{n_k}/q'_{n_k}) - F(p_{n_k}/q_{n_k})}$$

$$= \begin{cases} \frac{c}{\lambda^2} & \text{if } S(p_{n_k}/q_{n_k}) < S(p'_{n_k}/q'_{n_k}) \\ \frac{c}{\lambda} & \text{if } S(p_{n_k}/q_{n_k}) > S(p'_{n_k}/q'_{n_k}) \end{cases} (27)$$

We shall consider the following subcases:

a)
$$x \in (p_n/q_n \oplus p'_n/q'_n, (p_n/q_n \oplus p'_n/q'_n)^r),$$

b)
$$x \in ((p_n/q_n \oplus p'_n/q'_n)^r, p'_n/q'_n).$$

As $S(p_{n_k}/q_{n_k} \oplus p'_{n_k}/q'_{n_k}) > S(p'_{n_k}/q'_{n_k})$, from Lemma 5 we see that

$$\frac{F(p'_{n_k+2}/q'_{n_k+2}) - F(p_{n_k+2}/q_{n_k+2})}{F(p'_{n_k+1}/q'_{n_k+1}) - F(p_{n_k+1}/q_{n_k+1})} = \begin{cases} \frac{1}{c\lambda}, & \text{in case a}, \\ \frac{1}{\lambda}, & \text{in case b}. \end{cases}$$
(28)

As the sequence $\{p_{n_k}/q_{n_k},p'_{n_k}/q'_{n_k}\}$ is infinite, then at least one case (from the cases 1a), 1b), 2a), 2b)) will occur infinitely often. So there exists a subsequence $\{p_{n_{k_m}}/q_{n_{k_m}},p'_{n_{k_m}}/q'_{n_{k_m}}\}$ such that

$$\frac{F(p'_{n_{k_m}+1}/q'_{n_{k_m}+1}) - F(p_{n_{k_m}+1}/q_{n_{k_m}+1})}{F(p'_{n_{k_m}}/q'_{n_{k_m}}) - F(p_{n_{k_m}}/q_{n_{k_m}})} = \alpha,$$

$$\frac{F(p'_{n_{k_m}+2}/q'_{n_{k_m}+2}) - F(p_{n_{k_m}+2}/q_{n_{k_m}+2})}{F(p'_{n_{k_m}+1}/q'_{n_{k_m}+1}) - F(p_{n_{k_m}+1}/q_{n_{k_m}+1})} = \beta,$$

where α – is one of the numbers $\frac{c}{\lambda}$, $\frac{c}{\lambda^2}$, and β – is one of the numbers $\frac{1}{\lambda}$, $\frac{1}{c\lambda}$. Now

$$G_{n_{k_m}}(x) = \alpha \frac{q_{n_{k_m}+1} q'_{n_{k_m}+1}}{q_{n_{k_m}} q'_{n_{k_m}}}, \qquad G_{n_{k_m}+1}(x) = \beta \frac{q_{n_{k_m}+2} q'_{n_{k_m}+2}}{q_{n_{k_m}+1} q'_{n_{k_m}+1}}.$$

From (24) we see that

$$\lim_{m \to \infty} \frac{q_{n_{k_m}} q'_{n_{k_m}}}{q_{n_{k_m}+1} q'_{n_{k_m}+1}} = \alpha, \qquad \lim_{m \to \infty} \frac{q_{n_{k_m}+1} q'_{n_{k_m}+1}}{q_{n_{k_m}+2} q'_{n_{k_m}+2}} = \beta.$$
 (29)

Now we must show that (29) is not possible. To do this we distinguish the cases again.

1,a) In this case

$$\begin{split} \left\{ p_{n_{k_m}+1}/q_{n_{k_m}+1}, p'_{n_{k_m}+1}/q'_{n_{k_m}+1} \right\} = \\ \left\{ p_{n_{k_m}}/q_{n_{k_m}}, \left(p_{n_{k_m}} + p'_{n_{k_m}} right \right) / \left(q_{n_{k_m}} + q'_{n_{k_m}} \right) \right\}, \end{split}$$

$$\left\{ p_{n_{k_m}+2}/q_{n_{k_m}+2}, p'_{n_{k_m}+2}/q'_{n_{k_m}+2} \right\} = \left\{ p_{n_{k_m}}/q_{n_{k_m}}, \left(2p_{n_{k_m}} + p'_{n_{k_m}}\right) / \left(2q_{n_{k_m}} + q'_{n_{k_m}}\right) \right\}.$$

Now (29) leads to

$$\lim_{m \to \infty} \frac{q'_{n_{k_m}}}{q_{n_{k_m}} + q'_{n_{k_m}}} = \alpha, \qquad \lim_{m \to \infty} \frac{q_{n_{k_m}} + q'_{n_{k_m}}}{2q_{n_{k_m}} + q'_{n_{k_m}}} = \beta,$$

where by (25) and (26) one has

$$\beta = \frac{1}{\lambda}, \quad \alpha = \frac{c}{\lambda} \quad \text{for } S\left(p_{n_{k_m}}/q_{n_{k_m}}\right) < S\left(p'_{n_{k_m}}/q'_{n_{k_m}}\right),$$

and

$$\alpha = \frac{c}{\lambda^2}$$
 for $S\left(p_{n_{k_m}}/q_{n_{k_m}}\right) > S\left(p'_{n_{k_m}}/q'_{n_{k_m}}\right)$.

Note that

$$\frac{2q_{n_{k_m}} + q'_{n_{k_m}}}{q_{n_{k_m}} + q'_{n_{k_m}}} = 2 - \frac{q'_{n_{k_m}}}{q_{n_{k_m}} + q'_{n_{k_m}}}.$$

So we have

$$\frac{1}{\beta} = 2 - \alpha.$$

For $\beta = \frac{1}{\lambda}$, $\alpha = \frac{c}{\lambda}$ we get

$$\lambda^2 - 2 = 0.$$

For $\beta = \frac{1}{\lambda}$, $\alpha = \frac{c}{\lambda^2}$ we get

$$\lambda^2 - \lambda - 1 = 0.$$

In both cases we have a contradiction with the fact that λ is a root of equation (13).

1,b) In this case

$$\begin{split} \left\{p_{n_{k_m}+1}/q_{n_{k_m}+1}, p'_{n_{k_m}+1}/q'_{n_{k_m}+1}\right\} = \\ \left\{p_{n_{k_m}}/q_{n_{k_m}}, (p_{n_{k_m}} + p'_{n_{k_m}})/(q_{n_{k_m}} + q'_{n_{k_m}})\right\}, \end{split}$$

$$\left\{ p_{n_{k_m}+2}/q_{n_{k_m}+2}, p'_{n_{k_m}+2}/q'_{n_{k_m}+2} \right\} = \\ \left\{ \left(2p_{n_{k_m}} + p'_{n_{k_m}} \right) / \left(2q_{n_{k_m}} + q'_{n_{k_m}} \right), \left(p_{n_{k_m}} + p'_{n_{k_m}} \right) / \left(q_{n_{k_m}} + q'_{n_{k_m}} \right) \right\},$$

Now (29) leads to

$$\lim_{m \to \infty} \frac{q'_{n_{k_m}}}{q_{n_{k_m}} + q'_{n_{k_m}}} = \alpha, \quad \lim_{m \to \infty} \frac{q_{n_{k_m}}}{2q_{n_{k_m}} + q'_{n_{k_m}}} = \beta,$$

where by (25) and (26) one has

$$\beta = \frac{1}{c\lambda}, \quad \alpha = \frac{c}{\lambda} \quad \text{for } S\left(p_{n_{k_m}}/q_{n_{k_m}}\right) < S\left(p'_{n_{k_m}}/q'_{n_{k_m}}\right),$$

and

$$\alpha = \frac{c}{\lambda^2} \text{ for } S\left(p_{n_{k_m}}/q_{n_{k_m}}\right) > S\left(p'_{n_{k_m}}/q'_{n_{k_m}}\right).$$

Note that

$$\frac{2q_{n_{k_m}} + q'_{n_{k_m}}}{q_{n_{k_m}}} = 1 + \frac{q_{n_{k_m}} + q'_{n_{k_m}}}{q_{n_{k_m}}} = 1 + \frac{1}{1 - \frac{q'_{n_{k_m}}}{q_{n_{k_m}} + q'_{n_k}}}.$$

So we have

$$\frac{1}{\beta} = 1 + \frac{1}{1 - \alpha}.$$

For $\beta = \frac{1}{c\lambda}$, $\alpha = \frac{c}{\lambda}$ we get

$$\lambda^2 - 2 = 0.$$

For
$$\beta = \frac{1}{c\lambda}$$
, $\alpha = \frac{c}{\lambda^2}$

$$\lambda^2 - \lambda - 1 = 0.$$

Again in both cases we have the contradiction with the fact that λ is a root of equation (13).

2,a) In this case

$$\begin{split} \left\{ p_{n_{km}+1}/q_{n_{km}+1}, p'_{n_{km}+1}/q'_{n_{km}+1} \right\} = \\ \left\{ \left(p_{n_{km}} + p'_{n_{km}} \right) / \left(q_{n_{km}} + q'_{n_{km}} \right), p'_{n_{km}}/q'_{n_{km}} \right\}, \end{split}$$

$$\left\{ p_{n_{k_m}+2}/q_{n_{k_m}+2}, p'_{n_{k_m}+2}/q'_{n_{k_m}+2} \right\} = \\ \left\{ \left(p_{n_{k_m}} + p'_{n_{k_m}} \right) / \left(q_{n_{k_m}} + q'_{n_{k_m}} \right), \left(p_{n_{k_m}} + 2p'_{n_{k_m}} \right) / \left(q_{n_{k_m}} + 2q'_{n_{k_m}} \right) \right\}.$$

So (29) leads to

$$\lim_{m\to\infty}\frac{q_{n_{k_m}}}{q_{n_{k_m}}+q'_{n_{k_m}}}=\alpha,\qquad \lim_{m\to\infty}\frac{q'_{n_{k_m}}}{q_{n_{k_m}}+2q'_{n_{k_m}}}=\beta,$$

where by (27) and (28) one has

$$\beta = \frac{1}{c\lambda}, \quad \alpha = \frac{c}{\lambda^2} \quad \text{for} \quad S\left(p_{n_{k_m}}/q_{n_{k_m}}\right) < S(p'_{n_{k_m}}/q'_{n_{k_m}}),$$

and

$$\alpha = \frac{c}{\lambda}$$
 for $S\left(p_{n_{k_m}}/q_{n_{k_m}}\right) > S\left(p'_{n_{k_m}}/q'_{n_{k_m}}\right)$.

Note that

$$\frac{q_{n_{k_m}} + 2q'_{n_{k_m}}}{q'_{n_{k_m}}} = 1 + \frac{q_{n_{k_m}} + q'_{n_{k_m}}}{q'_{n_{k_m}}} = 1 + \frac{1}{1 - \frac{q_{n_{k_m}}}{q_{n_{k_m}} + q'_{n_{k_m}}}}.$$

So we have

$$\frac{1}{\beta} = 1 + \frac{1}{1 - \alpha},$$

and this case is reduced to the case 1,b).

2,b) In this case

$$\begin{split} \left\{ p_{n_{km}+1}/q_{n_{km}+1}, p'_{n_{km}+1}/q'_{n_{km}+1} \right\} = \\ \left\{ \left(p_{n_{km}} + p'_{n_{km}} \right) / \left(q_{n_{km}} + q'_{n_{km}} \right), p'_{n_{km}}/q'_{n_{km}} \right\}, \end{split}$$

$$\begin{aligned} \left\{ p_{n_{km}+2}/q_{n_{km}+2}, p'_{n_{km}+2}/q'_{n_{km}+2} \right\} = \\ \left\{ \left(p_{n_{km}} + 2p'_{n_{km}} \right) / \left(q_{n_{km}} + 2q'_{n_{km}} \right), p'_{n_{km}}/q'_{n_{km}} \right\}. \end{aligned}$$

Now (29) leads to

$$\lim_{m \to \infty} \frac{q_{n_{k_m}}}{q_{n_{k_m}} + q'_{n_{k_m}}} = \alpha, \quad \lim_{m \to \infty} \frac{q_{n_{k_m}} + q'_{n_{k_m}}}{q_{n_{k_m}} + 2q'_{n_{k_m}}} = \beta,$$

where by (27) and (28) one has

$$\beta = \frac{1}{\lambda}, \quad \alpha = \frac{c}{\lambda^2} \quad \text{for} \quad S(p_{n_{k_m}}/q_{n_{k_m}}) < S(p'_{n_{k_m}}/q'_{n_{k_m}}),$$

and

$$\alpha = \frac{c}{\lambda} \text{ for } S\left(p_{n_{k_m}}/q_{n_{k_m}}\right) > S\left(p'_{n_{k_m}}/q'_{n_{k_m}}\right).$$

Note that

$$\frac{q_{n_{k_m}} + 2q'_{n_{k_m}}}{q_{n_{k_m}} + q'_{n_{k_m}}} = 2 - \frac{q_{n_{k_m}}}{q_{n_{k_m}} + q'_{n_{k_m}}}.$$

So we have

$$\frac{1}{\beta} = 2 - \alpha,$$

and we have the same situation as in the case 1,a).

Theorem 2 is proved.

REFERENCES

- DENJOY, A.: Sur une fonction réele de Minkowski, J. Math. Pures Appl., Sér. 17 (1938), 105–151.
- [2] DUSHISTOVA, A.A. KAN, I.D. MOSHCHEVITIN, N.G.: Differentiability of the Minkowski question mark function; preprint available at arXiv:0903.5537v1 (2009).
- [3] FINKEL'SHTEIN, YU.YU.: Klein polygons and reduced regular continued fractions, Russian Math. Surveys 48 (1993), no. 3, 198–200.
- [4] JABITSKAYA, E.N.: On arithmetical nature of Tichy-Uitz's function, Functiones et Approximatio (to appear); preprint available at arXiv:0909.1273v2 (2009).
- [5] ZHABITSKAYA, E.N.: The average length of reduced regular continued fractions, Sb. Math. 200 (2009), no. 8, 1181–1214; translation from Mat. Sb. 200 (2009), no. 8, 79–110.
- [6] PERRON, O.: Die Lehre von den Kettenbruchen. Bd.I.. Elementare Kettenbrche.
 B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954.
- [7] SALEM, R.: On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. **53** (1943), 427–439.
- [8] TICHY, R.F. UITZ, J.: An extension of Minkowski's singular function, Appl. Math. Lett., 8 (1995), no. 5, 39–46.
- [9] USTINOV, A.V.: Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm, Izv. Math. **72** (2008), no. 5, 1023–1059; translation from Izv. Ross. Akad. Nauk, Ser. Mat. **72**, (2008), no. 5, 189-224.
- [10] USTINOV, A.V.: The mean number of steps in the Euclidean algorithm with least absolute value remainders, Math. Notes 85, (2009), no. 1, 142–145.
- [11] VALLEE, B.: A unifying framework for the analysis of class of Euclidean algorithms, (Gastn H. Gonnet, ed. et al.) in: Theoretical Informatics (4th Latin American symposium, Punta del Este, Uruguay, April 10–14, 2000) Lecture Notes in Comput. Sci., Vol. 1776, Springer-Verlag, Berlin, 2000, pp. 343–354.
- [12] VALLEE, B.: Dynamical analysis of a class of Euclidean algorithms, in: Latin American theoretical informatics (Punta del Este, 2000), Theoret. Comput. Sci. **297** (2003), no. 1–3, pp. 447–486.

- [13] VALLEE, B. BALADI, V.: Euclidean algorithms are Gaussian, J. Number Theory **110** (2005), no. 2, 331–386.
- [14] VIADER, P. PARADIS, J. BIBILONI, L.: A new light of Minkowski's ?(x) function, J. Number Theory **73** (1998), no. 2, 212–227.

Received February 12, 2010 Accepted March 29, 2010

Elena Zhabitskaya

Department of Number Theory
Faculty of Mechanics and Mathematics
Lomonosov Moscow State University
Vorobiovy Gory
Moscow 119991
RUSSIA

 $E ext{-}mail$: elena.jabitskaya@gmail.com