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EXPONENTIAL SUMS AND LINEAR COMPLEXITY

OF NONLINEAR PSEUDORANDOM NUMBER

GENERATORS WITH POLYNOMIALS OF SMALL

p-WEIGHT DEGREE

Álvar Ibeas — Arne Winterhof

ABSTRACT. For a class of polynomials f(X) of small p-weight degree over a
finite field of characteristic p we improve the general bounds on exponential sums
and linear complexity of nonlinear pseudorandom number generators defined by
µn+1 = f(µn), n = 0, 1, . . . with some initial value µ0. This extends the class of
polynomials where a nontrivial exponential sum bound is known. From the bound

on exponential sums we derive discrepancy bounds for nonlinear pseudorandom
vectors.
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1. Introduction

Let p be a prime, r a positive integer, q = pr and denote by Fq the finite
field of q elements. Given a polynomial f(X) ∈ Fq[X] of degree d ≥ 2, we define
the nonlinear pseudorandom number generator (µn) of elements of Fq by the
recurrence relation

µn+1 = f(µn), n = 0, 1, . . . (1)

with some initial value µ0 ∈ Fq. This sequence is eventually periodic with some
period T ≤ q. We assume that the sequence (µn) is purely periodic.
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ÁLVAR IBEAS — ARNE WINTERHOF

In [20, 25] a method has been presented to study the exponential sums

Sa,N (f) =

N−1∑

n=0

χ




s−1∑

j=0

αjµn+j


 , 1 ≤ N ≤ T,

and thus the distribution of such sequences for arbitrary polynomials f(X),
where χ is a nontrivial additive character of Fq and a = (α0, . . . , αs−1) ∈ Fs

q \ 0,
see also the recent surveys [17, 23, 24, 30]. Unfortunately, in general this method
leads only to a nontrivial bound if d = qo(1). More precisely, under some necessary
restrictions, say gcd(d, p) = 1, we can prove:

Sa,N (f) ≪ N

(
log

2q

N

)1/2
(log d)1/2

/
(log q)1/2, 1 ≤ N ≤ T, (2)

where A ≪ B is equivalent to the assertion that the inequality |A| ≤ cB holds
for some constant c > 0 depending only on s.

However, in the special case of inversive generators this method leads to
much stronger bounds [10, 19, 21, 22]. For other special classes of polynomi-
als, namely for monomials and Dickson polynomials, an alternative approach,
producing much stronger bounds has been proposed in [3, 4, 6]. Related results
for sequences produced by Rédei functions are obtained in [12]. Moreover, we
mention that certain multivariate polynomial systems with slow degree growth
[26] admit stronger exponential sum bounds than in the general case of higher
order nonlinear recurrences [8, 9].

For a nonnegative integer n, we define its p-weight as the sum of the coeffi-
cients in its p-adic expansion:

σp

(
l∑

i=0

nip
i

)
=

l∑

i=0

ni if 0 ≤ ni < p .

Let 0 ≤ e1 < e2 < · · · < el be integers and f(X) =
∑l

i=1 γiX
ei ∈ Fq[X] be a

nonzero polynomial over a finite field Fq, with γi 6= 0, i = 1, . . . , l. We define its
p-weight degree as

wp (f) = max{σp (ei) | 1 ≤ i ≤ l}.

Therefore, wp (f) ≤ deg(f). Our first result is the following complement of (2)
in the case that

f(X) = αXd + f̃(X) ∈ Fq[X] with α 6= 0, wp

(
f̃
)
< σp (d) , d ≥ 2, (3)

and

gcd

(
d,

q − 1

p− 1

)
≤ σp(d)

r. (4)
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EXPONENTIAL SUMS AND LINEAR COMPLEXITY OF PSEUDORANDOM GENERATORSTheorem 1. If the sequence (µn) given by (1) with a polynomial f(X) ∈ Fq[X]
of the form (3) satisfying (4) is purely periodic with period T, then

Sa,N (f) ≪ N

(
log

2q

N

)1/2
(logw)1/2

/
(log p)1/2, 1 ≤ N ≤ T, a 6= 0,

where w = σp (d) > 1 is the p-weight degree of f(X) and the implied constant
depends only on s.

This result is proved in Section 3 with a weaker condition than (4). Theorem 1
improves (2) for polynomials satisfying (3) and (4) if and only if wr< deg(f).

We derive from the sequence (µn) defined by (1) a nonlinear method for
pseudorandom vector generation defined as follows.
Let {β1, . . . , βr} be an ordered basis of Fq over Fp and identify Fp with the set
of integers {0, 1, . . . , p− 1}. If

µn = un,1β1 + . . .+ un,rβr, with un,i ∈ Fp,

then we derive digital nonlinear pseudorandom vectors by

zn =
1

p
(un,1, . . . , un,r) ∈ [0, 1)r. (5)

In Section 4 we derive from Theorem 1 results on the distribution of sequences
of digital nonlinear pseudorandom vectors in terms of a discrepancy bound.

We can also derive from the sequence (µn) defined by (1) a nonlinear method
for pseudorandom number generation. We derive digital nonlinear pseudorandom
numbers in the unit interval [0, 1) by putting

yn =

r∑

j=1

un,jp
−j .

However, we are not aware of a suitable general discrepancy bound which re-
duces the discrepancy to the exponential sums studied in this paper which is
strong enough to obtain a nontrivial discrepancy bound. For example, the bound
of [16, Theorem 3.12], see also [13], is too weak.

We also use the p-weight to bound the Nth linear complexity of the sequence
defined in (1). For N ≥ 1 the Nth linear complexity of a sequence is the smallest
possible order of a linear feedback shift register (LFSR) that generates the first N
sequence elements. More explicitly, for a sequence (µn) over Fq, its Nth linear
complexity L(µn, N) over Fq is the smallest integer L such that there exist
α0, . . . , αL−1 ∈ Fq such that

µn+L = αL−1µn+L−1 + . . .+ α0µn for 0 ≤ n < N − L
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with the conventions that

L(µn, N) = 0 if µ0 = · · · = µN−1 = 0 and L(µn, N) = N

if µ0 = · · · = µN−2 = 0 but µN−1 6= 0.

Its linear complexity is L(µn) = supN≥1 L(µn, N). Note that for a T -periodic
sequence we have L(µn) ≤ T. The linear complexity is a measure for the un-
predictability and thus suitability in cryptography. For recent surveys on linear
complexity and related measures see [18, 32].

For the sequence (µn) defined in (1) we know the lower bound

L(µn, N) ≥
min{log(N − logN/ log d), log T}

log d
, N ≥ 1

of [11, Theorem 4]. Specially tailored results have been proved for the inversive
generator [11], power generator [7, 28], Dickson generator [1] and Rédei genera-
tor [15]. The linear complexities of nonlinear pseudorandom number generators
of higher order and with multivariate polynomial systems have been analyzed
in [29] and [27].

In Section 5 we prove the following improvement in a slightly more general
form.Theorem 2. If the sequence (µn) given by (1) with a polynomial f(X) ∈ Fq[X]
of the form (3) satisfying

gcd

(
d,

q − 1

p− 1

)
≤ σp(d)

r/2, (6)

with p-weight degree w = σp(d) > 1 is purely periodic with period T, then for
N ≥ 2pr−1 log p/ logw,

L(µn, N) ≥
log(min{N, T}/pr−1)− 1

logw
.

Note that this result is only an improvement of the result of [11] if

wp(f) < deg(f)1/r.

2. Basics

In this section we fix some notation and collect some results on the p-weight
degree of a polynomial.

If g(X) ∈ Fq[X] and {β1, . . . , βr} is a fixed ordered Fp-basis of Fq, we define

G(X1, . . . , Xr) = Tr
(
g(X1β1 + . . .+Xrβr)

)
,
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EXPONENTIAL SUMS AND LINEAR COMPLEXITY OF PSEUDORANDOM GENERATORS

where Tr(X) = X +Xp + . . .+Xpr−1

is the absolute trace function of Fq. Then
the transformed polynomial GR(X1, . . . , Xr) of g(X) is the unique polynomial
with all local degrees smaller than p such that GR(x1, . . . , xr) = G(x1, . . . , xr)
for all x1, . . . , xr ∈ Fp or equivalently

GR(X1, . . . , Xr) ≡ G(X1, . . . , Xr) mod (Xp
1 −X1, . . . , X

p
r −Xr).

The interest of this construction relies on the fact that, under certain assump-
tions, the total degree of GR(X1, . . . , Xr) coincides with the p-weight degree
of g(X).

We consider the following property of a positive integer D < q = pr:

For all t | r with t < r we have
q − 1

pt − 1
∤ D. (7)

Note that (7) is equivalent to Fq = Fp

(
γD
)
for some γ ∈ Fq, see, for exam-

ple, [31].

In particular,

gcd

(
D,

q − 1

p− 1

)
≤ q1/2

implies (7). We will use the following result, which is proved in [5] in a slightly
weaker form. We add its proof for the convenience of the reader.Lemma 3. Let f(X) ∈ Fq[X] be of the form (3) with D = d < q satisfying (7).
Then the degree of the transformed polynomial FR(X1, . . . , Xr) equals wp (f).

P r o o f. First we show that (7) implies the existence of ξ ∈ Fq with Tr(αξd) 6= 0.

If
Tr(αξd) = 0 for all ξ ∈ Fq,

we have

Tr
(
α
(
j1ξ

d
1 + . . .+ jrξ

d
r

))
= 0 for all j1, . . . , jr ∈ Fp, ξ1, . . . , ξr ∈ Fq.

Since Tr(X) has exactly q/p zeros and α 6= 0, there is no Fp-basis of Fq consisting
of dth powers and thus Fp(ξ

d) 6= Fq for all ξ ∈ Fq in contradiction to (7).
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Next we show that either the total degree of f(X1, . . . , Xr) ≡ Tr(α(X1β1+ . . .
. . . + Xrβr)

d) mod (Xp
1 − 1, . . . , Xp

r − 1) is σp(d) or f(X1, . . . , Xr) is identi-
cally zero. For d = d1 + d2p+ . . .+ drp

r−1 with 0 ≤ d1, . . . , dr < p we have

f(X1, . . . , Xr)

≡ Tr

(
α(X1β1 + . . .+Xrβr)

d1 · · ·
(
X1β

pr−1

1 + . . .+Xrβ
pr−1

r

)dr

)

≡
∑

i1,j+...+ir,j=dj

j=1,...,r




r∏

j=1

(
dj

i1,j, . . . , ir,j

)
X

i1,1+...+i1,r
1 · · ·Xir,1+...+ir,r

r

Tr


α

r∏

j=1

β
ij,1+ij,2p+...+ij,rp

r−1

j


 mod (Xp

1 −X1, . . . , X
p
r −Xr).

This polynomial is either identical zero or homogeneous of total degree d1 + . . .
. . . + dr = σp (d). Since Tr(αXd) is not identically zero by (7) its degree is
σp (d) = wp (f). �

Note that condition (7) is the weakest possible restriction which depends
only on d and not on α. If (7) is not satisfied, all dth powers fall into a proper
subfield Fps of Fq. If the relative trace from Fq to Fps of α is zero, then Tr(αXd)
is identically zero.

We also need a result derived from the multivariate Weil bound on exponential
sums.Lemma 4. Let χ be a nontrivial additive character of Fq and f(X) ∈ Fq[X] be
of the form (3) satisfying (7) for D = d < q. Then,

∣∣∣∣∣∣

∑

ξ∈Fq

χ
(
f(ξ)

)
∣∣∣∣∣∣
≤
(
wp (f)− 1

)
pr−1/2.

P r o o f. By (7) the transformed polynomial FR(X1, . . . , Xr) of f(X) is not con-
stant and has degree wp(f). Hence, we get for some nontrivial additive character
χ1 of Fp

∣∣∣∣∣∣

∑

ξ∈Fq

χ
(
f(ξ)

)
∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

x1,...,xr∈Fp

χ1

(
FR(x1, . . . , xr)

)
∣∣∣∣∣∣
≤
(
wp (f)− 1

)
pr−1/2

by the multivariate Weil-bound. �
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It is easy to check that, as the usual degree function, the p-weight degree
satisfies

wp (f + g) ≤ max
{
wp (f) , wp (g)

}
. (8)

For the product and composition, however, we only have:Lemma 5. For f, g ∈ Fq[X] we have

wp (fg mod Xq −X) ≤ wp (fg) ≤ wp (f) + wp (g)

and

wp (f ◦ g mod Xq −X) ≤ wp (f ◦ g) ≤ wp (f)wp (g) .

P r o o f. Note that wp (f mod Xq −X) ≤ wp (f).

The first statement derives from σp (n+m) ≤ σp (n) + σp (m).

For the second one we may assume f(X) = Xd by (8) with d = d0+d1p+ . . .
. . .+ dlp

l, 0 ≤ d0, . . . , dl < p. Then we have

f ◦ g =

l∏

j=0

(
gp

j
)dj

and

wp (f ◦ g)≤

l∑

j=0

djwp

(
gp

j
)
=

l∑

j=0

djwp (g) = wp (f)wp (g)

which completes the proof. �

For a given polynomial f(X) ∈ Fq[X] we define the sequence of polynomials
fk(X) ∈ Fq[X] by

f0(X) = X, fk(X) ≡ f(fk−1(X)) mod Xq −X, k = 1, 2, . . . ,

where deg(fk) < q.Lemma 6. Let f(X) ∈ Fq[X] be of the form (3). If σp(d)
k < p, then we have

fk(X) = α(dk−1)/(d−1)Xdk mod (q−1) + f̃k(X)

with

wp

(
f̃k

)
< wp (fk) = σp (d)

k
and deg

(
f̃k

)
< q,

where dk mod (q − 1) denotes the unique integer 0 ≤ z < q − 1 such that q − 1
divides dk − z.

P r o o f. Let d = d0 + d1p+ . . .+ dlp
l with 0 ≤ di < p. The inequality

∑

v1+...+vl=k

(
k

v1, . . . , vl

)
dv1

0 · · · dvl

l = σp (d)
k
< p
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implies σp

(
dk
)
= σp (d)

k
. The result is trivial for k = 0 and by induction we see

fk(X) ≡ α
(
α(dk−1−1)/(d−1)Xdk−1

+ f̃k−1(X)
)d
+ f̃(fk−1(X)) mod Xq −X.

By Lemma 5 we have wp

(
f̃ ◦ fk−1

)
< σp (d)σp

(
dk−1

)
= σp (d)

k. The first

summand is of the form

α(dk−1)/(d−1)Xdk

+
d∑

j=1

(
d

j

)(
AXdk−1

)d−j

f̃k−1(X)j.

If j = j0 + j1p+ . . .+ jlp
l with 0 ≤ ji < p, by Lucas congruence
(
d

j

)
≡

(
d0
j0

)
· · ·

(
dl
jl

)
mod p ,

we have
(
d
j

)
≡ 0 mod p if ji > di for some 0 ≤ i ≤ l. In the remaining cases we

have σp (d− j) = d0 − j0 + . . .+ dl − jl and thus

wp

((
AXdk−1

)d−j

f̃k−1(X)j
)
≤σp (d− j)σp

(
dk−1

)
+ wp

(
f̃k−1

)
σp (j) < σp (d)

k

by Lemma 5 again. �

3. Exponential sums

In this section we prove Theorem 1. Indeed, condition (4) can be substituted
by (7) on a certain power of the degree.Theorem 7. Let K0 ≥ s − 1 be the largest integer such that D = dK0 satis-
fies (7). If the sequence (µn) given by (1) with a polynomial f(X) ∈ Fq[X] of
the form (3) is purely periodic with period (T), then for any a ∈ Fs

q\{0} and
1 ≤ N ≤ T,

Sa,N (f) ≪ N

(
log

2q

N

)1/2
max

{
(logw)1/2

/
(log p)1/2, 1

/
K

1/2
0

}
,

where w = σp (d) > 1 is the p-weight degree of f(X) and the implied constant
depends only on s.

P r o o f. We proceed as in [25]. We have, for every k ≥ 0
∣∣∣∣∣∣
Sa,N (f)−

N−1∑

n=0

χ




s−1∑

j=0

αjµn+k+j




∣∣∣∣∣∣
≤ 2k.
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Therefore, setting

W =

∣∣∣∣∣∣

N−1∑

n=0

K−1∑

k=0

χ




s−1∑

j=0

αjµn+k+j




∣∣∣∣∣∣
,

we have K|S| ≤ W +K2. Now, using the Hölder inequality and the notation

Fk1,...,k2ν
=

s−1∑

j=0

αj

(
fk1+j + . . .+ fkν+j − fkν+1+j − . . .− fk2ν+j

)
,

we get

W 2ν ≤ N2ν−1
N−1∑

n=0

∣∣∣∣∣∣

K−1∑

k=0

χ




s−1∑

j=0

αjµn+k+j




∣∣∣∣∣∣

2ν

≤ N2ν−1
∑

x∈Fq

∣∣∣∣∣∣

K−1∑

k=0

χ




s−1∑

j=0

αjfk+j(x)




∣∣∣∣∣∣

2ν

= N2ν−1
K−1∑

k1,...,k2ν=0

∑

x∈Fq

χ
(
Fk1,...,k2ν

(x)
)
.

(9)

If the multisets (sets where elements are counted with multiplicity)

{k1, . . . , kν} and {kν+1, . . . , k2ν}

coincide, the sum over Fq in (9) equals q. This happens in at most ν!Kν ≤
(νK)ν choices of indices k1, . . . , k2ν . For the remaining at most K2ν choices of
{k1, . . . , k2ν} by Lemma 6 every polynomial fk+j(X) is of the form (3) with
degree

dk+j mod q − 1 and wp (fk+j) = wk+j.

Moreover, as wK+s−2 < p if p is sufficiently large, Fk1+j,...,k2ν+j is of the form (3)
and its degree satisfies (7) as well. Using Lemma 4, the character sum of (9) is
bounded by wK+s−2pr−1/2 and we get

W 2ν ≤ ννKνqN2ν−1 +K2νN2ν−1wK+s−2pr−1/2.

Choosing

K = min

{⌈
0.4

log p

logw

⌉
,
⌊
νp1/(11ν)

⌋
, K0 − s− 2

}
,

the first term dominates the second and we get

Sa,N (f) ≪ ν1/2K−1/2N(q/N)1/2ν.
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With
ν =

⌊
log

q

N

⌋
+ 1

we get (q/N)1/2ν = O(1) and νp1/(11ν) ≫ log p and the result follows. �

For the choice

K0 = ⌈0.4 log p/ logw⌉+ s− 2

note that (4) implies for sufficiently large p,

gcd

(
d,

q − 1

p− 1

)K0

≤ gcd

(
d,

q − 1

p− 1

)0.5 log p/ logw

≤ q1/2

and D = dK0 satisfies (7).

4. Discrepancy bound

We measure the distribution or statistical independence properties of pseu-
dorandom vectors in terms of the discrepancy. Given a sequence (zn) of digital
nonlinear pseudorandom vectors defined by (5) and an integer s ≥ 1, we consider
the rs-dimensional points

vn = (zn, zn+1, . . . , zn+s−1) ∈ [0, 1)rs, n = 0, 1, . . . (10)

Then for any N with 1 ≤ N ≤ T we define the discrepancy

Drs(N) = sup
B⊆[0,1)rs

∣∣∣∣
N(B)

N
− V (B)

∣∣∣∣ ,

where N(B) denotes the number of points vn with 0 ≤ n ≤ N − 1 which hit the
box

B = [a1, b1)× · · · × [ars, brs) ⊆ [0, 1)rs,

taking the supremum over all such boxes, and V (B) is the volume of B.Theorem 8. Let the sequence (µn) given by (1) with a polynomial f(X) ∈ Fq[X]
of the form (3) satisfying (4) of weighted degree w = σp(d) > 1 be purely periodic
with period T.
For any sequence of rs-dimensional digital nonlinear vectors vn defined by (10)
and (5), for any s ≥ 1, and for any 1 ≤ N ≤ T the discrepancy Drs(N) satisfies

Drs(N) ≪

(
3

2

)rs(
log

2q

N

)1/2
(logw)1/2(log log p)rs/(log p)1/2,

where the implied constant depends only on s.
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P r o o f. Using the Erdős-Turán-Koksma inequality, see [2, Theorem 1.21], we
get for 1 < H < p ,

Drs(N) ≪

(
3

2

)rs(
1

H
+ (logH)rs max

a6=0

∣∣SN (a)
∣∣
)
,

where

SN (a) =

N−1∑

n=0

exp(2πia · vn)

and the dot denotes the standard inner product. For fixed a 6= 0 we write
a = (a0, . . . , as−1) with ai ∈ Fq for 0 ≤ i ≤ s− 1, where not all ai are 0. Then
we have

SN (a) =

N−1∑

n=0

exp


2πi

p

s−1∑

i=0

r∑

j=1

aijun+i,j


 ,

where ai = (ai1, . . . , air) for 0 ≤ i ≤ s− 1 and aij ∈ Fp.
Let {δ1, . . . , δr} be the dual basis of the given ordered basis {β1, . . . , βr}. Then
we have (see [14, p. 55]),

un,j = Tr(δjµn), 1 ≤ j ≤ r, n = 0, 1, . . .

Therefore,

SN (a) =

N−1∑

n=0

exp


2πi

p

s−1∑

i=0

r∑

j=1

aijTr(δjµn+i)




N−1∑

n=0

exp


2πi

p
Tr




s−1∑

i=0

r∑

j=1

aijδjµn+i






=

N−1∑

n=0

χ

(
s−1∑

i=0

αiµn+i

)
,

where χ is the additive canonical character of Fq and αi =
∑r

j=1 aijδj. Since not

all ai are zero and {δ1, . . . , δr} is a basis, it follows that not all αi are 0. Hence
we may apply Theorem 1. Choosing

H =

⌈(
log p

log(2q/N)

)1/2⌉

we get the result. �
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5. Linear complexity

In this section we use the transformed polynomial considered in Section 2 to
prove a general bound for the linear complexity of (1).Theorem 9. Let L0 ≥ 1 be the largest integer such that D = dL0−1 satisfies (7).
If the sequence (µn) given by (1) with a polynomial f(X) ∈ Fq[X] of the form (3)
and with p-weight degree w = σp(d) > 1, is purely periodic with period T, then
for N ≥ 2pr−1 log p/ logw,

L(µn, N) ≥ min

{
log
(
min{N, T}/pr−1

)
− 1

logw
,L0

}
.

P r o o f. Put L = L(µn, N). Since otherwise the result is trivial, we may assume
L < L0 and

L <
log p

logw
.

Then we have wL < p and σp(d
l) = wl for l = 0, . . . , L and thus wp (fl) = wl,

by Lemma 6. Let
L∑

l=0

αlµn+l = 0 for 0 ≤ n < N − L,

be the shortest recurrence relation for the first N sequence elements of (µn) with

α0, . . . , αL−1 ∈ Fq and αL = −1. Then, the polynomial F (X) =
∑L

l=0 αlfl(X)
is of the form (3) by Lemma 6 and has at least min{T,N − L} distinct roots
over Fq. On the other hand, by Lemma 3, FR(X1, . . . , Xr) has degree wL and
at least min{T,N −L} distinct roots. Therefore, pr−1wL ≥ min{T,N −L} and
the result follows. �

Note that for L0 = ⌈log p/ logw⌉ condition (6) implies

gcd

(
d,

q − 1

p− 1

)L0−1

≤ q1/2

and D = dL0−1 satisfies (7).A
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