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REGULARITIES OF THE DISTRIBUTION OF

ABSTRACT VAN DER CORPUT SEQUENCES

Wolfgang Steiner

ABSTRACT. Similarly to β-adic van der Corput sequences, abstract van der
Corput sequences can be defined by abstract numeration systems. Under some
assumptions, these sequences are low discrepancy sequences. The discrepancy
function is computed explicitly, and the bounded remainder sets of the form
[0, y) are characterized.

Communicated by Pierre Liardet

1. Introduction

Let (xn)n≥0 be a sequence with xn ∈ [0, 1) for all n ≥ 0, and

D(N, I) = #{0 ≤ n < N : xn ∈ I} −Nλ(I)

its discrepancy function (or local discrepancy) on the interval I, where λ(I)
is the length of I. Then, (xn)n≥0 is said to be a low discrepancy sequence
if supI D(N, I) = O(logN), where the supremum is taken over all intervals
I ⊆ [0, 1). If D(N, I) is bounded in N , then I is called a bounded remainder set.
For details on discrepancy, we refer to [KN74, DT97]. References to results on
bounded remainder sets can be found in the introduction of [Ste06].

In [BG96, Nin98a, Nin98b], β-adic van der Corput sequences are defined,
and it is shown that they are low discrepancy sequences if β is a Pisot num-
ber with irreducible β-polynomial. Recall that a Pisot number is an algebraic
integer greater than 1 with all its conjugates lying in the interior of the unit
disk. We refer to Section 3 for the definition of the β-polynomial. In [Mor98,
IM04], these results were extended to piecewise linear maps which generalize the
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β-transformation. The proof in [Nin98a, Nin98b] relies on the fact that cylinder
sets of the β-transformation are bounded remainder sets if β is a Pisot num-
ber with irreducible β-polynomial. Under the same conditions on β, bounded
remainder sets of the form [0, y), 0 ≤ y ≤ 1, were completely characterized
in [Ste06]: the β-expansion of y is finite or its tail is the same as that of the
expansion of 1.

If β is a Pisot number, then the language of the β-expansions is regular, which
means that it is recognized by a finite automaton. Therefore, these β-expansions
are special cases of abstract numeration systems as defined in [LR01, LR02],
see Section 3. In Section 2, we define van der Corput sequences related to more
general abstract numeration systems. Theorem 1 in Section 4 provides a new
class of low discrepancy sequences. Finally, Theorem 2 in Section 5 characterizes
the bounded remainder sets of the form [0, y) with respect to these abstract van
der Corput sequences, generalizing the results in [Ste06].

2. Definitions and first results

Let (A,≤) be a finite and totally ordered alphabet. Denote by A∗ the free
monoid generated by A for the concatenation product, i.e., the set of finite words
with letters in A. The length of a word w ∈ A∗ is denoted by |w|. Extend the
order on A to A∗ by the shortlex (or genealogical) order, that is to say v ≤ w if
v = w or v < w, where v < w means that either |v| < |w| or |v| = |w| and there
exist p, v′, w′ ∈ A∗, a, b ∈ A such that v = pav′, w = pbw′ and a < b.

According to [LR01], the triple S = (L,A,≤) is an abstract numeration system
if L is an infinite regular language over A, and the numerical value of a word
w ∈ L is defined by

valS(w) = #{v ∈ L : v < w}.

If valS(w) = n, then we say that w is the representation of n and write

repS(n) = w.

Denote by Aω the set of (right) infinite words with letters in A. It is ordered
by the lexicographical order, that is to say t ≤ u if t = u or t < u, where t < u
means that there exist p ∈ A∗, a, b ∈ A, t′, u′ ∈ Aω, such that t = pat′, u = pbu′

and a < b.

Assume that the language L grows exponentially, with

lim
k→∞

log#{v ∈ L : |v| ≤ k}

k
= log β > 0.
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Suppose that u ∈ Aω is the limit of words w(k) ∈ L, i.e., every finite prefix of u
is a prefix of w(k) for all but a finite number of k’s. Then, the value of u is the
real number

valωS(u) = lim
k→∞

valS
(
w(k)

)

#
{
v ∈ L :

∣∣v| ≤ |w(k)
∣∣} , (1)

if this limit exists and does not depend on the choice of w(k). Conditions assuring
the existence of this value are given in [LR02], see also Lemma 3 and its proof.
Let

Lω =
{
u ∈ Aω : u = lim

k→∞
w(k) for some w(k) ∈ L

}
.

Since valωS(u) ∈ [1/β, 1], we define the normalized value

〈u〉 =
β valωS(u)− 1

β − 1
∈ [0, 1].

We extend this definition to finite words w ∈ L which are prefixes of words
in Lω by setting 〈w〉 = 〈u〉, where u is the smallest word in Lω with prefix w.
Since we want to define a sequence without multiple occurrences of the same
value, we set

L′ = {w ∈ L : 〈w〉 6= 〈v〉 for every v ∈ L with v < w}.

Recall that the mirror image of a word w = w1w2 · · ·wk, wj ∈ A, is w̃ =

wk · · ·w2w1 and that the mirror image of a language L is L̃ = {w̃ : w ∈ L}.
Now, we are ready to define the main object of this paper, abstract van der
Corput sequences.Definition 1 (Abstract van der Corput sequence). Let S = (L,A,≤) be an ab-
stract numeration system, where L is a regular language of exponential growth,
every word w ∈ L is the prefix of some infinite word u ∈ Lω, and the limit
in (1) exists for every u ∈ Lω. Then, the abstract van der Corput sequence
corresponding to S is given by

xn = 〈w〉 with w̃ = rep
S̃′
(n),

where S̃′ is the abstract numeration system
(
L̃′, A,≤

)
.

Thus, the set of values of an abstract van der Corput sequence is

{xn : n ≥ 0} = {〈w〉 : w ∈ L} = {〈w〉 : w ∈ L′}, and the position of 〈w〉, w ∈ L′,

in the sequence is determined by the shortlex order on the mirror image of L′. We
need a number of further assumptions on the language L in order to get precise
formulae for the discrepancy. All these assumptions are satisfied by the β-adic
van der Corput sequence when the language of the β-expansions is regular, cf.
Section 3, and by Example 1 at the end of this section.
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Let AL = (Q,A, τ, q0, F ) be a (complete) deterministic finite automaton
recognizing L, with set of states Q, transition function τ : Q × A → Q, ini-
tial state q0 and set of final states F . The transition function is extended to
words, τ : Q × A∗ → Q, by setting τ(q, ε) = q for the empty word ε and
τ(q, wa) = τ(τ(q, w), a). A word w ∈ A∗ is accepted by AL, and thus in L, if
and only if τ(q0, w) ∈ F.Definition 2 (Totally ordered automaton). A deterministic automaton
(Q,A, τ, q0, F ) is said to be a totally ordered automaton if there exists a total
order on the set of states Q such that, for all q, r ∈ Q,

q ≤ r implies τ(q, a) ≤ τ(r, a) for every a ∈ A.

From now on, all automata will be totally ordered automata. Furthermore,
the maximal state will be the initial state and every state except the minimal one
will be final. (In case Q = F , where the automaton recognizes A∗, we add a non-
accessible state to Q.) W.l.o.g., the set of states will be Q = {0, 1, . . . , d} for some
positive integer d, and the order on Q will be the usual order on the integers,
hence q0 = d and F = {1, . . . , d}. Moreover, we will assume that τ(0, a) = 0 for
every a ∈ A, i.e., the state 0 is a sink.Lemma 1. Let L ⊆ A∗ be recognized by a totally ordered automaton AL =
(Q,A, τ, d,Q \ {0}), with Q = {0, 1, . . . , d} and τ(0, a) = 0 for every a ∈ A.

Then, L̃ is recognized by the totally ordered automaton A
L̃
= (Q,A, τ̃ , 0, Q\{0}),

where

τ̃(r, a) = #
{
q ∈ Q : τ(q, a) + r > d

}
for every r ∈ Q, a ∈ A. (2)

In particular, we have τ̃(0, a) = 0 for every a ∈ A.

P r o o f. A deterministic automaton A′ = (Q′, A, τ ′, q′0, F
′) recognizing L̃ is ob-

tained by determinizing the automaton which is given by inverting the transition
function τ , see e.g. [Sak09]. This means that

• Q′ is a subset of the power set P(Q),

• τ ′(q′, a) = {q ∈ Q : τ(q, a) ∈ q′} for every q′ ∈ Q′, a ∈ A,

• the set of final states in AL is the initial state of A′, i.e., q′0 = {1, . . . , d},

• the final states in A′ are those elements of Q′ which contain the initial
state of AL, i.e., F

′ = {q′ ∈ Q′ : d ∈ q′}.

We show that Q′ ⊆ {q′0, q
′
1, . . . , q

′
d}, where q′r = {r + 1, . . . , d} (q′d being the

empty set). Since AL is totally ordered and τ(0, a) = 0, we obtain that

τ ′(q′0, a) = {q ∈ Q : τ(q, a) > 0} = {r + 1, . . . , d} = q′r for some r ∈ Q.

84



REGULARITIES OF DISTRIBUTION OF ABSTRACT VAN DER CORPUT SEQUENCES

In the same way, we get, for every r ∈ Q with q′r ∈ Q′, that

τ ′(q′r, a) = {q ∈ Q : τ(q, a) > r} = {s+ 1, . . . , d} = q′s for some s ∈ Q.

This shows that Q′ ⊆ {q′0, q
′
1, . . . , q

′
d}. It is easy to see that A′ is a totally

ordered automaton, with the order on Q′ given by q′r ≤ q′s if q′r ⊆ q′s, i.e., r ≥ s.
We clearly have F ′ = {q′0, q

′
1, . . . , q

′
d−1} ∩ Q′. If we extend the set of states to

{q′0, q
′
1, . . . , q

′
d} (with possibly non-accessible states) and label the states by d−r

instead of q′r, we obtain A
L̃
. Therefore, A

L̃
is a totally ordered automaton, with

Q ordered by the usual order on the integers. �

The next lemma provides a fundamental characterization of the words in a
language L recognized by a totally ordered automaton AL = (Q,A, τ, d,Q\{0})
with Q = {0, 1, . . . , d} and τ(0, a) = 0 for every a ∈ A.Lemma 2. Let L, τ, τ̃ be as in Lemma 1, w1 · · ·wk ∈ A∗, 0 ≤ j ≤ k. We have
w1 · · ·wk ∈ L if and only if τ(d, w1 · · ·wj) + τ̃(d, wk · · ·wj+1) > d.

P r o o f. Let 0 ≤ j ≤ k. With the notation of the proof of Lemma 1,
τ̃(d, wk · · ·wj+1) = d− r can be written as

τ ′(q′0, wk · · ·wj+1) = q′r = {r + 1, . . . , d}

. In AL, this means that wj+1 · · ·wk leads to a final state from the state q, i.e.,
τ(q, wj+1 · · ·wk) > 0, if and only if q > r. Therefore, we have

τ(d, w1 · · ·wk) = τ(τ(d, w1 · · ·wj), wj+1 · · ·wk)> 0

if and only if τ(d, w1 · · ·wj)> r, i.e., τ(d, w1 · · ·wj) + τ̃(d, wk · · ·wj+1)> d. �Remark 1. If we consider τ(d, a) + · · · + τ(1, a) as a partition of an integer,
then τ̃(d, a) + · · ·+ τ̃(1, a) is the conjugate partition, since

τ̃(d− r, a) = #
{
q ∈ Q : τ(q, a) > r

}
.

E.g., if (τ(d, a), . . . , τ(1, a)) = (4, 2, 1, 0), then (τ̃(d, a), . . . , τ̃(1, a)) = (3, 2, 1, 1),
and the corresponding Ferrers diagram is

3 2 1 1

4

2
1
0

.

Next, we characterize the values of the abstract van der Corput sequence,
under the assumption that the incidence matrix of the co-accessible part of AL

is primitive. (A state q is co-accessible if τ(q, w) ∈ F for some w ∈ A∗.)
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WOLFGANG STEINERLemma 3. Let L be as in Lemma 1 and assume that ML=(#{a ∈ A :τ(q, a)=
r})1≤q,r≤d is a primitive matrix. Then, the normalized value exists for every
u ∈ Lω and is given by

〈u〉 =

∞∑

j=1

ǫj(u)β
−j with ǫj(u) =

∑

a<uj

ητ(d,u1···uj−1a), (3)

where β is the Perron-Frobenius eigenvalue of ML, (η1, . . . , ηd)
t is the corre-

sponding right (column) eigenvector with ηd = 1, η0 = 0, and u = u1u2 · · · with
uj ∈ A for all j ≥ 1.

P r o o f. The definition and primitivity of the incidence matrix ML give

#{v ∈ Ak : τ(q, v) > 0} = (0, . . . , 1, . . . , 0)Mk
L(1, . . . , 1)

t = cηqβ
k +O(ρk) (4)

with constants c > 0 and ρ < β such that every eigenvalue α 6= β of ML satisfies
|α| < ρ. Due to the assumptions on AL, we have u1 · · ·uk ∈ L for every k ≥ 1.
Similarly to [LR01, LR02], we split up

{v ∈ L : v < u1 · · ·uk}

= {v ∈ L : |v| < k} ∪
⋃

1≤j≤k

⋃

a<uj

{
u1 · · ·uj−1aw ∈ L : w ∈ Ak−j

}
.

Since

#{v ∈ L : |v| ≤ k} =

k∑

j=0

(cβj +O(ρj)) = c
βk+1

β − 1
+O(max(1, ρ)k),

we obtain

valS(u1 · · ·uk)

#{v ∈ L : |v| ≤ k}
=

1

β
+

β − 1

β

k∑

j=1

∑

a<uj

ητ(d,u1···uj−1a)β
−j +O

(
max(1, ρ)k

βk

)
.

Therefore, we have

valωS(u) = lim
k→∞

valS(u1 · · ·uk)

#{v ∈ L : |v| ≤ k}
=

1

β
+

β − 1

β

∞∑

j=1

ǫj(u)β
−j ,

and
〈u〉 = (β valωS(u)− 1)/(β − 1)

yields (3). �

As a last preparation for the study of the discrepancy of abstract van der
Corput sequences, we consider the language L′.Lemma 4. Let L be as in Lemma 3 and assume that τ(q, a0) > 0 for every
q > 0, where a0 denotes the smallest letter of A. Then, L′ consists exactly of
those words in L which do not end with a0.
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P r o o f. We clearly have 〈t〉 ≤ 〈u〉 if t < u, t, u ∈ Lω. The primitivity of ML

implies that ηq > 0 for all q > 0. Therefore, 〈t〉 = 〈u〉 if and only if there exists
no word u′ ∈ Lω with t < u′ < u. For v < w, v, w ∈ L, this means that 〈v〉 = 〈w〉
if and only if v is a prefix of w and w is the smallest right extension of v in L
of length |w|. Since τ(q, a0) > 0 for every q > 0, we have vak0 ∈ L for all k ≥ 0.

It follows that 〈v〉 = 〈w〉 with v < w, v, w ∈ L, if and only if w = va
|w|−|v|
0 .

Thus, w 6∈ L′ if and only if w ends with a0. �

3 2

1 0

a0

a1

a2

a0

a1

a2

a0

a1

a2 a0, a1, a2

3 2

1 0

a0, a2

a1

a0

a1
a2

a0

a1, a2

a0, a1, a2

Figure 1. The totally ordered automata AL (left) and A
L̃

(right) of Example 1.Example 1. Let AL = ({0, 1, 2, 3}, {a0, a1, a2}, τ, 3, {1, 2, 3}) be the totally or-
dered automaton in Figure 1 on the left. The first words in L (in the shortlex
order) are

ε, a0, a1, a2, a0a0, a0a1, a0a2, a1a0, a1a2, a2a0, a2a2,

a0a0a0, a0a0a1, a0a0a2, a0a1a0, a0a1a2, a0a2a0, a0a2a2,

a1a0a0, a1a0a1, a1a0a2, a1a2a0, a1a2a2,

a2a0a0, a2a0a2, a2a2a0, a2a2a2.

The transition functions τ , τ̃ and the incidence matrices ML, ML̃
are given by

τ a0 a1 a2
0 0 0 0
1 2 0 1
2 3 0 1
3 3 2 1

, ML =



1 1 0
1 0 1
1 1 1


 ,
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τ̃ a0 a1 a2
0 0 0 0
1 2 0 0
2 3 1 0
3 3 1 3

, M
L̃
=



0 1 0
1 0 1
1 0 2


 .

Recall that

ML = (#{a ∈ A : τ(q, a) = r})1≤q,r≤3, M
L̃
= (#{a ∈ A : τ̃(q, a) = r})1≤q,r≤3

and that τ̃ can be calculated using Remark 1. Thus, L̃ is recognized by the totally
ordered automatonA

L̃
in Figure 1 on the right. The characteristic polynomial of

ML is x3− 2x2−x+1, the dominant eigenvalue is β ≈ 2.247, and (η1, η2, η3)
t =

(β2−2β,−β2+3β−1, 1)t ≈ (0.555, 0.692, 1)t is a right eigenvector of ML. Since
x3 − 2x2 − x+ 1 is irreducible, it must be the characteristic polynomial of M

L̃

as well. The conditions of Lemma 4 are satisfied, hence the first elements of the
abstract van der Corput sequence corresponding to L are

x0 = 〈ε〉 = 0, x1 = 〈a1〉 =
η3
β
, x2 = 〈a2〉 =

η3 + η2
β

, x3 = 〈a0a1〉 =
η3
β2

,

x4= 〈a0a2〉=
η3 + η2

β2
, x5= 〈a1a2〉=

η3
β

+
η3
β2

, x6= 〈a2a2〉=
η3 + η2

β
+

η2
β2

,

x7= 〈a0a0a1〉=
η3
β3

, x8= 〈a1a0a1〉=
η3
β

+
η3
β3

, x9= 〈a0a0a2〉=
η3 + η2

β3
,

x10= 〈a1a0a2〉=
η3
β

+
η3 + η2

β3
, x11= 〈a2a0a2〉=

η3 + η2
β

+
η3
β3

,

x12= 〈a0a1a2〉=
η3
β2

+
η3
β3

, x13= 〈a0a2a2〉=
η3 + η2

β2
+

η2
β3

,

x14= 〈a1a2a2〉=
η3
β

+
η3
β2

+
η2
β3

, x15= 〈a2a2a2〉=
η3 + η2

β
+

η2
β2

+
η2
β3

.

x0 x1 x2x3 x4 x5 x6x7 x8x9 x10 x11x12 x13 x14 x15

3. β-adic van der Corput sequences

To obtain Ninomiya’s β-adic van der Corput sequences, consider a totally
ordered automaton AL = ({0, 1, . . . , d}, A, τ, d, {1, . . . , d}) on the alphabet A =
{0, 1, . . . , B}, with integers bq ∈ A, 1 ≤ q ≤ d, such that τ(q, a) = d for all
a < bq, and τ(q, a) = 0 if and only if a > bq or q = 0. Assume that ML is
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primitive (which is the only interesting case since τ(q, 0) 6= d implies bq = 0),
and let β be its Perron-Frobenius eigenvalue. Then, we have

ǫj(u) =
∑

a<uj

ητ(q,u1···uj−1a) =
∑

a<uj

ηd = uj for every u = u1u2 · · · ∈ Lω, j ≥ 1.

Let t1t2 · · · be the maximal sequence in Lω, i.e., tj = bτ(d,t1 ···tj−1) for all
j ≥ 1. Since AL is a totally ordered automaton, τ(d, t1 · · · tj−1) ≤ τ(d, t1 · · · tk−1)
implies tj < tk or tj = tk, τ(d, t1 · · · tj) ≤ τ(d, t1 · · · tk), thus tjtj+1 · · · ≤
tktk+1 · · · , in particular tjtj+1 · · · ≤ t1t2 · · · . By the maximality of t1t2 · · · , we
have

∑∞
j=1 tjβ

−j = 1. The sequence t1t2 · · · is called the infinite expansion of 1

in base β or quasi-greedy expansion of 1, cf. [Par60]. By the special structure of
AL and the primitivity of ML, we have {τ(d, t1 · · · tj) : 0 ≤ j < d} = {1, . . . , d},
hence τ(d, t1 · · · td) = τ(d, t1 · · · tm) for some m < d. Therefore, t1t2 · · · is even-
tually periodic with preperiod length m and period length d−m, which implies

1−

d∑

j=1

tjβ
−j =

(
1−

m∑

j=1

tjβ
−j

)
βm−d,

thus β is a root of the polynomial

(xd − t1x
d−1 − · · · − tdx

0)− (xm − t1x
m−1 − · · · − tmx0). (5)

If AL is the minimal deterministic automaton recognizing L or, equivalently,
m and d−m are the minimal preperiod and period lengths of t1t2 · · · , then (5)
is called β-polynomial.

If u = u1u2 · · · ∈ Lω, then we have either u = t1t2 · · · or u1 · · ·uk−1 =
t1 · · · tk−1, uk < tk for some k ≥ 1. Since τ(d, u1 · · ·uk) = d in the latter case, u ∈
Lω is equivalent with ujuj+1 · · · ≤ t1t2 · · · for all j ≥ 1, cf. [Par60]. Therefore,
u is either the greedy or the quasi-greedy β-expansion of 〈u〉. Since w00 · · · is
a greedy β-expansion for every w ∈ L, the abstract van der Corput sequence
given by S = (L,A,≤) is exactly the β-adic van der Corput sequence defined in
[Nin98a]. Consequently, we call AL a β-automaton.

Conversely, let t1t2 · · · be the infinite expansion of 1 in base β > 1, i.e., the
unique sequence of integers satisfying

∑∞
j=1 tjβ

−j = 1 and 00 · · · < tjtj+1 · · · ≤

t1t2 · · · for all j ≥ 1, cf. [Par60]. Assume that t1t2 · · · is eventually periodic. In
particular, this holds when β is a Pisot number, see [Ber77, Sch80]. Let d be
the sum of the minimal preperiod and period lengths, and qj = #{1 ≤ k ≤
d : tktk+1 · · · ≤ tj+1tj+2 · · · } for j ≥ 0. Then, the β-automaton is given by
bqj = tj+1 and τ(qj , tj+1) = qj+1, see Example 2.

Note that β-adic van der Corput sequences were first considered in [BG96]

for some cases in which L̃ = L. In this case, the definition of the sequence is
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simpler beacause the β-expansion of xn is the mirror image of the expansion
of n in a numeration system with respect to the linear recurrence corresponding

to the β-polynomial. In our notation, L̃ = L is equivalent with τ̃ = τ , see also
[BY00, Kwo09] for a different characterization.Example 2. Let β be the real root of x3− 4x2− 2. Then, t1t2 · · · = 401401 · · · ,
hence we have d = 3, q0 = 3, q1 = 1, q2 = 2, q3 = 3, thus b3 = 4, b1 = 0, b2 = 1,
and

τ 0 1 2 3 4
0 0 0 0 0 0
1 2 0 0 0 0
2 3 3 0 0 0
3 3 3 3 3 1

, ML =



0 1 0
0 0 2
1 0 4


 ,

τ̃ 0 1 2 3 4
0 0 0 0 0 0
1 2 2 1 1 0
2 3 2 1 1 0
3 3 2 1 1 1

, M
L̃
=



2 2 0
2 1 1
3 1 1


 .

This example is also given in Section 2.3 in [Ste06], with different notation. The
substitution τ in [Ste06] plays the role of the transition function τ̃ in this paper.

4. Discrepancy function

For a given abstract van der Corput sequence (xn)n≥0 and y ∈ [0, 1], we study
now the behavior of the function D(N, [0, y)) = #{0 ≤ n < N : xn < y} −Ny
as N → ∞. Since D(N, [y, z)) = D(N, [0, z))−D(N, [0, y)), this determines the
discrepancy of (xn)n≥0.

If L satisfies the conditions of Lemma 3, then every y ∈ [0, 1] is the numer-
ical value of some u ∈ Lω, see [LR02]. We have the following lemma, where
aω0 = a0a0 · · · .Lemma 5. Let (xn)n≥0 be an abstract van der Corput sequence with L as in
Lemma 4. For y = 〈u〉 with u = u1u2 · · · ∈ Lω, N ≥ 0 with rep

S̃′
(N) = wℓ · · ·w1,

we have

#{0 ≤ n < N : xn < y} =
ℓ∑

j=1

∑

a<uj

ℓ∑

k=j+1

∑

b<wk

#Lk−j−1
τ(d,u1···uj−1a),τ̃(d,wℓ···wk+1b)

+ C(N, u),
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where

Lm
q,r = {v ∈ Am : τ(q, v) + r > d} = {v ∈ Am : q + τ̃(r, ṽ) > d}

and

C(N, u) =

ℓ∑

k=1

#{b < wk : bwk+1 · · ·wℓa
ω
0

< ukuk+1 · · · , u1 · · ·uk−1bwk+1 · · ·wℓ ∈ L}.

Since ℓ = O(logN), we have C(N, u) = O(logN).

P r o o f. We have to count the number of words v ∈ L′ with val
S̃′
(ṽ) < N , i.e.,

ṽ < wℓ · · ·w1, and 〈v〉 < y. As in the proof of Lemma 4, we have va
ℓ−|v|
0 ∈ L,

thus 〈v〉 = 〈va
ℓ−|v|
0 〉. Since wℓ > a0, ṽ < wℓ · · ·w1 holds if and only if a

ℓ−|v|
0 ṽ <

wℓ · · ·w1. Therefore, we can count the number of words v ∈ L ∩ Aℓ with ṽ <
wℓ · · ·w1 and 〈v〉 < y, instead of those in L′.

The inequality 〈v〉 < y is equivalent with vaω0 < u. Thus, we have to count
the v in L of the form

v=u1 · · ·uj−1avj+1 · · · vk−1bwk+1 · · ·wℓ with a < uj , b < wk, 1 ≤ j < k ≤ ℓ,

or

v=u1 · · ·uk−1bwk+1 · · ·wℓ with b<wk, bwk+1 · · ·wℓa
ω
0 <ukuk+1 · · · , 1≤ k ≤ ℓ.

Lemma 2 yields that u1 · · ·uj−1avj+1 · · · vk−1bwk+1 · · ·wℓ ∈ L if and only if
vj+1 · · · vk−1 ∈ Lk−j−1

τ(d,u1···uj−1a),τ̃(d,wℓ···wk+1b)
, which provides the main part of the

formula. The other words give C(N, u). We have ℓ = O(logN) since L grows
exponentially and the same holds for L′ by Lemma 4. Since A is finite, we obtain

C(N, u) = O(logN).
�

Similarly to [Nin98a, Nin98b, Ste06], we assume now that the characteristic
polynomial of ML is irreducible. Let β2, . . . , βd be the conjugates of the Perron-
Frobenius eigenvalue β1 = β. For any z ∈ Q(β), denote by z(i) ∈ Q(βi) the
image of z by the isomorphism mapping β to βi. Similarly to (4), we have some
constants θ1, . . . , θd ∈ Q(β) such that

#Lk
q,r=(0, . . . , 1, . . . , 0)Mk

L(0, . . . , 0, 1, . . . , 1)
t=

d∑

i=1

η(i)q θ(i)r βk
i for 1 ≤ q, r ≤ d.

Note that (θ1, . . . , θd)
t is a right eigenvector of M

L̃
. Set θ0 = 0 and define

γk(N) =
∑

b<wk

θτ̃(d,wℓ···wk+1b) for N = val
S̃′
(wℓ · · ·w1), 1 ≤ k ≤ ℓ, (6)

similarly to ǫj(u). Then,∑

a<uj

∑

b<wk

#Lk−j−1
τ(d,u1···uj−1a),τ̃(d,wℓ···wk+1b)

=

d∑

i=1

ǫ
(i)
j (u)γ

(i)
k (N)βk−j−1

i ,
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N =

ℓ∑

k=1

∑

b<wk

#Lk−1
d,τ̃(d,wℓ···wk+1b)

=

ℓ∑

k=1

∑

b<wk

d∑

i=1

η
(i)
d θ

(i)
τ̃(d,wℓ···wk+1b)

βk−1
i

=

d∑

i=1

ℓ∑

k=1

γ
(i)
k (N)βk−1

i .

For y = 〈u〉, we have thus

D(N, [0, y))

=

ℓ∑

j=1

∑

a<uj

ℓ∑

k=j+1

∑

b<wk

#Lk−j−1
τ(d,u1···uj−1a),τ̃(d,wℓ···wk+1b)

+C(N, u)−N

∞∑

j=1

ǫj(u)β
−j

=

∞∑

j=1

d∑

i=1

(
ℓ∑

k=j+1

ǫ
(i)
j (u)γ

(i)
k (N)βk−j−1

i −

ℓ∑

k=1

γ
(i)
k (N)βk−1

i ǫj(u)β
−j

)
+ C(N, u)

=

∞∑

j=1

(
ℓ∑

k=j+1

d∑

i=2

γ
(i)
k (N)βk−1

i

(
ǫ
(i)
j (u)β−j

i − ǫj(u)β
−j
)

−

min(j,ℓ)∑

k=1

d∑

i=1

γ
(i)
k (N)βk−1

i ǫj(u)β
−j

)
+ C(N, u). (7)

Since the series converges absolutely, we can change the order of summation,
and get

D(N, [0, y))=

ℓ∑

k=1

(
k−1∑

j=1

d∑

i=2

γ
(i)
k (N)βk−1

i

(
ǫ
(i)
j (u)β−j

i − ǫj(u)β
−j
)

−

∞∑

j=k

d∑

i=1

γ
(i)
k (N)βk−1

i ǫj(u)β
−j

)
+ C(N, u). (8)

The following theorem states that D(N, [0, y)) = O(logN) if |βi| < 1 for
2 ≤ i ≤ d, i.e., if β is a Pisot number. The conditions on ML are subsumed in
the following definition.Definition 3 (Pisot automaton). A deterministic automaton is said to be a
Pisot automaton if the incidence matrix of its restriction to the states which are
both accessible and co-accessible has one simple eigenvalue β > 1, and all other
eigenvalues satisfy |α| < 1.Theorem 1. Let S = (L,A,≤) be an abstract numeration system where L is rec-
ognized by a totally ordered Pisot automatonAL=({0, 1, . . . , d}, A, τ, d,{1, . . . , d})
with τ(0, a) = 0 for every a ∈ A, τ(q, a0) > 0 for the minimal letter a0 ∈ A and
every q > 0. Then, the corresponding abstract van der Corput sequence is a low
discrepancy sequence.
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P r o o f. If AL is a Pisot automaton, then the characteristic polynomial of ML

is irreducible, thus ML is primitive. Therefore, the conditions of Lemma 5 are
satisfied, andD(N, [0, y)) is given by (8). Since γk(N) and ǫj(u) take only finitely
many different values and ℓ = O(logN), we obtain

D(N, [0, y)) =

ℓ∑

k=1

O(1) +O(logN) = O(logN),

where the constants implied by the O-symbols do not depend on y. With

D(N, [y, z)) = D(N, [0, z))−D(N, [0, y)),

we get supI D(N, I) = O(logN), and the theorem is proved. �

As Section 3 shows, the β-adic van der Corput sequences defined by Pisot
numbers β with irreducible β-polynomial considered in [Nin98a, Nin98b] are spe-
cial cases of the abstract van der Corput sequences in Theorem 1. By Lemma 2,

S̃ = (L̃, A,≤) is another, usually different, abstract numeration system satis-
fying the conditions of Theorem 1 whenever τ̃(q, a0) > 0 for every q > 0, in
particular when AL is a β-automaton. The abstract van der Corput sequence
considered in Example 1 is also a new low discrepancy sequence.

5. Bounded remainder sets

Under the conditions of Theorem 1, (7) gives

D(N, [0, y)) =

∞∑

j=1

(
ℓ∑

k=j+1

d∑

i=2

γ
(i)
k (N)ǫ

(i)
j (u)βk−j−1

i −

min(j,ℓ)∑

k=1

γk(N)ǫj(u)β
k−j−1

)

+ C(N, u) +O(1) (9)

for y = 〈u〉. If there exists some m ≥ 0 such that uj = a0 for all j > m, then
ǫj(u) = 0 for all j > m and C(N, u) is bounded. It follows that the interval
[0, 〈v〉) = [0, 〈vaω0 〉) is a bounded remainder set for every finite word v ∈ L.

For any β-adic van der Corput sequence where β is a Pisot number with irre-
ducible β-polynomial, the bounded remainder sets [0, y) have been characterized
in [Ste06] by the fact that the tail of the β-expansion of y is either 0ω or a suffix
of t1t2 · · · . With our notation and the β-automaton defined in Section 3, this
means that

∑∞
j=m+1 ujβ

m−j = ηq for some m ≥ 0, q ∈ Q. In the more gen-
eral case, we have the following partial characterization. Note that the proof is
simpler than the one in [Ste06].
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WOLFGANG STEINERProposition 1. Let (xn)n≥0 be an abstract van der Corput sequence satisfying
the conditions of Theorem 1, u ∈ Lω. If there exists some m ≥ 0, q ∈ Q, such
that

ǫm+1(u)ǫm+2(u) · · · = ǫq,1(tq)ǫq,2(tq) · · · ,

where tq = tq,1tq,2 · · · is the maximal sequence in Aω with τ(q, tq,1 · · · tq,j) > 0 for
all j ≥ 1 if q > 0, t0 = aω0 , ǫq,j(tq) =

∑
a<tq,j

ητ(q,tq,1···tq,j−1a), thenD(N, [0, 〈u〉))

is bounded.

P r o o f. If q = 0, then ǫj(u) = 0 for every j > m, and we have already seen that
the boundedness of D(N, [0, 〈u〉)) follows from (9).

For q > 0, note that
ǫq,2(tq)ǫq,3(tq) · · · = ǫq′,1(tq′)ǫq′,2(tq′) · · · ,

where q′ = τ(q, tq,1), and that ML is primitive. Therefore, we can assume that
m is large enough such that Mm

L has only positive entries. Hence, there exists
some v ∈ L ∩Am such that τ(d, v) = q. Then, we have vtq ∈ Lω and

ǫm+1(vtq)ǫm+2(vtq) · · · = ǫq,1(tq)ǫq,2(tq) · · · ,

thus D
(
N, [0, 〈u〉)

)
= D

(
N, [0, 〈vtq〉)

)
+O(1) by (9).

It only remains to show that D
(
N, [0, 〈vtq〉)

)
= O(1). If vtq = td, then

〈vtq〉 = 1 and D
(
N, [0, 〈vtq〉)

)
= 0.

Otherwise, the successor v′ of v in L has length m, and 〈vtq〉 = 〈v′〉 since no
sequence u′ ∈ Lω satisfies vtq < u′ < v′aω0 , hence

D
(
N, [0, 〈u〉)

)
= D

(
N, [0, 〈vtq〉)

)
+O(1) = D

(
N, [0, 〈v′〉

)
+O(1) = O(1). �

Clearly [y, z) is a bounded remainder set if both [0, y) and [0, z) have this
property. For the converse, the following holds.Proposition 2. Let (xn)n≥0 be an abstract van der Corput sequence satisfying
the conditions of Theorem 1. If D(N, I) is bounded, then λ(I) ∈ Q(β).

P r o o f. The proof is very similar to that of Theorem 1 in [Ste06]. Therefore, we
only give the main steps. Define a substitution q 7→ τ̃(q, aq,0) · · · τ̃(q, aq,mq

), with
{aq,0, aq,1, . . . , aq,mq

} = {a ∈ A : τ̃(q, a) > 0} and aq,0 < aq,1 < · · · < aq,mq
,

1 ≤ q ≤ d, which plays the role of the substitution τ in [Ste06]. Since τ̃(d, a0) = d,
we have d 7→ dw for some w ∈ A∗. Then, a continuous successor function on Lω

satisfying rep
S̃′
(n)aω0 7→ rep

S̃′
(n+1)aω0 is topologically conjugate to the successor

function S on D defined in [Ste06], see also [BR07]. If D(N, I) is bounded, then
λ(I) is an eigenvalue of the dynamical system (D, S), see Theorem 5.1 in [Sha78]
and [Ste06]. By Proposition 5 in [FMN96], these eigenvalues are in Q(β). �
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If y ∈ Q(β), then y = 〈u〉 for some eventually periodic sequence u, see [RS05].
Let p be the period length of ǫ1(u)ǫ2(u) · · · andm the preperiod length. From (8),
we get that

D(N, [0, y)) =

ℓ∑

k=1

(
d∑

i=2

γ
(i)
k (N)

k−1∑

j=1

ǫ
(i)
j (u)βk−j−1

i − γk(N)

∞∑

j=k

ǫj(u)β
k−j−1

)

+ C(N, u) +O(1).

Set

yk =

∞∑

j=k

ǫj(u)β
k−j−1.

For k > m, we have

yk =
ǫk(u)β

p−1 + · · ·+ ǫk+p−1(u)

βp − 1
,

k−1∑

j=1

ǫ
(i)
j (u)βk−j−1

i =
ǫ
(i)
k−p(u)β

p−1
i + · · ·+ ǫ

(i)
k−1(u)

1− βp
i

+O(βk
i ) = −y

(i)
k +O(βk

i )

for 2 ≤ i ≤ d, which gives

D(N, [0, y)) = C(N, u)−

ℓ∑

k=1

d∑

i=1

γ
(i)
k (N)y

(i)
k +O(1).

Recall the definition of γk(N) in (6), and set

ζr(z) =

d∑

i=1

θ(i)r z(i) for r ∈ Q, z ∈ Q(β). (10)

Then, we have

D(N, [0, y)) = C(N, u)−

ℓ∑

k=1

∑

b<wk

ζτ̃(d,wℓ···wk+1b)(yk) +O(1). (11)

Note that

ζr(ηq) = #L0
q,r =

{
1 if q + r > d,
0 else.

(12)

The main result of this section is the following theorem.Theorem 2. Let (xn)n≥0 be an abstract van der Corput sequence defined by
an abstract numeration system S = (L,A,≤), where L is recognized by a totally
ordered Pisot automaton AL = ({0, 1, . . . , d}, A, τ, d, {1, . . . , d}) with τ(0, a) = 0
for every a ∈ A, τ(q, a0) > q for the minimal letter a0 ∈ A and every q ∈
{1, . . . , d − 1}. Then, D(N, [0, 〈u〉)), u ∈ Lω, is bounded in N if and only if
〈u〉 ∈ Q(β) and there exists some m ≥ 0 such that

ζτ̃(d,ṽ)(yk) =

{
1 if vaω0 < ukuk+1 · · · and u1 · · ·uk−1v ∈ L,
0 else,

(13)
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for every v ∈ A∗, k > m, where yk =
∑∞

j=k ǫj(u)β
k−j−1, τ̃ is as in (2), ζ as

in (10).

P r o o f. We show first that the conditions on u ∈ Lω are sufficient for the
boundedness of D(N, [0, 〈u〉)). Note that the assumption τ(q, a0) > q for 0 <
q < d is not used here, but only the weaker assumption τ(q, a0) > 0 of Lemma 4.
For N = val

S̃′
(wℓ · · ·w1), we have

ℓ∑

k=1

∑

b<wk

ζτ̃(d,wℓ···wk+1b)(yk) =

ℓ∑

k=m+1

#

{
b < wk :

bwk+1 · · ·wℓa
ω
0 < ukuk+1 · · · ,

u1 · · ·uk−1bwk+1 · · ·wℓ ∈ L

}

+O(1) = C(N, u) +O(1),

thus by (11)
D(N, [0, 〈u〉)) = O(1).

Now, suppose that D(N, [0, 〈u〉)) = O(1) for u ∈ Lω. By Proposition 2, we
have 〈u〉 ∈ Q(β), thus u is eventually periodic by [RS05]. Let m ≥ 0, p ≥ 1 be
such that

u = u1 · · ·um(um+1 · · ·um+p)
ω and τ(d, u1 · · ·um) = τ(d, u1 · · ·um+p).

Consider v ∈ A∗ and k > m. If v 6∈ L, then (13) holds since

ζτ̃(d,v)(yk) = ζ0(yk) = 0.

If v = v′a0, then (13) holds for v if and only if it holds for v′. Therefore, we can
assume v ∈ L′. If v is not the empty word, then we define integers

Nh = val
S̃′

(
(ṽag0)

hṽak−1
0

)
for h ≥ 0, with g ≥ max(d− 1, p)

such that g + |v| is a multiple of p. Set v = vk · · · vℓ, with k ≤ ℓ.

We show that
C(Nh, u) = (h+ 1)C(N0, u) for all h ≥ 0. (14)

If um+1 · · ·um+p = ap0, then C(Nh, u) = 0 and (14) holds. If um+1 · · ·um+p > ap0,
then g ≥ p implies that bvj+1 · · · vℓa

ω
0 < ujuj+1 · · · , k ≤ j ≤ ℓ, if and only if

bvj+1 · · · vℓ(a
g
0v)

haω0 < ujuj+1 · · · . Since AL is totally ordered, the assumption

τ(q, a0) > q for 0 < q < d implies τ(d, a0) = d and τ(q, aj0) = d for all q > 0,
j ≥ d− 1, in particular τ(q, ag0) = d. Therefore, we also have

u1 · · ·uj−1bvj+1 · · · vℓ ∈ L if and only if u1 · · ·uj−1bvj+1 · · · vℓ(a
g
0v)

h ∈ L.

Since g + |v| is a multiple of the period length of u, (14) follows.

Since τ(q, ag0) = d for all q > 0, we also have τ̃(q, ag0) = d for all q > 0, and
thus

ζτ̃(d,(ṽag
0
)hvℓ···vj+1b)(yj) = ζτ̃(d,vℓ···vj+1b)(yj).
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By (11), we get

D(Nh, [0, 〈u〉)) = (h+ 1)

(
C(N0, u)−

ℓ∑

j=k

∑

b<vj

ζτ̃(d,vℓ···vj+1b)(yj)

)
+O(1).

Therefore, D(N, [0, 〈u〉)) = O(1) implies that

ℓ∑

j=k

∑

b<vj

ζτ̃(d,vℓ···vj+1b)(yj) = C(N0, u) for N0 = val
S̃′
(vℓ · · · vka

k−1
0 ), k > m.

(15)

We will show that (13) holds, by considering (15) for the integerN ′
0 defined by

the successor of v in L̃′. Let first v be the empty word, and N ′
0 = val

S̃′
(v′ka

k−1
0 )

with v′k such that τ̃(d, b) = 0 for all b ∈ A with a0 < b < v′k. Then, (15) gives

ζd(yk) = ζτ̃(d,a0)(yk) = C(N ′
0, u) =

{
1 if aω0 < ukuk+1 · · · ,
0 else,

thus (13) holds if v is the empty word. Assume next that there exists some

v′k > vk with τ̃(d, vℓ · · · vk+1v
′
k) > 0.

Choose v′k such that τ̃(d, vℓ · · · vk+1b) = 0 for all b ∈ A with vk < b < v′k, and

set N ′
0 = val

S̃′
(vℓ · · · vk+1v

′
ka

k−1
0 ). Then, (13) holds because of

ζτ̃(d,vℓ···vk)(yk) =
∑

b<v′

k

ζτ̃(d,vℓ···vk+1b)(yk)−
∑

b<vk

ζτ̃(d,vℓ···vk+1b)(yk)

= C(N ′
0, u)− C(N0, u)

=

{
1 if vk · · · vℓa

ω
0 <ukuk+1 · · · , u1 · · ·uk−1vk · · · vℓ ∈L,

0 else.

Now, we proceed by induction. We know that (13) holds if v is the empty
word. Assume that (13) holds for all words v of length ℓ− k, and consider

ζτ̃(d,vℓ···vk+1)(yk+1) =

d∑

i=1

θ
(i)
τ̃(d,vℓ···vk+1)

(
βyk − ǫk(u)

)(i)
(16)

=

d∑

i=1

βiθ
(i)
τ̃(d,vℓ···vk+1)

y
(i)
k −

d∑

i=1

θ
(i)
τ̃(d,vℓ···vk+1)

∑

b<uk

η
(i)
τ(d,u1···uk−1b)

.

Let vk be the maximal letter with τ̃(d, vℓ · · · vk+1vk) > 0. Since (θ1, . . . , θd)
t is

an eigenvector of M
L̃

and we already know that ζτ̃(d,vℓ···vk+1b)(yk), b < vk, is
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given by (13), we have

d∑

i=1

βiθ
(i)
τ̃(d,vℓ···vk+1)

y
(i)
k =

d∑

i=1

∑

b∈A

θ
(i)
τ̃(d,vℓ···vk+1b)

y
(i)
k

=
∑

b∈A

ζτ̃(d,vℓ···vk+1b)(yk) = ζτ̃(d,vℓ···vk)(yk)+

#{b < vk : bvk+1 · · · vℓa
ω
0 < ukuk+1 · · · , u1 · · ·uk−1bvk+1 · · · vℓ ∈ L}.

Using this equation,
d∑

i=1

θ
(i)
τ̃(d,vℓ···vk+1)

∑

b<uk

η
(i)
τ(d,u1···uk−1b)

=
∑

b<uk

#L0
τ(d,u1···uk−1b),τ̃(d,vℓ···vk+1)

= #{b < uk : u1 · · ·uk−1bvk+1 · · · vℓ ∈ L}

and the induction hypothesis, (16) yields

ζτ̃(d,vℓ···vk)(yk)

= ζτ̃(d,vℓ···vk+1)(yk+1) + #{b < uk : u1 · · ·uk−1bvk+1 · · · vℓ ∈ L}

−#{b < vk : bvk+1 · · · vℓa
ω
0 < ukuk+1 · · · , u1 · · ·uk−1bvk+1 · · · vℓ ∈ L}

=

{
1 if vk+1 · · · vℓa

ω
0 < uk+1uk+2 · · · and u1 · · ·ukvk+1 · · · vℓ ∈ L,

0 else,

+





1 if vk < uk and u1 · · ·uk−1vk · · · vℓ ∈ L,
−1 if vk > uk, vk+1 · · · vℓa

ω
0 < uk+1uk+2 · · · , u1 · · ·ukvk+1 · · · vℓ ∈ L,

0 else,

=

{
1 if vk · · · vℓa

ω
0 < ukuk+1 · · · and u1 · · ·uk−1vk · · · vℓ ∈ L,

0 else,

where we have used that u1 · · ·uk−1bvk+1 · · · vℓ can be in L only if b ≤ vk.
Therefore, (13) holds for all words v of length ℓ − k + 1, and Theorem 2 is
proved. �

In the case of β-adic van der Corput sequences, all bounded remainder sets
satisfy the conditions of Proposition 1, see [Ste06]. The following example shows
that this is probably not true in the more general setting, i.e., that there might
be sequences u satisfying the conditions of Theorem 1, but not those of Propo-
sition 1. However, AL is not a Pisot automaton in this example, and we have
not found an example where AL satisfies the conditions of Theorem 1.
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REGULARITIES OF DISTRIBUTION OF ABSTRACT VAN DER CORPUT SEQUENCESExample 3. Let AL = ({0, 1, 2, 3, 4}, {a0, a1, a2, a3}, τ, 4, {1, 2, 3, 4}) be the to-
tally ordered automaton with τ, τ̃ given by the transition tables

τ a0 a1 a2 a3
0 0 0 0 0
1 3 2 1 0
2 3 2 2 1
3 4 4 3 1
4 4 4 4 2

,

τ̃ a0 a1 a2 a3
0 0 0 0 0
1 2 2 1 0
2 4 2 2 0
3 4 4 3 1
4 4 4 4 3

.

If u = a3a0a
ω
2 , then τ(4, u1 · · ·uk−1) = 3 and thus ǫk(u) = 2η4 for all k ≥ 3. We

obtain yk = η3− η2+ η1, which implies ζ4(yk) = ζ2(yk) = 1, ζ3(yk) = ζ1(yk) = 0
by (12). It can be easily verified that (13) holds for all v ∈ A∗, k ≥ 3, but the
conditions on u of Proposition 1 are not satisfied.

We conclude by the remark that the boundedness of D(N, I) is not invariant
under translation of the interval, i.e., D(N, [y, z)) can be unbounded if [0, z− y)
is a bounded remainder set and vice versa, see [Ste06].A
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