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LIMIT POINTS OF FRACTIONAL PARTS OF

GEOMETRIC SEQUENCES

Hajime Kaneko

ABSTRACT. Let α > 1 be an algebraic number and ξ a nonzero real num-
ber. In this paper, we compute the range of the fractional parts {ξαn} (n =

0, 1, . . .). In particular, we estimate the maximal and minimal limit points. Our
results show, for example, that if θ(= 24.97 . . .) is the unique zero of the poly-
nomial 2X2 − 50X + 1 with X > 1, then there exists a nonzero ξ∗ satisfying
lim sup

n→∞
{ξ∗θn} ≤ 0.02127 . . .. On the other hand, we also prove for any

nonzero ξ that lim sup
n→∞

{ξθn} ≥ 0.02003 . . ..

Communicated by Shigeki Akiyama

1. Introduction

Koksma [11] proved for nonzero ξ that the geometric progressions ξαn (n ≥ 0)
are uniformly distributed modulo 1 for almost all α > 1. He also showed for
α > 1 that ξαn (n ≥ 0) are uniformly distributed modulo 1 for almost all real ξ.
There is, however, no criterion of uniform distribution for the series ξαn (n ≥ 0)
with given α > 1 and ξ 6= 0.

Let µ be the Haar measure of the torus R/Z with µ(R/Z) = 1. We write the
canonical map from R onto R/Z by τ . For any interval I ⊂ R, we call J = τ(I)
an interval in R/Z.

We take α > 1 and ξ 6= 0. Let J(α, ξ) be the shortest interval in R/Z
containing all limit points of ξαn mod Z (n ≥ 0). Note that J(α, ξ) is uniquely
determined unless the set of limit points of ξαn mod Z (n ≥ 0) consists of two
elements. We now recall the definition of Pisot and Salem numbers. Pisot
numbers are algebraic integers greater than 1 whose conjugates different from
themselves have absolute values strictly less than 1. Salem numbers are algebraic
integers greater than 1 which have at least one conjugate with modulus 1 and
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exactly one conjugate outside the unit circle. Pisot [14] proved for an algebraic
α > 1 and a nonzero ξ that if the sequence ξαn mod Z (n ≥ 0) has only finitely
many limit points, then α is a Pisot number and ξ ∈ Q(α). For further details
of powers of Pisot and Salem numbers we refer the reader to [2].

We put

µ(α, ξ) = µ(J(α, ξ)).

For example, J(α, 1) = {0 mod Z} and µ(α, 1) = 0, where α is a Pisot number,
because the trace of αn is a rational integer. Tijdeman [15] proved for every half
integer α = N/2 > 2 that there exists a nonzero ξ = ξ(α) such that

µ(α, ξ) ≤ 1

2(α− 1)
.

Flatto [8] pointed out that, for each rational α = a/b > 1, there is a nonzero
ξ = ξ(α) with

µ(α, ξ) ≤ b− 1

b(α− 1)
=
b− 1

a− b
. (1.1)

He proved the inequality above using Tijdeman’s method.

Koksma’s Theorem implies that if α > 1 is given, then, for almost all ξ, the
set

{ξαn mod Z|n = 0, 1, . . .}
is dense in R/Z. In particular, µ(α, ξ) = 1. On the other hand, Tijdeman [15]
showed that if α > 2 is given, then there exists a nonzero ξ = ξ(α) with

{ξαn} ≤ 1

α− 1
(n = 0, 1, . . .), (1.2)

where {ξαn} denotes the fractional part of ξαn. In particular, such α and ξ
satisfy

µ(α, ξ) ≤ 1

α− 1
. (1.3)

The author [10] proved the following:

Let ξ be a nonzero real number. Take arbitrary positive numbers δ and M .
Then there exists an α satisfying α > M and

µ(ξ, α) ≤ 1 + δ

α
.

Let ι(= 2.025 . . .) be the unique solution of 34X3 − 102X2 +75X − 16 = 0 with
X > 2. Dubickas [7] verified for 1 < α < ι that there is a nonzero ξ = ξ(α) such
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that

µ(α, ξ) ≤ 1− 2(α− 1)2

9(2α− 1)2
. (1.4)

It is easy to check that if 2 < α < ι is given, then

1− 2(α− 1)2

9(2α− 1)2
<

1

α− 1
.

Thus (1.4) is stronger than (1.3) for 2 < α < ι. We now review Dubickas’s
estimation of maximal and minimal limit points of the sequence {ξαn} (n =
0, 1, . . .).

Let us define notation about polynomials and algebraic numbers. Let B(X) =
bmX

m + · · · + b0 be an arbitrary polynomial with real coefficients. We denote
the length of B(X) by

L(B) = |bm|+ · · ·+ |b0|.
Let α > 1 be an algebraic number with minimal polynomial Pα(X) = adX

d +
· · ·+ a0 ∈ Z[X], where ad > 0 and gcd(ad, . . . , a0)=1. Define the length of α by

L(α) = L(Pα(X)).

Put furthermore

L+(α) =

d∑

i=0

max{0, ai}, L−(α) =

d∑

i=0

max{0,−ai}.

Next, let l(α) be the reduced length of α defined by

l(α) = min{l′(α), l′(α−1)},
where

l′(α) = inf
B(X)∈R[X]

{
L(B(X)Pα(X))

∣∣B(X) is monic
}
.

Formulae about l(α) and l′(α) were studied by Dubickas [5]. Take a nonzero
real ξ. If α is a Pisot or Salem number, then assume ξ 6∈ Q(α). We write the
integral part of a real number x by [x]. Dubickas [6] showed that the sequence

(
d∑

i=0

ad−i[ξα
n−i]

)
(n = 0, 1, . . .)

is not ultimately periodic. In particular,
∣∣∣∣∣

d∑

i=0

ad−i[ξα
n−i]

∣∣∣∣∣ ≥ 1
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for infinitely many n ≥ 0 because nonzero integers occur infinitely many times
in this sequence. Since

0 =

d∑

i=0

ad−iξα
n−i =

d∑

i=0

ad−i([ξα
n−i] + {ξαn−i}),

we have
∣∣∣∣∣

d∑

i=0

ad−i{ξαn−i}
∣∣∣∣∣ =

∣∣∣∣∣

d∑

i=0

ad−i[ξα
n−i]

∣∣∣∣∣ ≥ 1

for infinitely many n. Thus we get

lim sup
n→∞

{ξαn} ≥ min

{
1

L+(α)
,

1

L−(α)

}
. (1.5)

Moreover, Dubickas [6] proved

lim sup
n→∞

{ξαn} − lim inf
n→∞

{ξαn} ≥ 1

l(α)
. (1.6)

In this paper, we calculate the range of the sequence {ξαn} (n = 0, 1, . . .)
in the case where α > 1 is an algebraic number. The main results are stated
in Section 2 and proved in Section 6. First, we construct a nonzero ξ = ξ(α)
and improve (1.3), (1.4) by giving an interval in R/Z which includes all limit
points of the sequence ξαn mod Z (n ≥ 0). Next, we give new estimation of the
maximal and minimal limit points of the sequence {ξαn} (n = 0, 1, . . .). The
auxiliary results are given in Sections 3,4, and 5. Moreover, in Section 7 we
introduce Mahler’s Z-numbers (cf. [3, 8, 9, 12]) and discuss their generalization.

2. Main results

At first, we sharpen the inequality (1.3) in the case where α > 1 is an algebraic
number whose conjugates different from itself have absolute values less than 1.
For t,m ≥ 1, put

ρm(X1, . . . , Xt) =





1 t = m = 0
0 t = 0, m ≥ 1∑

i1,...,it≥0

i1+···+it=m

Xi1
1 · · ·Xit

t t ≥ 1
(2.1)

4



LIMIT POINTS OF FRACTIONAL PARTS OF GEOMETRIC SEQUENCESTheorem 2.1. Let α > 1 be an algebraic number of degree d and let ad(> 0) be
the leading coefficient of the minimal polynomial of α. We denote the conjugates
of α by α1 = α, α2, . . . , αd. Assume that |αj| < 1 for 2 ≤ j ≤ d. Let

ν =

∞∑

h=0

|ρh(α2, . . . , αd)|. (2.2)

Then there exists a nonzero ξ = ξ(α) such that

µ(α, ξ) ≤ (ad − 1)ν

ad(α− 1)
. (2.3)

Note that if α is a rational number, then (2.3) coincides with (1.1). Next, we
consider the case where α is a quadratic irrational number. We give an interval
in R/Z which includes J(α, ξ).Corollary 2.2. Let α > 1 be an quadratic irrational number and Pα(X) be
its minimal polynomial. We denote the leading coefficient of Pα(X) by a2(> 0).
Assume that the conjugate α2 of α has the absolute value less than 1 and that
a2 ≥ 2.
(1) If 0 < α2 < 1, then there exists a nonzero ξ = ξ(α) such that, for any n ≥ 0

{ξαn} < a2 − 1

|Pα(1)|
.

In particular,

J(ξ, α) ⊂ τ

([
0,
a2 − 1

|Pα(1)|

])
.

(2) If −1 < α2 < 0, then there exists a nonzero ξ = ξ(α) such that

J(ξ, α) ⊂ τ

([
(a2 − 1)α2

a2(α− 1)(1− α2
2)
,

a2 − 1

a2(α− 1)(1− α2
2)

])
.Example 2.1. Let θ1(= 24.97 . . .) be the unique zero of the polynomial 2X2 −

50X + 1 with X > 1. Then by Tijdeman’s result (1.2) there exists a nonzero
ξ = ξ(θ1) with

{ξθn1 } ≤ 1

θ1 − 1
= 0.04170 . . .

for each n ≥ 0. Since the conjugate of θ1 is on the interval (0, 1), by Corollary
2.2 there exists a nonzero ξ = ξ(θ1) such that for each n ≥ 0

{ξθn1 } <
1

47
= 0.02127 . . . .

5



HAJIME KANEKO

We now compare these estimations with the Dubickas’s lower bound (1.5) of the
maximal limit point. For any nonzero ξ we have

lim sup
n→∞

{ξθn1 } ≥ min

{
1

L+(θ1)
,

1

L−(θ1)

}
=

1

50
= 0.02.

Note that the first statement of Corollary 2.2 gives an upper bound of the
maximal limit point of the sequence {ξαn} (n = 0, 1, . . .). We generalize this
estimation in the case where α > 1 is an algebraic number with arbitrary degree
whose conjugates different from itself are on the interval (0, 1). Next, we give
also an upper bound of the difference between the maximal and minimal limit
points in the case where the absolute values of the conjugates of α different from
itself are sufficiently small.Theorem 2.3. Let α > 1 be an algebraic number of degree d. We denote the
conjugates of α by α1 = α, α2, . . . , αd. Moreover, let Pα(X) be the minimal
polynomial of α and ad(> 0) its leading coefficient. Suppose that ad ≥ 2.
(1) Assume that

0 < αj < 1 (2 ≤ j ≤ d).

Then there exists a nonzero ξ = ξ(α) satisfying

{ξαn} < ad − 1

|Pα(1)|
for all n ≥ 0.
(2) Let ν be defined by (2.2). Assume that, for any j with 2 ≤ j ≤ d,

|αj | < 1

and that
ad − 1

ad(α− 1)
ν <

1

2
, |Pα(1)| ≥ 2.

Then there is a nonzero ξ = ξ(α) satisfying

lim sup
n→∞

{ξαn} − lim inf
n→∞

{ξαn} ≤ ad − 1

ad(α− 1)
ν.Remark 2.1. If the absolute values of the conjugates of α different from itself

are sufficiently small, then the assumptions of the second statement of Theorem
2.3 follow. In fact, they are rewritten by

ν =

∞∑

h=0

|ρh(α2, . . . , αd)| <
ad(α− 1)

2(ad − 1)
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and
d∏

i=2

|1− αi| ≥
2

ad(α− 1)
.Example 2.2. We give an example of the first statement. Let θ2(= 24.69 . . .) be

the unique solution of 2X3−50X2+15X−1 = 0 with X > 1. Then Tijdeman’s
result (1.2) implies that there exists a nonzero ξ = ξ(θ2) with

{ξθn2 } ≤ 1

θ2 − 1
= 0.04219 . . .

for all n ≥ 0. Since θ2 is an algebraic number of degree 3 whose conjugates
different from itself are on the interval (0, 1), the first statement of Theorem 2.3
means that there is a nonzero ξ = ξ(θ2) satisfying

{ξθn2 } <
1

34
= 0.02941 . . .

for any n.

On the other hand, Dubickas’s lower bound (1.5) implies that if ξ 6= 0, then

lim sup
n→∞

{ξθn2 } ≥ min

{
1

L+(θ2)
,

1

L−(θ2)

}
=

1

51
= 0.01960 . . . .Example 2.3. We introduce an example of the second statement of Theorem

2.3. Let θ3(= 25.01 . . .) be the unique positive zero of the polynomial 2X2 −
50X − 1. Then, by Tijdeman’s result (1.2) there exists a nonzero ξ = ξ(θ3)
fulfilling

lim sup
n→∞

{ξθn3 } − lim inf
n→∞

{ξθn3 } ≤ 1

θ3 − 1
= 0.04163 . . . .

Theorem 2.3 means there is a nonzero ξ = ξ(θ3) with

lim sup
n→∞

{ξθn3 } − lim inf
n→∞

{ξθn3 } ≤ ad − 1

ad(θ3 − 1)
ν = 0.02124 . . . .

Next we compare it with Dubickas’s lower bound (1.6). Dubickas [5] verified
that if α > 1 is a quadratic irrational number whose conjugate has absolute
value less than 1, then

l(α) = a2α+min{a2, |a0|}.
Therefore, for any nonzero ξ

lim sup
n→∞

{ξθn3 } − lim inf
n→∞

{ξθn3 } ≥ 1

l(θ3)
= 0.01959 . . . .
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Finally, we improve Dubickas’s lower bound (1.5) of the maximal limit point
lim supn→∞{ξαn} in the case where α > 1 whose conjugates are all positive.Theorem 2.4. Let ξ be a nonzero real number and α > 1 an algebraic number
of degree d. We denote the leading coefficient of the minimal polynomial of α
by ad(> 0). Suppose that the conjugates of α are all positive. If α is a Pisot
number, then assume further ξ 6∈ Q(α). We denote the conjugates of α by
α1 = α, . . . , αp, α1+p, . . . , αd, where αi > 1 (1 ≤ i ≤ p) and 0 < αj < 1 (1 + p ≤
j ≤ d). Put

ηl =
∑

i,j≥0

j−i=l

ρi(α
−1
1 , . . . , α−1

p )ρj(α1+p, . . . , αd).

Let

δ1 = max

{
1

L+(α)
,

1

L−(α)

}

and

δ2 =
1

adα1 · · ·αp

sup
l∈Z

ηl,

respectively. Then

lim sup
n→∞

{ξαn} ≥ min {δ1, δ2} . (2.4)Example 2.4. We consider the case of α = θ1, θ2 which are defined in Examples
2.1 and 2.2, respectively. Tijdeman’s result (1.2) and Dubickas’s lower bound
(1.5) imply

0.02 ≤ inf
ξ 6=0

lim sup
n→∞

{ξθn1 } ≤ 0.04170 . . .

and

0.01960 . . . ≤ inf
ξ 6=0

lim sup
n→∞

{ξθn2 } ≤ 0.04219 . . . .

By using Theorems 2.3 and 2.4, we obtain

0.02003 . . . ≤ inf
ξ 6=0

lim sup
n→∞

{ξθn1 } ≤ 0.02127 . . .

and

0.02049 . . . ≤ inf
ξ 6=0

lim sup
n→∞

{ξθn2 } ≤ 0.02941 . . . ,

respectively. In particular, Theorem 2.4 gives improvements of (1.5) in these
cases.

8
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In the case of α = θ2, we calculate δ2 in the following way. If l ≤ 0, then

ηl =
αl

(1− α−1α2)(1− α−1α3)
;

otherwise,

ηl ≤
∞∑

i=0

α−iρi(α2, α3)ρl(α2, α3)

=
ρl(α2, α3)

(1− α−1α2)(1− α−1α3)
.

Thus, we obtain

δ2 =
1

2α(1− α−1α2)(1− α−1α3)
.

Let us show that Theorem 2.4 gives the best result in the case where α is a
Pisot number satisfying δ1 ≥ δ2.Theorem 2.5. Let α be a Pisot number. We denote the conjugates of α by
α1 = α, α2, . . . , αd. Suppose that all αj are positive. Let δ1, δ2 be defined as in
Theorem 2.4. Assume further δ1 ≥ δ2. Then

inf
ξ 6∈Q(α)

lim sup
n→∞

{ξαn} = δ2.

Moreover, the infimum is attained by the transcendental number

ξ0(α) =
1

α
∏d

j=2(1− α−1αj)

∞∑

m=1

α−m!.

By applying Theorem 2.5 in the case where α is a quadratic Pisot number,
we obtain the following:Corollary 2.6. Let α be a quadratic Pisot number with the conjugate α2.
Assume that 0 < α2 < 2−

√
2(= 0.5857 . . .). Then

inf
ξ 6∈Q(α)

lim sup
n→∞

{ξαn} =
1

α− α2
.

Moreover, the infimum is attained by the transcendental number

ξ0(α) =
1

α− α2

∞∑

m=1

α−m!.

9
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√
3(= 3.732 · · · ). Then the conjugate θ′4 satisfies

0 < θ′4 < 2−
√
2. Thus Corollary 2.6 implies

inf
ξ 6∈Q(θ4)

lim sup
n→∞

{ξθn4 } =
1

2
√
3
= 0.2886 . . . .

3. Symmetric homogeneous polynomials

Let us introduce basic results of the symmetric polynomials ρm(X1, . . . , Xt)
with t,m ≥ 0 defined by (2.1). In this section we fix t ≥ 1. The generating
function of these polynomials is given by

∞∑

m=0

ρm(X1, . . . , Xt)Y
m =

∞∑

m=0

∑

i1,i2,...,it≥0

i1+i2+···+it=m

(X1Y )i1(X2Y )i2 · · · (XtY )it

=
∑

i1,i2,...,it≥0

(X1Y )i1(X2Y )i2 · · · (XtY )it

=
1

∏t

i=1(1−XiY )
. (3.1)

Therefore (
∞∑

m=0

ρm(X1, . . . , Xt)Y
m

)
t∏

i=1

(1−XiY ) = 1,

and so, for m ≥ 1,

min{m,t}∑

h=0

(−1)hρm−h(X1, . . . , Xt)eh(X1, . . . , Xt) = 0, (3.2)

where eh(X1, . . . , Xt) is the elementary symmetric polynomialof degree h,namely

eh(X1, . . . , Xt) =





1 (h = 0),∑

1≤i1<i2<···<ih≤t

Xi1Xi2 · · ·Xih (h ≥ 1). (3.3)

The following result is Lemma 3.1 of [10]:Lemma 3.1. If t ≥ 1, then

ρm(X1, . . . , Xt) =

t∑

i=1



∏

1≤j≤t

j 6=i

1

Xi −Xj


Xm+t−1

i (3.4)

10
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for any m ≥ 0.

Let us define ρm(X1, . . . , Xt) also for a negative integer m by (3.4). Then we
have the following:Lemma 3.2. If t ≥ 1 and if −t+ 1 ≤ l ≤ −1, then

ρl(X1, . . . , Xt) = 0.

P r o o f. Put

gm(X1, . . . , Xt) =

t∑

h=0

(−1)hρm−h(X1, . . . , Xt)eh(X1, . . . , Xt)

for m ∈ Z. Then, by Lemma 3.1, there exist rational functions bi(X1, . . . , Xt) ∈
Q(X1, . . . , Xt) with 1 ≤ i ≤ t such that

gm(X1, . . . , Xt) =

t∑

i=1

bi(X1, . . . , Xt)X
m
i .

If m ≥ t, then gm(X1, . . . , Xt) = 0 by (3.2). Thus bi(X1, . . . , Xt) = 0 for any i
with 1 ≤ i ≤ t and so

gm(X1, . . . , Xt) = 0 (3.5)

for every m ∈ Z.

In the case of 1 ≤ m ≤ t− 1, by combining (3.2) and (3.5), we get

0 =

t∑

h=m+1

(−1)hρm−h(X1, . . . , Xt)eh(X1, . . . , Xt)

=

−1∑

h=m−t

(−1)m−hem−h(X1, . . . , Xt)ρh(X1, . . . , Xt) (3.6)

We now show Lemma 3.2 by induction on l. In the case of l = −1, we can
deduce ρ−1(X1, . . . , Xt) = 0 by substituting m = t− 1 into (3.6). Next, assume
for l with −t+ 1 ≤ l ≤ −2 that

ρ−1(X1, . . . , Xt) = · · · = ρl+1(X1, . . . , Xt) = 0.

Then, by substituting m = t+ l into (3.6), we obtain

ρl(X1, . . . , Xt) = 0.

�
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4. Representation of fractional parts

Let us recall the relation of the decimal expansion of a real number ξ to
the fractional parts of the geometric sequence ξ10n (n = 0, 1, . . .). For sim-
plicity, assume 0 < ξ < 1. We now write the decimal expansion of ξ by∑∞

i=1 s−i(10; ξ)10
−i with 0 ≤ s−i(10; ξ) ≤ 9. Then

{ξ10n} =

∞∑

i=1

s−i−n(10; ξ)10
−i (n = 0, 1, . . .), (4.1)

Note that the right-hand side of (4.1) is expressed by the iteration of the shift
operator to the sequence (s−i(10; ξ))

∞
i=1.

In this section, we give an analogue of the decimal numeral system to calculate
powers of algebraic numbers; we represent the integral and fractional parts by
using the symmetric polynomials ρm defined in the previous section. Let α > 1
be an algebraic number with minimal polynomial adX

d + · · ·+ a0 ∈ Z[X] (ad >
0). In what follows, we assume that α has no conjugate with absolute value 1.
Let p be the number of the conjugates of α whose absolute values are greater
than 1. Moreover, we write the conjugates of α by α1 = α, . . . , αp, α1+p, . . . , αd,
where

|αi| > 1 (i = 1, . . . , p)

and

|αj | < 1 (j = 1 + p, . . . , d).

We define the m-th digit of a real number ξ by

sm(α; ξ) = ad[ξα
−m] + ad−1[ξα

−m−1] + · · ·+ a0[ξα
−m−d].

For instance, if α = 10 and if ξ ≥ 0, then the m-th digit is

sm(10; ξ) = [ξ10−m]− 10[ξ10−m−1],

which coincides with the usual decimal digit. Let us call (sm(α; ξ))∞m=−∞ the
digital sequence of ξ. We now introduce some easy consequences from the defi-
nition.Lemma 4.1. (1) If ξ ≥ 0, then sm(α; ξ) = 0 for sufficiently large m.

(2) For any integer m,

−L+(α) < sm(α; ξ) < L−(α).

12
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P r o o f. The first statement is obvious. Note that ad > 0 and min{ad, . . . , a0} <
0. The second statement is obtained by

sm(α; ξ) +

d∑

i=0

ad−i{ξα−m−i} = ξα−m−d

d∑

i=0

ad−iα
d−i = 0

and 0 ≤ {ξα−m−i} < 1 for any i with 0 ≤ i ≤ d. �Proposition 4.1. (1) If ξ ≥ 0, then the integral part [ξαn] and fractional part
{ξαn} are given by

[ξαn] =
1

ad

∞∑

i=0

∞∑

j=0

ρi(α1, . . . , αp)ρj(α1+p, . . . , αd)si+j−n(α; ξ) (4.2)

and

{ξαn} =
1

ad

−1∑

i=−∞

∞∑

j=0

ρi(α1, . . . , αp)ρj(α1+p, . . . , αd)si+j−n(α; ξ), (4.3)

respectively. In particular,

ξαn =
1

ad

∞∑

i=−∞

∞∑

j=0

ρi(α1, . . . , αp)ρj(α1+p, . . . , αd)si+j−n(α; ξ). (4.4)

(2) If ξ < 0, then the representation of fractional part (4.3) holds.Remark 4.1. Let ξ ≥ 0. Then, by the first statement of Lemma 4.1, the
right-hand side of (4.2) is a finite sum.

Now note that the sequence (sm(α; ξ))∞m=−∞ is bounded by the second state-
ment of Lemma 4.1 and that the series

−1∑

i=−∞

∞∑

j=0

αi
hα

j
l

converges for every h, l with 1 ≤ h ≤ p, 1 + p ≤ l ≤ d. Thus, by using Lemma
3.1, we conclude that the right-hand side of (4.3) converges.Remark 4.2. Let M (α) = ad|α1 · · ·αp| be the Mahler measure of α and put

σ(α) = (−1)p−1 adα1 · · ·αp

M (α)
∈ {1,−1}.

13
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Then by Lemma 3.2 and

ρi(α1, . . . , αp) =

p∑

l=1



∏

1≤h≤p

h6=l

−α−1
l α−1

h

α−1
l − α−1

h


αi+p−1

l

= (−1)p−1

(
p∏

h=1

α−1
h

)
ρ−i−p(α

−1
1 , . . . , α−1

p ),

the representation (4.3) is rewritten by

{ξαn}= σ(α)

M (α)

∞∑

i=0

∞∑

j=0

ρi(α
−1
1 , . . . , α−1

p )ρj(α1+p, . . . , αd)sj−i−n−p(α; ξ) (4.5)

Moreover, if ξ ≥ 0, then

[ξαn] =
1

ad

∞∑

i=0

ρi(α1, . . . , αd)si−n(α; ξ) (4.6)

by using (2.1).

P r o o f o f P r o p o s i t i o n 4.1. It suffices to check (4.5) and (4.6). We put

q = d− p, a = (α1, . . . , αp), and b = (α1+p, . . . , αd).

Moreover, write

a · b = (α1, . . . , αp, α1+p, . . . , αd),

a
−1 = (α−1

1 , . . . , α−1
p ).

For h ≥ 0 and t ≥ 1, let eh(X1, . . . , Xt) be defined by (3.3). By relations between
coefficients and roots of a polynomial, we get

1

ad
sm(α; ξ) =

d∑

h=0

(−1)heh(a · b)[ξα−m−h],

Thus, if ξ ≥ 0, then

1

ad

∞∑

i=0

ρi(a · b)si−n(α; ξ) =

∞∑

i=0

d∑

h=0

(−1)heh(a · b)ρi(a · b)[ξαn−i−h]

=

∞∑

l=0

[ξαn−l]

min{l,d}∑

h=0

(−1)hρl−h(a · b)eh(a · b)

= [ξαn],

where the last equality follows from (3.2).

14
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Similarly, by sm(α; ξ) = −∑d

i=0 ad−i{ξα−m−i} and

em(a) = α1 · · ·αpep−m(a−1) (0 ≤ m ≤ p),

we get

1

ad
sm(α; ξ) = −

d∑

h=0

(−1)heh(a · b){ξα−m−h}.

If q = 0, then p = d. Thus

1

ad
sm(α; ξ) = (−1)d−1α1α2 · · ·αd

d∑

h=0

(−1)heh(a
−1){ξαh−d−m},

and so by (3.2)

σ(α)

M (α)

∞∑

i=0

ρi(a
−1)s−i−n−d(α; ξ)

=

∞∑

i=0

d∑

h=0

(−1)heh(a
−1)ρi(a

−1){ξαh+i+n} = {ξαn},

which implies (4.5).

In the case of q ≥ 1, we have

1

ad
sm(α; ξ) = −

p∑

h=0

q∑

l=0

(−1)h+leh(a)el(b){ξα−m−h−l}

= (−1)p−1α1 · · ·αp

p∑

h=0

q∑

l=0

(−1)h+leh(a
−1)el(b){ξαh−p−l−m}.

Thus by using (3.2) we obtain

σ(α)

M (α)

∞∑

i=0

∞∑

j=0

ρi(a
−1)ρj(b)sj−i−n−p(α; ξ)

=

∞∑

i=0

p∑

h=0

∞∑

j=0

q∑

l=0

(−1)heh(a
−1)ρi(a

−1)(−1)lel(b)ρj(b){ξαh+i+n−j−l}

=

∞∑

i=0

p∑

h=0

(−1)heh(a
−1)ρi(a

−1){ξαh+i+n} = {ξαn}.

�
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HAJIME KANEKOExample 4.1. Let α be a rational number a/b, where a > b > 0 and gcd(a, b) =
1. Then Proposition 4.1 implies

[
ξ
(a
b

)n]
=

1

b

∞∑

i=0

(a
b

)i
si−n

(a
b
; ξ
)
,

{
ξ
(a
b

)n}
=

1

b

−1∑

i=−∞

(a
b

)i
si−n

(a
b
; ξ
)

for ξ ≥ 0. This is the companion representation of ξ, which is written in [1].Example 4.2. Let α > 1 be a quadratic irrational number. We assume p = 1.
Then by Proposition 4.1

[ξαn] =
1

a2

∞∑

i=0

ρi(α, α2)si−n(α; ξ),

{ξαn} =
1

a2α

∞∑

i=0

∞∑

j=0

α−iαj
2sj−i−n−1(α; ξ)

=
1

a2(α− α2)

∞∑

h=−∞

αmin{0,h}α
max{0,h}
2 sh−n−1(α; ξ).

5. Digital sequences

Let α > 1 be an algebraic number with no conjugate whose absolute value is
1. We use the same notation as in the previous section. We observed for a non-
negative ξ that the integral part [ξαn] and the fractional part {ξαn} are written
by the digital sequence (sm(α; ξ))∞m=−∞. We now characterize this sequence by
considering the generating function of [ξαn] and {ξαn} (n = 0, 1, . . .). Recall
that if ξ ≥ 0, then sm(α; ξ) = 0 for any sufficiently large m.Proposition 5.1. Let ξ be a nonnegative number.
(1) For any integer n, the finite sum

1

ad

∞∑

i=0

ρi(α1, . . . , αd)si−n(α; ξ)

16
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is a rational integer.
(2) If 2 ≤ k ≤ p, then

∞∑

i=−∞

αi
ksi(α; ξ) = 0.

P r o o f. The first statement is obvious by Proposition 4.1. Now we prove the
second one. Since sm(α;α−1ξ) = sm+1(α; ξ), we may assume [ξαm] = 0 for any
m < 0. Put

f(z) =

∞∑

n=0

[ξαn]zn, g(z) =

∞∑

n=0

{ξαn}zn.

Then we have

ξ

1− αz
− g(z) = f(z).

Let P ∗
α(z) = a0z

d + a1z
d−1 + · · ·+ ad. Thus we get

(
ξ

1− αz
− g(z)

)
P ∗
α(z) = f(z)P ∗

α(z)

=

∞∑

h=0

∑

i,j≥0

i+j=h

[ξαi]ad−jz
h

=

∞∑

h=0

h∑

i=h−d

[ξαi]ad−h+iz
h =

∞∑

h=0

s−h(α; ξ)z
h.

Consider the region of z ∈ C satisfying
(

ξ

1− αz
− g(z)

)
P ∗
α(z) =

∞∑

h=0

s−h(α; ξ)z
h. (5.1)

Since 0 ≤ {ξαn} < 1 for any n, the left-hand side of (5.1) is a meromorphic
function on {z ∈ C||z| < 1}. Moreover, because the sequence s−h(α; ξ) (h =
0, 1, . . .) is bounded, the right-hand side of (5.1) converges for |z| < 1. Hence
(5.1) holds for |z| < 1. In particular, since the left-hand side of (5.1) has a zero
at z = α−1

k with 2 ≤ k ≤ p, we obtain

0 =
∞∑

i=0

α−i
k s−i(α; ξ) =

∞∑

i=−∞

αi
ksi(α; ξ).

�
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The decimal numeral system gives the correspondence between nonnegative
numbers and sequences of digits 0, 1, . . . , 9. In what follows, we show that se-
quences satisfying the assumptions of Proposition 5.1 represents the fractional
parts of certain geometric progressions.Proposition 5.2. Let x = (xm)∞m=−∞ be a bounded sequence of integers. As-
sume that xm = 0 for all sufficiently large m. Suppose further that

∞∑

i=−∞

αi
kxi = 0 (5.2)

for any k with 2 ≤ k ≤ p and that the finite sum

1

ad

∞∑

i=0

ρi(α1, . . . , αd)xi−n (5.3)

is a rational integer for any n. Let

ξ = ξ(x) =
1

ad

∞∑

i=−∞

∞∑

j=0

ρi(α1, . . . , αp)ρj(α1+p, . . . , αd)xi+j. (5.4)

Then for any n

ξαn =
1

ad

∞∑

i=−∞

∞∑

j=0

ρi(α1, . . . , αp)ρj(α1+p, . . . , αd)xi+j−n. (5.5)

In particular,

ξαn ≡ 1

ad

−1∑

i=−∞

∞∑

j=0

ρi(α1, . . . , αp)ρj(α1+p, . . . , αd)xi+j−n mod ZRemark 5.1. Let n be an integer. Then, since xm = 0 for all sufficiently large
m, the series

1

ad

∞∑

i=0

∞∑

j=0

ρi(α1, . . . , αp)ρj(α1+p, . . . , αd)xi+j−n

=
1

ad

∞∑

i=0

ρi(α1, . . . , αd)xi−n

is a finite sum. By using Lemma 3.1, we also deduce that the series

1

ad

−1∑

i=−∞

∞∑

j=0

ρi(α1, . . . , αp)ρj(α1+p, . . . , αd)xi+j−n

converges.

18
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P r o o f. Since (5.3) is a rational integer, it suffices to check (5.5). By using (3.4)
and (5.2), we get

ξ =
1

ad

∞∑

j=0

ρj(α1+p, . . . , αd)

∞∑

h=−∞

ρh−j(α1, . . . , αp)xh

=
1

ad

∞∑

j=0

ρj(α1+p, . . . , αd)

∞∑

h=−∞

(
p∏

l=2

1

α− αl

)
αh−j+p−1xh.

Thus we get

ξαn =
1

ad

∞∑

j=0

ρj(α1+p, . . . , αd)

∞∑

h=−∞

(
p∏

l=2

1

α− αl

)
αn+h−j+p−1xh

=
1

ad

∞∑

j=0

ρj(α1+p, . . . , αd)

∞∑

h=−∞

ρh−j(α1, . . . , αp)xh−n

=
1

ad

∞∑

i=−∞

∞∑

j=0

ρi(α1, . . . , αp)ρj(α1+p, . . . , αd)xi+j−n.

�Remark 5.2. ξ(x) defined by Proposition 5.2 is not necessarily a nonnegative
number.

In the end of this section, we introduce a lemma which we use to prove
Corollary 2.2 and the first statement of Theorem 2.3.Lemma 5.1. Let (um)∞m=−d and (ym)∞m=0 be sequences of integers. Assume that
(um)∞m=−d is not ultimately periodic and that (ym)∞m=0 is ultimately periodic.
Suppose further

ym = adum + ad−1um−1 + · · ·+ a0um−d

for any m ≥ 0. Then ad = 1, namely, α is an algebraic integer.

For the proof of Lemma 5.1, we begin with Lemma 1 of [5] which is rewritten
from [4]:Lemma 5.2. If P (x) = adx

d+ad−1x
d−1+· · ·+a0 = ad(x−α1) · · · (x−αd) ∈ C[x]

has distinct roots and

X1α
j
1 + · · ·+Xdα

j
d = Zj , j = 0, 1, . . . , d− 1,
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then, for j = 1, 2, . . . , d,

Xj =
1

P ′(αj)

d−1∑

k=0

βj,kZk,

where

βj,k =

d∑

l=k+1

alα
l−k−1
j .

P r o o f o f L e mm a 5.1. Assume that ad ≥ 2. Write the period of the se-
quence (ym)∞m=0 by T . Put wn = un+T − un. If n is sufficiently large, then
yn+T = yn and so

adwn + ad−1wn−1 + · · ·+ a0wn−d = 0.

Hence, there are a natural number n0 and complex numbers ξ1, . . . , ξd such that,
for any n ≥ n0,

wn = ξ1α
n
1 + · · ·+ ξdα

n
d . (5.6)

Let m ≥ n0. Apply Lemma 5.2 to the linear system

X1α
n−m
1 + · · ·+Xdα

n−m
d = wn, n = m,m+ 1, . . . ,m+ d− 1

with variables Xj = ξjα
m
j , j = 1, 2, . . . , d. Thus we get

P ′
α(αj)ξjα

m
j = Gm(αj) (5.7)

for each j = 1, 2, . . . , d, where Gm is an integer polynomial of degree at most
d− 1.

Now suppose that ξ1 = 0. By (5.7), ξ1, . . . , ξd are algebraic numbers and
conjugate over Q. Therefore, ξ1 = · · · = ξd = 0. By (5.6) we have wn =
un+T − un = 0 for n ≥ n0. This is impossible since (um)∞m=−d is not ultimately
periodic. Finally we obtain ξ1 6= 0.

Take a nonzero integer R for which

R

P ′
α(α)ξ1

,
Rα

P ′
α(α)ξ1

, . . . ,
Rαd−1

P ′
α(α)ξ1

are algebraic integers. Then Rαm = (RGm(α))/(P ′
α(α)ξ1) is an algebraic integer

for every sufficiently large m. However, by considering the factorization of Rαm

into prime ideals, we see that this is impossible since α is not an algebraic
integer. �
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6. Proof of the main results

P r o o f o f T h e o r e m 2.1. Let adX
d + · · ·+ a0 ∈ Z[X] be the minimal poly-

nomial of α. Define the sequences (um)∞m=−d and (ym)∞m=0 by

u−d = u−d+1 = · · · = u−1 = 0,

u0 = 1, y0 = ad

and, for m ≥ 1,

um = −
[
ad−1um−1 + · · ·+ a0um−d

ad

]
,

ym = ad

{
ad−1um−1 + · · ·+ a0um−d

ad

}
.

Then we have

ym = adum + ad−1um−1 + · · ·+ a0um−d

for any m ≥ 0. Moreover, ym ∈ {0, 1, . . . , ad − 1} for m ≥ 1.

Put

f(z) =

∞∑

n=0

ynz
n, g(z) =

∞∑

n=0

unz
n,

and so

f(z) = (ad + ad−1z + · · ·+ a0z
d)g(z)

= ad(1− αz)

d∏

i=2

(1− αiz)g(z).

Therefore, by using (3.1) we get

g(z) =
1

ad

∞∑

i=0

yiz
i

∞∑

j=0

ρj(α, α2, . . . , αd)z
j

=
1

ad

∞∑

n=0

∑

i+j≥0

i+j=n

yiρj(α, α2, . . . , αd)z
n.

We now define the two-sided sequence x = (xm)∞m=−∞ as follows:

xm =

{
0 (m > 0),

y−m (m ≤ 0).
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Then x satisfies the assumptions of Proposition 5.2. In fact, if n < 0, then (5.3)
is zero. In the case where n ≥ 0,

1

ad

∞∑

i=0

ρi(α, α2, . . . , αd)xi−n = un

is a rational integer. Moreover, (5.2) clearly holds since p = 1. Put

vn =
1

ad

−1∑

i=−∞

∞∑

j=0

αiρj(α2, . . . , αd)xi+j−n

for integer n. Then Proposition 5.2 implies

ξ(x)αn = un + vn (6.1)

and

ξ(x)αn ≡ vn mod Z, (6.2)

where

ξ(x) =
1

ad

∞∑

i=−∞

∞∑

j=0

αiρj(α2, . . . , αd)xi+j

=
1

ad

∞∑

j=0

ρj(α2, . . . , αd)α
−j

∞∑

h=−∞

xhα
h

=
1

ad

∞∑

j=0

ρj(α
−1α2, . . . , α

−1αd)

0∑

h=−∞

xhα
h

=
1

ad
∏d

i=2(1− α−1αi)

0∑

h=−∞

xhα
h.

Thus ξ(x) 6= 0 since x0 = ad and xm ≥ 0 for m ≤ −1. Since 0 ≤ xm ≤ ad − 1
for m ≤ −1 and since

lim
n→∞

1

ad

∑

i<0,j≥0

i+j=n

αiρj(α2, . . . , αd)x0 = 0,

every limit point of the sequence (vm)∞m=0 is denoted by

v′ =
1

ad

−1∑

i=−∞

∞∑

j=0

αiρj(α2, . . . , αd)θi,j,
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where θi,j ∈ {0, 1, . . . , ad − 1}. Putting

ν+ =

∞∑

j=0

max{0, ρj(α2, . . . , αd)} (6.3)

and

ν− =

∞∑

j=0

max{0,−ρj(α2, . . . , αd)}, (6.4)

we obtain

− ad − 1

ad(α− 1)
ν− ≤ v′ ≤ ad − 1

ad(α− 1)
ν+. (6.5)

By (6.2), (6.5) and ν = ν+ + ν−, we verified the theorem. �

P r o o f o f C o r o l l a r y 2.2. We use the same notation as in the proof of The-
orem 2.1. In the case of −1 < α2 < 0, the corollary follows from (6.5) and

ν+ =
1

1− α2
2

, ν− = − α2

1− α2
2

.

We now assume 0 < α2 < 1. Then vn is rewritten by

vn =
1

a2(α− α2)

n+1∑

h=−∞

αmin{0,h}α
max{0,h}
2 xh−n−1.

(6.5) implies that the sequence (vm)∞m=0 is bounded. On the other hand, by using
(6.1) and ξ(x) 6= 0, we deduce that the sequence (um)∞m=−d is not ultimately
periodic. Thus, since a2 ≥ 2, Lemma 5.1 means that the sequence (x−m)∞m=0

is not ultimately periodic. In particular, by xm ∈ {0, 1, . . . , a2 − 1} (m ≤ −1),
there exists an M > 0 with

x−M ≤ a2 − 2. (6.6)
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By (6.6) and x0 = a2, if n ≥M , then

vn ≤ 1

a2(α− α2)

(
∞∑

h=−∞
h6=n+1,n+1−M

αmin{0,h}α
max{0,h}
2 (a2 − 1)

+αn+1
2 a2 + αn+1−M

2 (a2 − 2)

)

=
1

a2(α− α2)

(
(a2 − 1)

∞∑

h=−∞

αmin{0,h}α
max{0,h}
2 + αn+1

2 − αn+1−M
2

)

<
a2 − 1

a2(α− 1)(1− α2)
=

a2 − 1

|Pα(1)|

for n ≥M . By putting

ξ′ = ξ(x)αM ,

we obtain

{ξ′αn} < a2 − 1

|Pα(1)|

for any n ≥ 0. �

P r o o f o f T h e o r e m 2.3. For the proof of the first statement, we use the
same notation as the proof of Theorem 2.1. If d ≥ 2, then we may assume that
1 > α2 > . . . > αd > 0. Then by using Lemma 3.1 we get

lim
m→∞

ρm(α2, . . . , αd)α
−m
2 =

d∏

j=3

α2

α2 − αj

.

Hence, there is an M > 0 such that, for any m1,m2 ≥ 0 with m1 ≥ m2 +M ,

ρm1
(α2, . . . , αd) < ρm2

(α2, . . . , αd).

On the other hand, we can deduce that the sequence (x−m)∞m=0 is not ultimately
periodic in the same way as in the proof of Corollary 2.2. Therefore, there exists

an M̃ > 0 satisfying M̃ > M and x
−M̃

≤ ad − 2. Thus by using x0 = ad we get,
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for n ≥ M̃ ,

0 ≤ vn ≤ 1

ad

∑

i<0,j≥0

i+j 6=n,n−M̃

αiρj(α2, . . . , αd)(ad − 1)

+
1

ad

∑

i<0,j≥0

i+j=n

αiρj(α2, . . . , αd)ad +
1

ad

∑

i<0,j≥0

i+j=n−M̃

αiρj(α2, . . . , αd)(ad − 2)

=
1

ad

∑

i<0,j≥0

αiρj(α2, . . . , αd)(ad − 1)

+
1

ad

∑

i<0,j≥0

i+j=n

αiρj(α2, . . . , αd)−
1

ad

∑

i<0,j≥0

i+j=n−M̃

αiρj(α2, . . . , αd)

Since M̃ > M , we obtain

1

ad

∑

i<0,j≥0

i+j=n

αiρj(α2, . . . , αd)−
1

ad

∑

i<0,j≥0

i+j=n−M̃

αiρj(α2, . . . , αd)

=
1

ad

−1∑

i=−∞

αi
(
ρn−i(α2, . . . , αd)− ρ

n−i−M̃
(α2, . . . , αd)

)
< 0,

so

0 ≤ vn <
ad − 1

ad

−1∑

i=−∞

αi

∞∑

j=0

ρj(α2, . . . , αd) =
ad − 1

|Pα(1)|
.

By combining this inequality with (6.2), we proved the first statement.

We now verify the second statement. We define ν+ and ν− by (6.3) and (6.4),
respectively. Let us choose a positive integer A with

{
− ad − 1

ad(α− 1)
ν− +

A

|Pα(1)|

}
∈
(
0,

1

|Pα(1)|

]
. (6.7)

Write the left-hand side of (6.7) as η. Put Pα(X) = adX
d + · · ·+ a0. We define

the sequences (u′m)∞m=−d and (y′m)∞m=0 by

u′−d = u′−d+1 = · · · = u′−1 = 0

and, for m ≥ 0,

u′m = −
[−A+ ad−1u

′
m−1 + · · ·+ a0u

′
m−d

ad

]
,

y′m = A+ ad

{−A+ ad−1u
′
m−1 + · · ·+ a0u

′
m−d

ad

}
.
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Thus we get, for any m ≥ 0,

y′m = adu
′
m + ad−1u

′
m−1 + · · ·+ a0u

′
m−d

and

y′m ∈ {A,A+ 1, . . . , A+ ad − 1}.
Since the rest of proof is the same as that of Theorem 2.1 we give only its sketch.

Define x
′ = (x′m)∞m=−∞ and ξ(x′) by

x′m =

{
0 (m > 0),

y′−m (m ≤ 0)

and by (5.4), respectively. Then, because x′m > 0 for m ≤ 0, we get ξ(x′) 6= 0.
Moreover, every limit point of the sequence ξαn mod Z (n = 0, 1, . . .) is written
by

1

ad

−1∑

i=−∞

∞∑

j=0

αiρj(α2, . . . , αd)θ
′
i,j mod Z,

where θi,j ∈ {A,A+ 1, . . . , A+ ad − 1}. By putting

w′ =
1

ad

−1∑

i=−∞

∞∑

j=0

αiρj(α2, . . . , αd)θ
′
i,j,

we get

− ad − 1

ad(α− 1)
ν− +

A

|Pα(1)|
≤ w′ ≤ ad − 1

ad(α− 1)
ν+ +

A

|Pα(1)|
.

Therefore,

0 < η ≤ w′ −
[
− ad − 1

ad(α− 1)
ν− +

A

|Pα(1)|

]

≤ η +
ad − 1

ad(α− 1)
ν <

1

|Pα(1)|
+

1

2
≤ 1.

Consequently, we get

w′ mod Z ∈ τ

([
η, η +

ad − 1

ad(α− 1)
ν

])
.

Since
[
η, η +

ad − 1

ad(α− 1)
ν

]
⊂ (0, 1),
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we obtain

η ≤ lim inf
n→∞

{ξαn} ≤ lim sup
n→∞

{ξαn} ≤ η +
ad − 1

ad(α− 1)
ν.

�

P r o o f o f T h e o r e m 2.4. Let adX
d + · · ·+ a0 ∈ Z[X] be the minimal poly-

nomial of α. It suffices to prove the theorem in the case of

lim sup
n→∞

{ξαn} < δ1.

Moreover, we may assume

{ξαn} < δ1

for any n ≥ −d. Let σ(α) be defined as in Remark 4.2. We verify that if m ≤ 0,
then σ(α)sm(α; ξ) is a nonnegative integer. Suppose σ(α) = (−1)p−1 = 1. Then,
since Pα(X) has exactly p zeros on the interval (1,∞),

0 > Pα(1) = L+(α)− L−(α),

namely,

δ1 =
1

L+(α)
.

Thus we get

sm(α; ξ) = −
d∑

i=0

ad−i{ξα−m−i} > −L+(α)δ1 = −1.

In the case of σ(α) = −1, we have

0 < Pα(1) = L+(α)− L−(α),

namely,

δ1 =
1

L−(α)
.

Hence,

sm(α; ξ) = −
d∑

i=0

ad−i{ξα−m−i} < L−(α)δ1 = 1.

Since lim|l|→∞ ηl = 0, there exists an N ∈ Z such that ηN = supl∈Z ηl. By (4.5)
we get

{ξαn} =
1

M (α)

∞∑

l=−∞

ηlσ(α)sl−n−p(α; ξ).
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Lemma 1 of [6] implies that σ(α)sm(α; ξ) ≥ 1 for infinitely many m ≤ 0. Thus,
since ηl ≥ 0 for any integer l and

lim
n→∞

1

M (α)

∞∑

l=n+p+1

ηlσ(α)sl−n−p(α; ξ) = 0,

we obtain

lim sup
n→∞

{ξαn} ≥ 1

M (α)
ηN = δ2.

�

P r o o f o f T h e o r e m 2.5. Theorem 2.4 means

inf
ξ 6∈Q(α)

lim sup
n→∞

{ξαn} ≥ δ2.

It suffices to show that there exists a ξ 6∈ Q(α) with

lim sup
n→∞

{ξαn} = δ2.

Let the sequence x = (xm)∞m=−∞ be defined as follows:

xm =

{
1 (n = −m! for some m ≥ 1),
0 (otherwise).

Then x satisfies the assumptions of Propositions 5.2. We have

ξ(x) =
1

α

∞∑

i=−∞

∞∑

j=0

αiρj(α2, . . . , αd)xi+j

=
1

α

∞∑

j=0

α−jρj(α2, . . . , αd)

∞∑

h=−∞

αhxh.

The transcendency of ξ(x) has been proved, for instance, in [13]. By proposition
5.2 we get

ξ(x)αn ≡ 1

α

∞∑

i=0

∞∑

j=0

α−iρj(α2, . . . , αd)xj−i−n−1 mod Z,

and so

ξ(x)αn ≡ 1

α

∞∑

l=−∞

ηlxl−n−1 mod Z.
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Note that there exists an N with ηN = supl∈Z ηl. Put Λ = {m! +N − 1|m ≥ 1}.
Then we get

lim
n→∞,n∈Λ

{ξ(x)αn} =
ηN
α

= δ2

and

lim sup
n→∞,n6∈Λ

{ξ(x)αn} < δ2.

Thus,

lim sup
n→∞

{ξ(x)αn} = δ2.

�

P r o o f o f C o r o l l a r y 2.6. Values δ1, δ2, which are defined in Theorem 2.4,
are rewritten by

δ1 =
1

a2 + a0
=

1

1 + αα2

and

δ2 =
1

α− α2
.

It suffices to show that

δ1 − δ2 =
α− 1− (α+ 1)α2

(1 + αα2)(α− α2)
≥ 0. (6.8)

First, we assume α > 1 + 2
√
2. Then

δ1 − δ2 >
α− 1 + (−2 +

√
2)(α+ 1)

(1 + αα2)(α− α2)
> 0.

On the other hand, it is easily seen that if α ≤ 1 + 2
√
2 and α2 < 2−

√
2, then

α = 2 +
√
3 or α = (3 +

√
5)/2. Thus (6.8) holds in each case. �

7. Note on Mahler’s Z-numbers

Mahler conjectured that there does not exist a positive number ξ satisfying
{
ξ

(
3

2

)n}
<

1

2

for all integers n ≥ 0. Such a ξ is called a Z-number. Mahler’s First Theorem
[8, 12] implies for any u ≥ 0 that there exists at most one Z-number whose
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integral part coincides with u. Flatto [8] generalized the theorem above as
follows.

Let u ≥ 0 and a > b ≥ 1 be integers. Assume that a and b are coprime. Then
there exists at most one positive ξ satisfying

[ξ] = u

and, for any n ≥ 0,

{
ξ
(a
b

)n}
< min

{
1

b
,
b

a

}
.

In this section we introduce generalization of these results to the powers of
algebraic numbers.Theorem 7.1. Let α > 1 be an algebraic number and let ad(> 0) be the leading
coefficient of the minimal polynomial of α. Suppose that α has no conjugate on
the unit circle. Let y be a positive number. If L−(α) ≥ L+(α), then assume that

L+(α)y + [L−(α)y] ≤ ad. (7.1)

Otherwise, suppose that

L−(α)y + [L+(α)y] ≤ ad. (7.2)

Then there exist at most countably many nonzero ξ such that

{ξαn} < y

for any n.Example 7.1. Let us recall that θ1(= 24.97 . . .) is the unique zero of the poly-
nomial 2X2 − 50X + 1 with X > 1. We have

L+(θ1) = 3, L−(θ1) = 50.

Put

Sy = {ξ 6= 0|{ξθn1 } < y for any n ≥ 0}

for positive y. If y < 1/25 = 0.04, then (7.1) holds. Thus the cardinality of Sy

is at most countable by Theorem 7.1. Assume further y ≥ 1/47 = 0.02127 . . ..
Then Sy is not empty by Example 2.1. Moreover, Sy is a countably infinite set.
In fact, take an element ξ = ξ(θ1) ∈ Sy. So we have

Sy ⊃ {ξθm1 |m ≥ 0}.
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P r o o f o f T h e o r e m 7.1. Suppose

L−(α) ≥ L+(α). (7.3)

First, note that the set S of ξ satisfying {ξαn} = 0 for some n ≥ 0 is countable.
In fact,

S ⊂ {kαl|k, l ∈ Z}.
Next, let S′ be the set of ξ such that

0 < {ξαn} < y (7.4)

for any n ≥ 0. In what follows, we prove that the cardinality of S′ is at most
countable. Put

S+ = S′ ∩ (0,∞), S− = S′ ∩ (−∞, 0).

Take any ξ ∈ S+ and n ≥ d. Let adX
d + · · · + a0 ∈ Z[X] be the minimal

polynomial of α. Since

d∑

i=0

ad−iξα
n−i =

d∑

i=0

ad−i([ξα
n−i] + {ξαn−i}) = 0,

we get

[ξαn] = − 1

ad

d∑

i=1

ad−i[ξα
n−i]− 1

ad

d∑

i=0

ad−i{ξαn−i}. (7.5)

By putting

Ih = Ih(y) =

(
h

ad
− L+(α)

ad
y,
h

ad
+
L−(α)

ad
y

)
(0 ≤ h ≤ ad − 1),

we have

− 1

ad

d∑

i=0

ad−i{ξαn−i} ∈ I0. (7.6)

We now verify for any integer h with 0 ≤ h ≤ ad− 1 that Ih contains at most
one integer. If such an integer exists, we denote it by wh. By putting

R =

[
h+ L−(α)y

ad

]
,

we get

Rad − L−(α)y ≤ h < (R+ 1)ad − L−(α)y.

Since h is a rational integer, by (7.1)

h ≥ Rad − [L−(α)y] ≥ (R − 1)ad + L+(α)y,
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and so Ih ⊂ (R− 1, R+ 1).

By (7.5), (7.6), [ξαn] is calculated as follows:

[ξαn] = − 1

ad

d∑

i=1

[ξαn−i]− h

ad
+ wh,

where

−
d∑

i=1

ad−i[ξα
n−i] ≡ h mod ad with h ∈ {0, 1, . . . ,−1 + ad}.

Thus, if ξ ∈ S+ and n ≥ d, then [ξαn] depends only on [ξαn−1], . . . , [ξαn−d].
Therefore, the two-sided sequences ([ξαm])∞m=−∞ and (sm(α; ξ))∞m=−∞ are ob-

tained by ([ξαm])d−1
m=−∞. Note that the cardinality of the set

{
([ξαm])d−1

m=−∞|ξ ∈ S+

}

is at most countable because [ξα−m] = 0 for all sufficiently large m. By Propo-
sition 4.1, ξ ∈ S+ is uniquely determined by the sequence (sm(α; ξ))∞m=−∞, and

so by ([ξαm])d−1
m=−∞. Consequently, the cardinality of S+ is at most countable.

Next we verify that S− is a countable set. Let ξ ∈ S−. Note for m ≥ 0 that

1− {−ξαm} = {ξαm}

since ξαm 6∈ Z. If n ≥ d, then

[−ξαn] = − 1

ad

d∑

i=1

ad−i[−ξαn−i]− 1

ad

d∑

i=0

ai +
1

ad

d∑

i=0

ad−i{ξαn−i}

and

1

ad

d∑

i=0

ad−i{ξαn−i} ∈ I ′0,

where

I ′h = I ′h(y) =

(
h

ad
− L−(α)

ad
y,
h

ad
+
L+(α)

ad
y

)
(0 ≤ h ≤ ad − 1).

The interval I ′h has at most one integer point. If such an integer exists, we
denote it by w′

h. In fact, by putting

R′ = 1 +

[
h− L−(α)y

ad

]
,
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we get I ′h ⊂ (R′ − 1, R′ + 1). Thus, if n ≥ d, we calculate the value [−ξαn] by
using [−ξαn−1], . . . , [−ξαn−d] as follows:

[−ξαn] = − 1

ad

d∑

i=1

ad−i[−ξαn−i]− 1

ad

d∑

i=0

ai −
h

ad
+ w′

h,

where

−
d∑

i=1

ad−i[−ξαn−i]−
d∑

i=0

ai ≡ h mod ad with h ∈ {0, 1, . . . ,−1 + ad}.

Finally, by Proposition 4.1 −ξ depends only on ([−ξαm])d−1
m=−∞, which implies

that the cardinality of S− is at most countable. We can also verify the theorem
in the case of L−(α) < L+(α) in the same way as above by showing that Ih ⊂
(R(2) − 1, R(2) + 1) for 0 ≤ h ≤ ad − 1, where

R(2) = 1 +

[
h− L+(α)y

ad

]

and that I ′h ⊂ (R(3) − 1, R(3) + 1) for 0 ≤ h ≤ ad − 1, where

R(3) =

[
h+ L+(α)y

ad

]
.

�

Let α > 1 be an algebraic number and y a positive number. Suppose that
y satisfies the assumption of Theorem 7.1. Then by Theorem 7.1 there exist
at most countably many nonzero ξ such that all limit points of the sequence
ξαn mod Z (n = 0, 1, . . .) lie in τ([0, y]). We now consider the cardinality of the
set of reals ξ such that all limit points of ξαn mod Z (n = 0, 1, . . .) lie in a given
interval in R/Z.Theorem 7.2. Let α > 1 be an algebraic number and ad(> 0) the leading
coefficient of the minimal polynomial of α. Suppose that α does not have a
conjugate on the unit circle. Let J be any interval in R/Z such that its Haar
measure satisfies

µ(J) <
ad
L(α)

. (7.7)

Then there exist at most countably many reals ξ such that all limit points of
ξαn mod Z (n = 0, 1, . . .) lie in J.Remark 7.1. Let J = τ([0, y]) (y > 0). Then (7.7) is rewritten by

L(α)y < ad.
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The assumption above is stronger than (7.1) and (7.2). In fact,

L+(α)y + [L−(α)y] ≤ L(α)y

and

L+(α)y + [L−(α)y] ≤ L(α)y.Example 7.2. We consider the case of α = θ1 again. For any interval J in R/Z
with µ(J) < 2/53 = 0.03773 . . . (< 1/25), there exist at most countably many
reals ξ such that all limit points of ξαn mod Z (n = 0, 1, . . .) lie in J .

P r o o f o f T h e o r e m 7.2. It suffices to prove the following:Lemma 7.1. Let J ′ be any interval in R/Z with length

µ(J ′) <
ad
L(α)

.

Then there are at most countably many reals ξ such that

ξαn mod Z ∈ J ′

for any n ≥ 0.

We check that Lemma 7.1 implies Theorem 7.2. Without loss of generality,
we may assume that J is closed. Write J by

J = τ([y1, y2]),

where y1 < y2 are real numbers with y2 − y1 < ad/L(α). Take a sufficiently
small ε > 0 such that

y2 − y1 + 2ε <
ad
L(α)

.

Put

J ′ = τ([y1 − ε, y2 + ε]).

Let S (resp. S′) be the set of ξ satisfying the properties of Theorem 7.2 (resp.
Lemma 7.1). Then, since

S ⊂ {ξαm|m ∈ Z, ξ ∈ S′},
the cardinality of S is at most countable.

Let us verify Lemma 7.1. It suffices to prove the lemma in the case that J ′ is

J ′ = τ([y, y + δ]),
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where δ < ad/L(α) and −1 < y ≤ 0. We choose a real η with −1 < η < y.
Then, for any real x there exist a unique integer ϕ(x) and a real number ψ(x)
with ψ(x) ∈ [η, η + 1) satisfying

x = ϕ(x) + ψ(x).

Note that 0 is an inner point of [η, η + 1) since −1 < η < 0. Thus, if ξ is a
real number, then we have ψ(ξα−n) = ξα−n and ϕ(ξα−n) = 0 for all sufficiently
large n.

In the rest of the proof, we show that ξ ∈ S′ is uniquely determined by
a sequence (ϕ(ξαm))d−1

m=−∞. The cardinality of the set of such sequences is at
most countable since ϕ(ξα−n) = 0 for all sufficiently large n. Hence the theorem
follows.

Let p, α1, . . . , αd, and adX
d+ · · ·+a0 ∈ Z[X] be defined as Section 4. Putting

s′m(α; ξ) =

d∑

i=0

ad−iϕ(ξα
−m−i),

we obtain

ξ =
1

ad

∞∑

i=−∞

∞∑

j=0

ρi(α1, . . . , αp)ρj(α1+p, . . . , αd)s
′
i+j(α; ξ). (7.8)

The proof of (7.8) is the same as that of (4.4).

We prove for ξ ∈ S′ that ϕ(ξαn) depends only on ϕ(ξαn−1), . . . , ϕ(ξαn−d) for
n ≥ d. By

0 =
1

ad

d∑

i=0

ad−iξα
n−i =

1

ad

d∑

i=0

ad−i

(
ϕ(ξαn−i) + ψ(ξαn−i)

)
,

we get

ϕ(ξαn) +
1

ad

d∑

i=0

ad−iψ(ξα
n−i) = − 1

ad

d∑

i=1

ad−iϕ(ξα
n−i). (7.9)

Thus

1

ad

d∑

i=0

ad−iψ(ξα
n−i) ∈ K,

where the interval K is defined by

K =

[
y

ad

d∑

i=0

ai −
L−(α)δ

ad
,
y

ad

d∑

i=0

ai +
L+(α)δ

ad

]
.
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Note that [y, y + δ] ⊂ [η, η + 1). So y ≤ ψ(ξαn) ≤ y + δ for any n ≥ 0 by
the definition of ψ(x) for a real x. Thus the length of K is less than 1 by the
assumption of Lemma 7.1. Hence, since ϕ(ξαn) is a rational integer, ϕ(ξαn) is
calculated by (7.9).

Therefore, if ξ ∈ S′, then the sequence (ϕ(ξαm))∞m=−∞ and the value ξ depend

only on the sequence (ϕ(ξαm))d−1
m=−∞. �Aknowledgement. I am very grateful to Prof. Masayoshi Hata for careful

reading and for improving the language of this paper. I would like to thank Prof.
Shigeki Akiyama and Prof. Yann Bugeaud for useful suggestions. This work is
supported by the JSPS fellowship.
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